
Accelerating Recommendation System Training
by Leveraging Popular Choices

Muhammad Adnan
University of British Columbia

adnan@ece.ubc.ca

Yassaman Ebrahimzadeh Maboud
University of British Columbia

yassaman@ece.ubc.ca

Divya Mahajan
Microsoft

divya.mahajan@microsoft.com

Prashant J. Nair
University of British Columbia

prashantnair@ece.ubc.ca

ABSTRACT
Recommender models are commonly used to suggest relevant items
to a user for e-commerce and online advertisement-based appli-
cations. These models use massive embedding tables to store nu-
merical representation of items’ and users’ categorical variables
(memory intensive) and employ neural networks (compute inten-
sive) to generate �nal recommendations. Training these large-scale
recommendation models is evolving to require increasing data and
compute resources. The highly parallel neural networks portion of
these models can bene�t from GPU acceleration however, large em-
bedding tables often cannot �t in the limited-capacity GPU device
memory. Hence, this paper deep dives into the semantics of training
data and obtains insights about the feature access, transfer, and us-
age patterns of these models. We observe that, due to the popularity
of certain inputs, the accesses to the embeddings are highly skewed
with a few embedding entries being accessed up to 10000⇥ more.
This paper leverages this asymmetrical access pattern to o�er a
framework, called FAE, and proposes a hot-embedding aware data
layout for training recommender models. This layout utilizes the
scarce GPU memory for storing the highly accessed embeddings,
thus reduces the data transfers from CPU to GPU. At the same time,
FAE engages the GPU to accelerate the executions of these hot
embedding entries. Experiments on production-scale recommenda-
tion models with real datasets show that FAE reduces the overall
training time by 2.3⇥ and 1.52⇥ in comparison to XDL CPU-only
and XDL CPU-GPU execution while maintaining baseline accuracy.

PVLDB Reference Format:
Muhammad Adnan, Yassaman Ebrahimzadeh Maboud, Divya Mahajan,
and Prashant J. Nair. Accelerating Recommendation System Training
by Leveraging Popular Choices. PVLDB, 15(1): 127 - 140, 2022.
doi:10.14778/3485450.3485462

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/STAR-Laboratory/Accelerating-RecSys-Training.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 1 ISSN 2150-8097.
doi:10.14778/3485450.3485462

1 INTRODUCTION
Recommendation models are an important class of machine learn-
ing algorithms that enable the industry (Net�ix [1], Facebook [2],
Amazon [3], etc.) to o�er a targeted user experience through per-
sonalized recommendations. Deep learning based recommendation
models [2, 4] are at the core of a wide variety of internet services and
consume signi�cant infrastructure capacity and compute cycles in
datacenters [5]. Training such at-scale models observes a con�ation
of challenges arising from high compute and data storage/transfer
requirements. On the compute side, hardware accelerators notably
GPUs and other heterogeneous architectures [6–10] provide a ro-
bust mechanism to increase performance and energy e�ciency. To
mitigate the large memory requirement, distributing training load
through model parallel training [11–14] or reducing the overall
memory requirement through sparsity [15] and compression [16–
23] can be used. However, such techniques either require a pool of
hardware accelerators that cumulatively provide enough memory
to store these large models or tradeo� accuracy from the reduced
precision for model footprint.

1.1 Motivation
Recommender models, as shown in Figure 1A, use embedding tables
that contribute heavily towards the memory capacity requirement
and neural networks that exhibit compute intensity. While neural
networks can bene�t from GPUs, embedding tables (10s of GBs)
often cannot �t within GPU memories [5, 24, 25]. Naively using
model parallelism just to store the large embedding data across
multiple GPUs is sub-optimal, as the number of GPU devices per
compute node are not only �xed, but also scarce and expensive.

Figure 1B shows the size of the embedding tables for four real-
world datasets [27–30] across two open-source recommender mod-
els, “Deep Learning Recommendation Model for Personalization
and Recommendation Systems” (DLRM) [2] and “Time-based Se-
quence Model for Personalization and Recommendation Systems”
(TBSM) [4]. As user-targeted applications evolve, the size of these
embedding tables is expected to increase [24, 31] at a rate faster
than the anticipated increase in the memory capacity [32, 33]. This
is because larger embedding tables can track a greater and diverse
degree of user preferences [5]. Therefore, in practice, it is com-
mon to train recommendation models either solely on CPUs or use
the CPUs for handling the embedding data with GPUs executing
data-parallel neural networks [34]. In the latter case, embeddings
are stored in CPU memories as shown in Figure 1C and require
embedding data to be transferred between CPU and GPUs.

���

In the proceedings of the
48th International Conference on Very Large Data Bases (VLDB)

GPUsA

Neural
Networks

Feature Interaction

Layer N

Embedding
Lookup

Embedding
Lookup

Dense Feature
Inputs

Sparse Feature
Inputs

Sparse Feature
Inputs

Layer 2

Layer 1

Compute Intensive

Memory Intensive

Neural
Networks

Neural
Networks

CPU

Embedding Entries

Main Memory

CPU

Main Memory Hot
Embeddings

6.8%
76%

75.8%

92.4%
81.6%

B

C

D

0.7%
17%

74.6%

GPUs

Figure 1: A Typical recommender model [2, 4, 26]. They comprise compute-intensive neural networks like DNNs and MLPs
in tandem with the memory-intensive embedding tables. B shows embedding table sizes for four real world datasets and the
proportion of the embedding table that is frequently accessed (hot). The graph also shows the % of training inputs that only
access the hot embeddings. C shows the baseline embedding data layout, i.e., storing entirely in the main memory. D shows
the proposed layout where hot embeddings that cater to >70% of the training inputs, are stored locally on GPUs.

Past work [35] has shown that data transfers not degrade per-
formance but also consume signi�cantly higher energy compared
to accessing device memories. To address this, we leverage the
observation that certain embedding entries and inputs to recom-
mendation models are signi�cantly more popular than the others.
For instance, blockbuster movies tends to be signi�cantly more pop-
ular than other movies. Below, we discuss how popular inputs and
embeddings can be delegated to a faster and compute-proximate
device memory while maintaining the training �delity.
1.2 Proposed Work and Contributions
Prior work [36, 37] have shown that convergence of population
preferences underlies the principle of popular inputs. This pop-
ularity of training inputs implies that embedding data (accessed
based on the input) also exhibits a highly skewed access behavior.
Figure 1B shows the portion of the embedding entries accessed by
popular inputs in real-world datasets. For each benchmark, entries
that have been accessed greater than 10�5%, 10�6%, 10�5%, 10�5% of
the total accesses respectively are showcased. We call these highly
accessed entries and their corresponding popular inputs as hot.
This paper aims to o�er an embedding data layout that accounts for
access patterns of such models and their training inputs. This data
layout reduces the memory footprint of embedding data per GPU
and mitigates frequent data transfers between CPU and GPUs.
Optimized Data Layout: The proposed optimized data layout
classi�es embedding entries into hot and cold regions as shown in
Figure 1D. The categorization allows (1) replicating and storing only
the hot embedding data (only a few hundred MBs) on every GPU
device memory and (2) perform all the hot embedding accesses
and neural network tensor computations locally on the GPUs. This
eliminates any CPU-GPU communication for the popular inputs.
For a large dataset like Criteo Terabyte, the size of hot portions of
embedding tables is about ⇠400 MB (0.7% as compared to 61GB for
the entire tables) while catering to 81.6% of the input data. These

hot embeddings can easily �t within the memory of even a low-end
GPUs. For hot inputs, the entire graph shown in Figure 1 is trained
using GPUs in a data-parallel fashion. For the remainder of the inputs,
their embedding accesses and computation are performed on the CPU
and the neural network is executed in data parallel fashion on GPUs.
Challenges: Storing hot embedding data locally in every GPU
poses four challenges: First, as each training step executes a mini-
batch of inputs. If even a single input within the mini-batch accesses
a cold embedding entry, that data has to be obtained from the CPU.
Thus incurs a CPU-GPU communication overhead and becomes
the latency bottleneck for that mini-batch. Second, training con-
tiguously only on either hot or cold inputs can have an impact
on accuracy. This is because, popular inputs only update the hot
embeddings. Third, as we split hot and cold embedding data be-
tween CPU and GPUs, all the devices need to be kept synchronized.
Fourth, the hotness of an embedding entry depends on the dataset
and recommender model. Hence, hotness needs to be re-calibrated
for every (model, dataset, and system con�guration) tuple.
Contributions: This paper proposes the Frequently Accessed Embed-
dings (FAE) framework that e�ciently places embedding data across
CPUs and GPUs. while maintaining baseline accuracy. This paper
makes the following contributions:

(1) We �nd that embedding table accesses in real world rec-
ommender models is heavily skewed, thus allocating equal
compute resources to all the entries is sub-optimal.

(2) We intelligently place hot embeddings on every GPU device
involved in training while retaining cold entries on CPUs.
Placing only hot embeddings on GPUs reduces its memory
requirement and improves performance. This is because FAE
eliminates CPU-GPU communication for inputs that access
hot embeddings and enables accelerating the compute that
involves those entries.

���

Time

Read Dense
Inputs

Receive
Dense Inputs

Read Sparse
Inputs

Scatter
Dense Inputs Bottom Neural Network

Read Embedding
Entries

Process embedding
entries

Scatter Embedding
Entries

Top Neural Network Backward PassFeature
Interaction

Executed on CPU Executed on GPU CPU-GPU
Communication

Forward Path

Optimizer Neural
Networks

Optimizer
Embedding

Figure 2: Execution graph of deep learning based recommender model. In this graph we show the forward graph in detail, the
backward pass is a mirror of forward and executes on CPU and GPU according to its forward counterpart. The current mode
of training for DLRM and TBSM requires embedding storage, reading, and processing, on CPU.

(3) To optimize training, FAE performs sampling of the input
dataset to determine the access pattern of embedding tables.
Thereafter, FAE classi�es the input data into hot and cold
categories. FAE ensures that a mini-batch either accesses
only hot or only cold embeddings to avoid communication
overheads. At runtime, FAE intertwines executions of hot
and cold input mini-batches to ensure the baseline accuracy.

(4) FAE employs statistical techniques to avoid traversing
through the entire input dataset and embedding tables to de-
termine the hot embedding access threshold and the size of
the hot embedding table while incurring negligible overhead.

We prototype FAE on open-source deep learning-based recom-
mender system training models DLRM [2] and TBSM [4]. These
models are adopted by both academia [38] and industry [39–41].
We compare our FAE optimized training with two implementa-
tions. First, the open-source implementations of DLRM and TBSM.
Second, a highly optimized implementation of these models using
the XDL framework [42]. We evaluate FAE for a wide variety of
real-world and synthetic deep learning based recommender mod-
els. For real-world model architectures, our experiments show that
FAE achieves an average speedup of 2.3⇥ and 1.52⇥ in comparison
to XDL enhanced CPU and CPU-GPU baseline, respectively. Fur-
thermore, FAE achieves 4.76⇥ and 1.80⇥ against DLRM and TBSM
implementations on CPU and CPU-GPU, respectively. Both base-
lines execute in a mode that uses a CPU with 4 GPUs. FAE reduces
the amount of data transferred from CPU to GPU by 1.54⇥ in com-
parison to XDL-based baseline. For synthetic model architectures,
FAE achieves 2.94⇥ speedup over XDL-based baseline.

2 BACKGROUND
In this section we provide the background on the model, inputs,
and training process of recommendation systems.
Recommendation models and their training inputs: Figure 2
shows the �ow of a recommendation model which comprises em-
bedding lookup and neural network layers. The recommendation
model has two types of inputs, namely sparse and dense. Sparse in-
puts typically denote speci�c preferences of the user (like the movie
genre, choice of music, etc.) and are used by the embedding layers.
Dense inputs are continuous inputs (such as time of day, location
of users, etc.) that feed directly into the neural network layers. The
embedding phase uses large tables containing data that reduces the
sparse input feature space into a vector. These inputs are used by
the Deep Neural Network (DNN) andMulti-Layer Perceptron (MLP)
components to classify and determine the �nal recommendation.

State-of-the-art mode of execution for training. Machine
learning techniques generally employ data-parallel training to re-
duce the overall execution time [43]. This mode of training requires
model replication across all the GPU devices, where each device
executes on di�erent inputs in a mini-batch. Thereafter, a post-
execution synchronization is performed to update the weights/pa-
rameters using the aggregated gradient values. For recommenda-
tion models, this training mode tends to be infeasible as embedding
tables cannot �t even on high-end GPUs such as Nvidia-V100.

To overcome this issue, as shown in the Figure 2, past work either
executes the whole graph on the CPU or uses the CPU to handle
the memory-intensive embedding layer with the GPUs executing
the compute-intensive DNN layers. The �rst case is ine�cient as
CPUs are not optimized for neural network training as they can-
not optimally process large tensor operations. On the other hand,
the hybrid CPU-GPU mode incurs CPU-GPU communication over-
heads for intermediate results and gradients. This is shown in the
forward pass by the bold dotted lines in the Figure 2. The backward
pass also executes in a CPU-GPU mode, with CPU executing the
backward computation for embeddings and GPU executing the
backward propagation of neural layers. Thereafter, the gradients
are generated on CPU for embeddings and on GPU for neural layers.
Our experiments show that CPU-GPU communication can take up
to 22% of the total training time. Additionally, any computation
involving embedding data, such as the massively-parallel Stochastic
Gradient Descent optimization, also then executes on the CPU.
Leveraging training input and embedding access patterns:
Data accesses can exhibit locality that can be exploited either at
software [16, 44], system [45], or hardware [46] level. For recom-
mender models trained on real-world data, some sparse inputs are
signi�cantly more popular than others. Therefore, in such real-world
applications, accesses into embedding tables are heavily skewed.
For instance, for the Criteo Kaggle dataset [27] on DLRM, the top
6.8% of the embedding table entries observe at least 76% of the total
accesses. It is important to note that the cold portion of the embedding
data is critical from a learning perspective as it contributes to the ac-
curacy of the model. Training only on popular inputs would make the
targeted user experience futile as it would lead to certain items being
always recommended. Nevertheless, from a memory perspective, as
shown in Figure 1B, hot entries are more important as they form
75% to 92% of the total training input accesses.

This paper leverages the popularity semantics of training input
to mitigate the bottlenecks of the above mentioned CPU-GPU ex-
ecution by optimizing the embedding data layout in the memory

���

hierarchy. Intuitively, highly accessed embeddings are kept in close
proximity to the compute, i.e. GPU, whereas the cold embedding en-
tries are stored in relatively larger but slower CPU memories. This
allows us to execute the entire training graph, shown in Figure 2, on
the GPU in a data-parallel fashion for the popular inputs. This data
layout overcomes the limitations of the baseline by - (1) accelerating
embedding compute through GPUs whilst being within the mem-
ory capacity of the device and (2) eliminating the communication
overheads (gradients and activations) between CPU and GPU.

3 CHALLENGES AND INSIGHTS
To perform e�cient end-to-end training with the optimized em-
bedding layout while maintaining baseline accuracy, we require a
comprehensive framework that has both static and runtime compo-
nents. Next we analyze the challenges of such a training execution.
(1) Does moving the hot embedding data to the GPU su�ce?
As shown in Figure 3, even if 99% of the inputs are popular, i.e.,
access hot embeddings, the probability that the entire mini-batch ac-
cesses only hot embeddings decreases dramatically as the minibatch
size increases. This is because, it is likely that at least one input
within a large mini-batch would require accessing cold embedding
entries. To obtain bene�ts from embedding data layout, we require
the entire mini-batch to only access hot embedding entries. Even
a single input accessing cold embedding entries would stall GPU
execution as it tries to obtain its embedding entries from the CPU
memory. To overcome this challenge, our framework comprises a
static component that performs input-dataset pre-processing and
organizes mini-batches such that they completely contain only hot
or cold inputs. This pre-processing needs to be performed only
once per dataset and is stored in a pre-processed format for subse-
quent executions. For hot mini-batches, the framework performs
GPU-only data-parallel execution and for cold mini-batches the
framework falls back onto the CPU-GPU hybrid mode.

0.0

0.2

0.4

0.6

0.8

1.0

2
0

2
2

2
4

2
6

2
8

2
10

2
12

2
14

P
ro

b
ab

il
it

y
 o

f
H

o
t

M
in

ib
at

ch

Minibatch Size

99% inputs being hot

< 99% inputs being hot
~ 0% probability of finding a

minibatch with entirely hot inputs

Figure 3: Probability of creating a mini-batch with all pop-
ular inputs when the number of hot-inputs is 99% or lower.
This reduces drastically as the mini-batch size increases.

(2)What constitutes a hot embedding entry? The classi�cation
of an embedding entry as hot or cold is based on the access thresh-
old. Any entry that is accessed more than a threshold is classi�ed as
hot. We expose this threshold as a knob to FAE to adjust the amount
of hot embeddings that can be managed by GPUs, based on both
the model and system speci�cations. To minimize performance
overhead, we devise statistical techniques that use input dataset

sampling to determine the access threshold. This enables FAE to
determine the optimal threshold without scanning the entire train-
ing data. FAE selects a threshold that classi�es enough embedding
entries as hot so that they �ts in allocated GPU device memory.
(3) How to schedule hot and coldmini-batches? FAE processed
data contains mini-batches that are either entirely hot or cold.
Scheduling all the hot mini-batches followed by cold mini-batches
incurs the least embedding update overhead as the embeddings
only have to synchronized between GPU and CPU once after the
swap. However, such a technique can can have an non-negligible
impact on the accuracy. This is because the hot mini-batches only
update the hot embedding entries whereas the cold mini-batches
cover more embedding entries (both hot and cold), albeit sparsely.
To tackle this issue, our framework, o�ers a runtime solution that
dynamically tunes the rate of issuing hot and cold mini-batches to
ensure that the accuracy metrics are met.
(4) How to maintain consistency between the embedding ta-
bles that are scattered across devices? FAE replicates hot em-
bedding tables across all the GPU devices and CPU contains all the
embeddings (including hot embeddings). Thus, we need to perform
two forms of synchronization during the training - one across all the
GPUs after each mini-batch of data parallel execution and once be-
tween the cold and hot swap between CPU and GPU. In the former
case, hot embeddings are synchronized using the AllReduce collec-
tives over the fast NVlink GPU to GPU interconnect [47]. In the
latter case, the synchronization across GPU and CPU between hot
and cold mini-batches is performed through PCIe transfer between
the GPU-CPU devices. This communication overhead incurred by
FAE is accounted for in the �nal execution latencies. To reduce
this overhead, FAE minimizes the transitions between hot and cold
mini-batches, without compromising baseline accuracy.

4 THE FAE FRAMEWORK
This paper proposes the Frequently Accessed Embeddings (FAE)
framework to accelerate recommender system training. FAE ef-
�ciently utilizes the GPU memory and computation throughput
to reduce the communication cost of obtaining embedding data.
Figure 4 illustrates the �ow of the framework; FAE consists of (1)
the input and embedding pre-processing stage that determines the
hotness of embeddings by sampling the input training data and (2)
the training stage that replicates hot embeddings on all the GPUs
and schedules hot/cold minibatches to ensure baseline accuracy.
The pre-processing phase converges on an access threshold to clas-
sify an embedding entry as hot. This threshold is based on the
allocated GPU memory size, con�dence interval, and the CPU-GPU
bandwidth. Thereafter, based on the �nal threshold, the Embedding
Classi�er and Input Classi�er categorize both embedding entries
and sparse inputs into hot and cold portions. The pre-processing
phase executes statically once per training dataset, and stores the
pre-processed data in the FAE format for subsequent training runs.
At runtime, the Embedding Replicator, extracts hot embedding en-
tries and creates embedding bags that are replicated across GPUs.
The Shu�e Scheduler dynamically determines the execution or-
der of hot and cold sparse input mini-batches across the CPU and
GPUs at runtime. Based on accuracy goals, the Shu�e Scheduler
interleaves hot and cold mini-batch queues to capture the updates

���

Training Data

Profiler

t: thresholds (vector)
L: Allocated GPU Size
CI: Confidence Interval

Final
Threshold

Input &
Embedding
Classifier

Training Minibatches
Embedding
Replicator

Shuffle
Scheduler

Pytorch
Module

Pre-processing

Popular Inputs
Cold Inputs

Statistical
Optimizer

Interim Threshold

Hot Emb Size
(Predicted)

Training

Classified Embeddings

Swap boundary Test
Loss

FAE Data Layout

Input
Sampler

Figure 4: The FAE framework. The pre-processing phase calculates the threshold for classifying hot embeddings. This phase
uses random-sampling of input datasets and embedding tables to determine the best threshold for hot embeddings. This
threshold is also used to classify inputs into hot and cold mini-batches. At runtime, GPUs execute the hot input mini-batch
while cold inputs execute in a CPU-GPU hybrid mode. The Shu�le Scheduler uses feedback from the pytorch modules to
determine the rate of hot and cold mini-batches swap.

to all embedding table entries. To help understand the next few
sub-sections, Table 1 provides description of the notations for the
design variables in FAE.

Table 1: List of Notations

Notation Description
D Training input dataset
t Minimum number of access to classify an entry as hot
T Total number of accesses into an embedding table
L User-speci�ed allocation of GPU memory for hot embeddings
h Maximum number of hot embeddings that �t in L
EI Size of embedding table number z
x Sampling rate for inputs (%)bD Sampled training input dataset entries
n Number of Sample Chunks from the embedding logger
m Number of entries in each embedding logger chunk (n)
N Total m-sized entries in the embedding logger
k For any t �! Total accesses into any embedding entry

HIC For any t �! Sample adjusted t per (z); minimum accesses to classify hot entries
C8 For any t �! Number of entries in the m chunk with accesses more than HIC
ȳ For any t �! Mean of C
s For any t �! Standard deviation of C

CIV Con�dence Interval of V%

4.1 Calibrating the Access Threshold
The �rst goal of the pre-processing phase is to pick an access thresh-
old (t) for the embedding entries. We denote T as the total number
of accesses into an embedding table. The accesses per entry for
hot embeddings is � t⇥T . Any input that accesses only hot em-
beddings is also categorized as hot. Picking a large t would imply
that only a few embedding entries would have enough accesses
to be classi�ed as hot. It would lead to only a small percentage of
sparse-inputs that would execute completely in a GPU execution
mode and thus reduce the overall performance bene�ts. Conversely,
picking a small threshold will categorize embedding entries with
very few accesses as hot which, would increase the embedding table
size, often beyond the GPU device memory capacity. Figure 5 shows
that we observe diminishing returns by reducing the threshold, as
the number of hot embedding entries increases more steeply as
compared to hot inputs. Thus, we need to e�ciently tune t based
on the system con�guration parameters.

One of the system con�guration parameters is the GPU memory
allocated for hot embeddings – denoted by L. Notation h constitutes

(a) (b)

Threshold (t) to Classify Embedding Entries as Hot (% of Total Accesses)

(b)

Figure 5: (a) Size of hot embedding entries and (b) Percent-
age of hot inputs with varying access threshold values. As
we vary the threshold, the size of the embedding entries in-
creases more rapidly compared to the percent of hot inputs

.

the maximum number of hot entries that �t within L. A naive
mechanism to determine t will pro�le the entire training dataset
and analyze the accesses of all the embedding entries. This requires
sorting all embedding entries based on their access frequencies and
classifying the top h entries as hot. This implementation will incur
a high pre-processing overhead as it could imply processing several
terabytes of data – even though pro�ling is performed only once per
dataset. Instead, we propose a novel input sampler and Statistical
Optimizer that ensures a low static compilation overhead for �nding
optimal t such that L is used e�ectively. Figure 6 describes the �ow
of events to determine the optimal value of t.

4.1.1 Mitigating Read Overheads with Sparse Input Sampler. As
size of the training input dataset is typically very large, we sample
x% of the input dataset (D). The value of x is speci�ed as a hyper-
parameter. Our implementation uses x = 5% and obtains bD sampled
sparse-input entries. Figure 7 shows the access pro�le for one large
embedding table each for Criteo Kaggle, Taobao Alibaba, Criteo
Terabyte, and Avazu datasets with and without input sampling.
Empirically, we observe with a sampling rate of 5%, bD maintains a
similar access signature as D.

���

Count (C)
of entries
that have
 k >= Hzt

Entire Input Dataset (D)

x = 5% (sampling rate)

1

2 Sampled Input Dataset (D)

30 1 Embedding Logger
for Table #z2

Accesses
(k)

Samples from Embedding Logger

 minimum accesses to
classify entry as hot
Hzt = t*T*(x/100)

4

C = 2

C = 1

C = 2
t = Interim threshold
T = Total accesses

5

y = mean hot entry count (C)
s = standard deviation of hot
entry counts (C) 6

m-sized chunks

Per interim t, estimate size of
hot embeddings

Figure 6: The �ow of events in Input Sampler and Pro�ler. The original input 1 is sampled 2 at 5%. This sample is used by
the pro�ler to create an access pro�le across embedding entries in the logger 3 . For each threshold, A few chunks from the
embedding logger are randomly sampled 4 to estimate the count of hot entries 5 . The mean and standard deviation of this
count determines the size of hot embedding tables per threshold 6 .

Original Accesses Sampled Accesses (5% sampling rate)

Figure 7: Embedding table access pro�le from the original
inputs (D) and the sampled inputs (bD) – sampling rate (x) =
5%. We observe that bD has a similar access signature to D.

As shown in Figure 8, FAE obtains 19⇥ to 55⇥ reduction in
latency by input sampling.

19x 55x 20x 18x

Figure 8: Reduction in the pro�ling latency when input
dataset is sampled for embedding table access pattern.

4.1.2 Categorize and determine hot embedding size with the Profiler.
The goal of the pro�ler is twofold - (1) for the sampled input datasetbD it creates an access pro�le of each embedding table (EI), where
z is the table number and (2) it further samples this access pro�le
to determine what the size of the hot embedding table is.
Embedding Logger. The pro�ler uses an embedding logger for
each table to keep track of access counts (denoted as k) of bD into
each entry in EI . As each model can access multiple embedding
tables, FAE assumes any table �1 MB to be large. Embedding tables
< 1MB are de-facto considered “hot” as they can easily �t even on
low-end GPUs. The pro�ler would still need to estimate the hot
embedding table sizes without traversing all the embeddings.
Estimating the hot embedding table sizes per threshold. Pro-
�ler creates a sampled access pro�le for each embedding table entry
across all the tables by selecting random chunks of embedding en-
tries and their observed access pattern from the logger. This enables
estimating the size of the hot embeddings without traversing all
the tables in their entirety. As the embedding logger observes only
x% of the actual inputs, we need to scale down the required access
counts to classify hot data. For embedding table number z and a
threshold t, the new hot embedding cuto� for each sampled entry
is denoted by HIC , described in Equation 1:

�IC = C ⇥) ⇥ G

100
(1)

We then pickn random samples, each consisting of m = 1024 entries
entries from embedding logger for table z. Our implementation uses
n = 35 and each sample consists of m = 1024 embedding entries.
This chunk based sampling allows us to create a distribution of
the access pattern. This paper uses Central Limit Theorem (CLT)
to estimate the mean of the parent distribution. CLT has the prop-
erty that, irrespective of the parent distribution, the mean of the
sampled distribution will always approach the mean of the parent
distribution. This is because, when the sample size n � 30, CLT
considers the sample size to be large and the sampled mean will
be normal even if the sample does not originate from a Normal
Distribution [48]. As each embedding sample chunk consistsm =
1024 entries, we can estimate the actual embedding table size with
a precision of 1

1024 . For each chunk, we count (C) the number of
entries with access counts (k) greater than or equal to HIC . This is
represented by Equation 2:

���

⇠8 =
<’
9=1

(: 9 > HIC) (2)

For n chunks, the standard deviation is s and the mean is ȳ,
shown by Equation 3:

~̄ =

Õ=
8=1⇠8
=

(3)

Figure 9 shows the latency savings from sampling embedding
table instead of iterating through all the embedding access content.
As the pro�ler scans 14x fewer embedding entries for each C it
reduces latency of each scan by 14.5⇥-61⇥.

14.5x 61x 16x 47.7x

Figure 9: Reduction in the latency per iteration by using Pro-
�ler to estimate the hot embedding size per threshold. The
total latency to scan all embedding tables is under 25 sec-
onds per threshold iteration.

Input Sampler and Pro�ler Example: The Criteo Terabyte
dataset is 45 GB in size; post Input Sampler, we only process 2.25 GB.
The pro�ler with this sampled input dataset, logs 8.5M embeddings
in the logger for embedding table 20 (E20),. Assuming an interim
t of 10�2 and the original training dataset of 60.5M samples, each
embedding entry in the logger would have incurred at least 6.05k
accesses to be categorized as hot. As we use a sampled dataset (bD),
the hot entries observe fewer accesses and a smaller threshold of
HIC , 6.05k* 5

100 = 302.5 accesses.
Con�dence in the estimated embedding table size. The goal
of the pro�ler is to establish con�dence in the estimated embedding
size. A con�dence interval, in statistics, refers to the probability
(1� U) that a population parameter will fall between a set of values.
To compute the con�dence interval for the pro�ler’s estimated
embedding table size, FAE uses the standard ‘Student’s t-interval’.
As ȳ follows a t-distribution, the 100⇥(1-U) con�dence interval (CI)
for ȳ is represented by Equation 4:

⇠�100⇥(1�U) = ~̄ ± C U
2
⇥
r
(# � =

#
) ⇥ (B

2

=
) (4)

Figure 10 shows the estimation variability compared to the actual
values for a con�dence interval of 99.9%. Actual value of the hot
embedding size is the exact size the pro�ler would have obtained
if it had processed the entire access pattern for each embedding
table. This variability can be reduced if we specify a smaller con-
�dence interval. We observe that the estimated values are within
10% of the actual values. As such, for every threshold, the pro�ler

Measured Size
Estimated Size

with Confidence
Interval (99.9%)

31.5 MB

26.1 MB

235 MB

232 MB

81 MB

62.9 MB

82 MB

78 MB

Figure 10: Estimated sizes of hot embedding tables with Pro-
�ler. For a con�dence interval of 99.9%, the Pro�ler estima-
tion is within 10% (upper bound) of the actual size.

process described above is executed to determine the size of the
hot embeddings. The Statistical Optimizer, based on this size and
user requirements, either accepts the threshold or tunes it further
as described below. Our experiments show that allocated memory
of L = 512MB su�ces for most GPUs (including low-end GPUs).

4.1.3 Converging on a Threshold using Statistical Optimizer. The
Statistical Optimizer invokes the pro�ler with varying t (interim
thresholds) and a desired con�dence interval to determine the �nal
t. Based on the embedding size estimated for an interim threshold,
the optimizer tunes the threshold to be higher or lower than the
previous one. This ensures that the threshold is tuned appropriately
based on the available GPU memory for each model architecture.
The Statistical Optimizer then provides the �nal threshold as output
to the next blocks in the FAE.

4.2 Input and Embedding Classi�er
The embedding classi�er uses the output of the Embedding Logger
and the �nal threshold from Statistical Optimizer to tag (hot or
cold) the embedding table entries. This requires only one pass of
each embedding table. Additionally, the input classi�er uses the
�nal access threshold value and accesses to the already classi�ed
embedding table to identify hot sparse-inputs. Typically, there are
10s of embedding tables in a recommender model. A sparse-input
typically accesses one or more entries in each of these embedding
tables. A sparse-input is classi�ed as hot only if all its embedding
table accesses are to hot entries. This component typically requires
only one pass of the entire sparse-input ((�) and just checks if the
embedding entry indices are present in the hot-embedding bags. As
this is completely parallelizable operation across both inputs and
embedding indices, we divide this task across multiple cores in the
CPU. For a 16 core machine (32 hardware threads), the total time
for this phase for di�erent access thresholds is given by Figure 11.

The input classi�er also bundles hot and cold inputs together into
mini-batches. As aforementioned, we require the entire mini-batch
to be hot to avoid the data shu�ing between CPU and GPU. If an
mini-batch of inputs is entirely hot, the entire execution can happen
in a data-parallel mode on the GPU without any interference from
the CPU. Once we have pre-processed the sparse-input data into
hot and cold mini-batches, we store this in the FAE format for any
subsequent training runs.

���

Figure 11: The latency of the input processor to classify
sparse-inputs (as hot or cold) as we vary the access thresh-
old. Overall, even for very low access thresholds, we only
require only a maximum of 110 seconds.

4.3 Scheduler for Dynamic Hot-Cold Swaps
FAE’s pre-processing provides a dataset that is distributed into hot
and cold mini-batches and a set of hot embeddings. The Embedding
Replicator replicates the hot embedding bags across all GPUs, but
a note here is that the hot embeddings also are available on CPU
for baseline cold input executions. Next, we discuss the runtime
scheduling of hot and cold mini-batches to ensure the baseline
accuracy metrics whilst providing accelerated performance.
Impact on accuracy. In the most basic form, FAE can schedule the
entire collection of mini-batches comprising hot inputs followed by
cold inputs, or vice versa, but such a schedule can have potential
impact on training accuracy. This is because the hot inputs only
access and update the hot embedding entries, and training using
only hot inputs for a long time can potentially reduce the random-
ness in training. For non-convexity loss optimization problems,
this makes gradient descent based algorithms susceptible to local
minima [49, 50]. To mitigate this, machine learning community has
often deployed data shu�ing. Next, we discuss how we uniquely
attenuate this issue for our framework.
Communication Overheads. To re-introduce randomness in our
training while also attaining accelerated performance, we inter-
mittently schedule hot and cold mini-batches. However, changing
input type (hot vs cold) can degrade performance as each of these
events requires synchronization of hot embedding parameters be-
tween CPU and GPU copies. To balance this tradeo� of achieving
accuracy but also obtaining performance, we implement Shu�e
Scheduler, a module that dynamically determines the interleaving
of hot and cold mini-batches based on the runtime training metric.
The scheduler always begins with training on cold inputs as they
update a wider range of embedding entries, albeit infrequently. The
rate of scheduling hot and cold mini-batches can be tuned dynam-
ically based on Equation 5. In the equation, A (8) is the rate at 8C⌘
swap. Rate of ('(100)) implies that 100% of the mini-batches of
cold inputs will be completed before the �rst hot mini-batches is
issued. A rate of ('(1)) implies hot and cold are shu�ed after every
mini-batch.)4BC! is the testing loss and D is a count of swaps.

A (8 + 1) =
8>>><
>>>:

<8= (A (8) ⇤ 1/2,' (1)) 8 5 �)4BC! (8) �)4BC! (8 � 1)
<0G (A (8) ⇤ 2,' (100)) 8 5 �)4BC! (8))4BC! (8 �D)
A (8) >C⌘4AF8B4

(5)

Depending on the post-swap testing loss, we change the rate
based on two conditions. The testing loss used for the scheduler,
based on the model requirement, can be loss functions such as
mean squared loss and cross-entropy logarithmic loss. All of our
models and their datasets use the logarithmic loss to establish the
e�cacy of training. We perform a comparison of loss score between
each subsequent swap. If FAE observes an increase in the test loss,
it reduces the rate by half. This implies that the remaining mini-
batches of hot and cold inputs will be split into an alternate of cold
and hot schedules. The rate can be reduced to a minimum of '(1).

If the test loss decreases, rate remains unchanged, as this is the
expected behaviour, unless the loss has been decreasing successively
for D schedules. This is the second case where rate is changed,
i.e., increased by 2, up to a max of '(100). Similar to prior work
that o�ers automatic convergence checks to avoid over-�tting, the
downward trend of test loss curve [51] consecutively for 4 strips
shows a balance between redundancy, badness, and slowness; thus
we choose D as 4. Apart from the above two cases, the rate remains
unchanged. The Shu�e Scheduler ensures that accuracy remains
the priority of FAE. FAE begins training with '(50) (alternate cold
and hot mini-batches) for a dataset, and tunes the rate accordingly.

5 EVALUATION
5.1 Experimental Setup
5.1.1 Benchmarks and Real-World Datasets. We showcase the e�-
cacy of the FAE framework on 4 real-world datasets, using recom-
mendation models RMC1, RMC2, RMC3, and RMC4. These repre-
sent four classes of at-scale models [40].We prototype FAE on top of
the open source implementation of DLRM [2] and TBSM [4]. There
is a model-dataset correspondence, based on the sparse input con-
�guration, with RMC1 model on Taobao Alibaba [28] with TBSM,
and RMC2 on Criteo Kaggle [27], RMC3 on Criteo Terabyte [29],
and RMC4 on Avazu [30] with DLRM. TBSM consists of embedding
layer and time series layer (TSL); the embedding layer is imple-
mented through DLRM. TSL resembles an attention mechanism
and contains its own MLP network to compute one or more con-
text vectors between history of items and the last item. As Taobao
Alibaba is the only dataset that provides temporal user-behavior to
leverage the TSL layer. Table 2 describes the details of the model ar-
chitecture for RMC1, RMC2, RMC3, and RMC4 including their dense
and sparse features, embedding table numbers and size, and neural
network con�gurations. In addition to these real world datasets
and their corresponding models, we also perform an evaluation on
synthetic models. As FAE relies on popularity of certain inputs, we
execute these synthetic models on Criteo Terabyte (largest dataset)
to ensure the semantics of the training input. Table 2 highlights the
diversity of the model architectures in terms of embedding table
sizes and neural network con�gurations.

5.1.2 So�ware libraries and setup. The base DLRM and TBSM code
is con�gured using the Pytorch-1.7 and executed using Python-3.
We use the torch.distributed backend to support scalable distributed
training and performance optimization [52]. NCCL is used [53]
for gather, scatter, and all-reduce collective calls via the backend
NVLink [47]. DLRM and TBSM are also implemented on XDL
1.0 [42] using Tensor�ow-1.2 [54] as the computation backend.

���

Table 2: Model Architecture Parameters and Characteristics of the Datasets for our Workloads

Workload Dataset Training Input Model Features Embedding Tables Neural Network Con�guration

Samples Size Dense Sparse Rows Row Dim Size Bottom MLP Top MLP DNN

RMC1 (TBSM [4]) Taobao (Alibaba) [28] 10 M 1 GB 1 3 5.1M 16 0.3 GB 1-16 & 22-15-15 30-60-1 Attn. Layer

RMC2 (DLRM [2]) Criteo Kaggle [27] 45 M 2.5 GB 13 26 33.8M 16 2 GB 13-512-256-64-16 512-256-1 -

RMC3 (DLRM [2]) Criteo Terabyte [29] 80 M 45 GB 13 26 266M 64 63 GB 13-512-256-64 512-512-256-1 -

RMC4 (DLRM [2]) Avazu [30] 32.3 M 2.4 GB 1 21 9.3M 16 0.55 GB 1-512-256-64-16 512-256-1 -

(a) Criteo Kaggle (b) Taobao Alibaba (c) Criteo Terabyte (d) Avazu

Figure 12: Increasing Accuracy with training iterations when optimized with FAE framework. As we see, all the datasets and
corresponding recommender models achieve the XDL accuracy for both training and test or validation sets.

5.1.3 Server Architecture. Table 3 describes the con�guration of
our datacenter servers [55]. These servers comprise 24-core Intel
Xeon Silver 4116 (2.1 GHz) processor with Skylake architecture.
Each server has a DRAM memory capacity of 192 GB. Each DDR4-
2666 channel has 8 GB memory. Each server also has a local storage
of 1.9 TB NVMe SSD. Each server o�ers 4 NVIDIA Tesla-V100 each
with 16GB memory capacity as a general purpose GPU. The GPUs
are connected using the high speed NVLink-2.0 interconnect. Every
GPU is communicating with the rest of the system via a 16x PCIe
Gen3 bus. In this paper, we perform experiments on a single server
with a maximum of 4 GPUs. We expect our insights to hold true
even in a multi-server scenario.

Table 3: System Speci�cations

Device Architecture Memory Storage
CPU Intel Xeon 768 GB 1.9 TB

Silver 4116 (2.1GHz) DDR4 (2.7GB/s) NVMe SSD
GPU Nvidia Tesla 16 GB -

V100 (1.2GHz) HBM-2.0 (900GB/s)

5.1.4 Baselines and terminology. We compare FAE optimized train-
ing against two baselines: (1) An open source implementation of
DLRM and TBSM and (2) A DLRM and TBSM implementation on
XDL. For both baselines we execute on CPU-only mode and CPU-
GPU hybrid mode with varying number of GPUs. The CPU-only
mode is referred to as XDL-CPU and DLRM-CPU. For CPU-GPU
hybrid mode, in case of DLRM, embeddings execute on CPU and
neural networks on GPU. For XDL, GPU is used to improve the
e�ciency of Advance Model Server by using a faster embedding
dictionary lookup on GPU. CPU is used as a backend worker. We
represent this mode as X-GPU, where X is the number of GPUs.
FAE optimized training is referred to as X-GPU FAE.

5.2 Results and Insights
5.2.1 Accuracy Results. Figure 12 shows the accuracy of Criteo Kag-
gle, Taobao Alibaba, Criteo Terabyte, and Avazu datasets for their
RMC2, RMC1, RMC3, and RMC4 models. We use a full-precision
XDL-CPU execution baseline. Table 4 compares the accuracy met-
rics for all the workloads. We use testing accuracy, Area Under
Curve (AUC), and cross-entropy loss (logloss) as recommenda-
tion model performance metric. This metric is established by the
MLPerf [56] community. For Taobao dataset, we use the accuracy
and logloss as performance metric, as AUC is not o�ered. As the
table shows, each model achieves the corresponding baseline accu-
racy. For all the datasets, we observe that when the Shu�e Scheduler
alternately issues cold and hot mini-batches at '(50), the models
are able to converge to the baseline accuracy in the same num-
ber of baseline training iterations. FAE observes an initial jump in
accuracy for both Criteo and Avazu datasets after the �rst swap
between cold and hot mini-batch. Once, the model is trained on
both the types of mini-batches, we do not observe any more jumps.
As we interleave it with the �rst hot mini-batch, many pertinent
embedding entries get updated and we reach the baseline accuracy
for both training and testing sets.

Table 4: Accuracy Metric Comparisons

Dataset XDL FAE

Accuracy (%) AUC Logloss Accuracy (%) AUC Logloss

Criteo Kaggle 78.86 0.802 0.452 78.86 0.802 0.452

Taobao Alibaba 89.21 - 0.269 89.03 - 0.271

Criteo Terabyte 81.07 0.802 0.424 81.06 0.802 0.424

Avazu 83.61 0.758 0.390 83.60 0.758 0.391

���

Figure 13: The performance of Criteo Kaggle, Taobao Alibaba, Criteo Terabyte, and Avazu training with the FAE vs XDL and
DLRM. All values are normalized to XDL 1-GPU.

CPU 2-GPU 4-GPU1-GPUCPU 2-GPU 4-GPU 1-GPUCPU 2-GPU 4-GPU 1-GPUCPU 2-GPU 4-GPU 1-GPUCPU 2-GPU 4-GPU

Figure 14: Latency breakdown for the 1, 2, and 4 GPU executions. The FAE framework adds the overhead of embedding syn-
chronization across CPUs and GPUs, not present in XDL and DLRM.

5.2.2 Performance Gains and Absolute Training Times. Figure 13
shows the performance improvement of end-to-end training exe-
cution using FAE in comparison to XDL and DLRM/TBSM. The
end-to-end training runs are terminated when the established accu-
racy metric (cross-entropy loss or area under the curve) is met. The
performance is normalized to XDL 1-GPU execution For a single
device (CPU or 1-GPU), we use a mini-batch of 1K, 256, 1K and
1Kinputs for Criteo Kaggle, Taobao Alibaba, Criteo Terabyte and
Avazu, respectively. FAE training reduces the average execution
time (geomean) by 42%, 36%, and 34%, 1-GPU, 2-GPU, and 4-GPU
executions, respectively. The GPU comparisons assume same num-
ber of GPUs for XDL and FAE. We maintain weak scaling across
distributed runs where the mini-batch size is scaled with the num-
ber of GPUs. For example, 2 GPU execution use 2K, 512, 2K and
2K mini-batch size for Criteo Kaggle, Taobao Alibaba, Criteo Ter-
abyte and Avazu, respectively. For Taobao, 4 GPU execution takes
more time than 2 GPU execution because the dataset is relatively
small, thus the cold mini-batch executions overshadow bene�ts of
FAE. Overall FAE reduces the training time by 2.3⇥ and 1.52⇥ in
comparison to XDL CPU-only and XDL CPU-GPU with 4-GPUs.

Table 5: Absolute Training Time for 10 Epochs (mins)

Dataset XDL 1-GPU 2-GPU 4-GPU

CPU XDL FAE XDL FAE XDL FAE

Criteo Kaggle 197.56 196.97 122.71 179.16 116.27 160.65 104.69

Taobao Alibaba 1108.84 813.10 436.58 677.00 387.79 621.96 428.55

Criteo Terabyte 404.25 380.88 189.73 330.06 201.61 309.51 156.45

Avazu 134.28 108.24 72.07 84.04 62.73 74.20 61.15

Absolute time: Table 5 shows the absolute end-to-end training
time, when the executions reach their required accuracy metric.
We use minibatch of 1k, 2k, and 4k for Crtieo Kaggle, Terabyte, and
Avazu datasets. We use minibatch of 256, 512 and 1k for the Taobao
Alibaba dataset. We observe that the RMC1 model with Taobao
Alibaba dataset obtains most bene�ts from GPU acceleration as
it employs a relatively large DNN. FAE can further accelerate the
training of this model and reduce the training time to 428 minutes
with 4-GPU FAE compared to 621 minutes with 4-GPU XDL. Our
results clearly show that FAE can enable GPU acceleration without
incurring large data CPU-GPU transfer overheads.

5.2.3 Latency breakdown. Figure 14 shows the breakdown of the
total runtime for each of the workloads executing on CPU-only
and 1, 2, and 4 GPUs. The breakdown for cold inputs are consistent
across XDL, DLRM, and FAE executions. FAE is able to mitigate
some of these ine�ciencies by performing both the neural network
and embedding updates on GPUs for the hot input mini-batches.
In case of XDL, e�ciency of Advanced Model Server (AMS) is
improved using GPU to speed up the massively parallel optimizer
and embedding dictionary lookup. Even XDL is limited by the size
of GPU memory, hence only the index of embedding dictionary is
stored in GPU memory. Due to small size of hot embedding tables,
FAE stores the entire table in GPU memory instead of only the
indices. Figure 14 also shows the percentage of time spent by XDL,
DLRM/TBSM, and FAE on embedding layer data transfer. This data
transfer is completely eliminated for FAE for hot mini-batches. For
DLRM/TBSM implementations, the data transfer time comprises
the time spent on transferring embedding data to the GPU. For
XDL, the time reported is spent on transferring embedding indices
and model dense parameters to the GPU.

���

Embedding Synchronization: One overhead imposed by FAE is
from embedding synchronization while switching between cold
and hot mini-batches. The embedding tables are updated across
CPU and GPU memories to ensure the training process observes
the same entries. This overhead is shown by the ‘embedding sync’
entry Figure 14. The Avazu dataset observes a higher percentage of
embedding synchronization overhead because of its comparatively
smaller embedding size. Thus the �xed transfer cost from CPU
to GPU, using PCIe, is not amortized over a large data transfer.
On the contrary, the Taobao dataset observes the least percentage
of synchronization overhead. This can be attributed to the high
percent of forward and backward time of the RMC1 recommender
model due to its deep attention layer. Thus, as the recommender
models become bigger with larger embedding tables and deeper
neural network layers, FAE can o�er higher bene�ts by reducing
the CPU-GPU data transfer between embedding and DNN layers,
whilst observing amortized embedding synchronization overheads.

Table 6: CPU-GPU data transfer time for 10 Epochs (mins)

Dataset 1-GPU 2-GPU 4-GPU

DLRM XDL FAE DLRM XDL FAE DLRM XDL FAE

Criteo Kaggle 22.09 5.39 4.99 23.12 5.61 4.35 18.00 3.05 4.29

Taobao Alibaba 37.93 24.97 3.24 38.27 12.89 11.11 25.04 6.24 6.04

Criteo Terabyte 76.01 13.46 13.27 92.98 18.94 12.41 48.43 17.49 15.24

Avazu 13.94 6.23 2.97 12.68 3.19 3.17 11.94 2.36 2.79

Data transfer between CPU and GPU. Table 6 shows the ab-
solute communication time to transfer the embedding layers and
Table 7 shows the amount of data transferred for XDL, DLRM/TBSM
and FAE execution including the embedding synchronization for
FAE. On average FAE reduces the total data transfer from 37 GB
with XDL to 24 GB, even including the embedding synchroniza-
tion overhead, which translates to 12% improvement in CPU-GPU
data transfer time. In case of XDL, all dense parameters needs to
be transferred from AMS to backend workers and vice versa per
training iteration. FAE only require parameters to be transferred
between CPU and GPU across the hot and cold mini-batch swap.

Table 7: Amount of Data Transferred over 10 Epochs

Dataset DLRM (GB) XDL (GB) FAE (GB)
Criteo Kaggle 60.89 23.16 14.99
Taobao Alibaba 1.95 0.51 0.61
Criteo Terabyte 375.06 95.60 69.58

Avazu 40.45 30.27 10.45

5.2.4 Performance improvement with varying mini-batch size. Fig-
ure 15 shows the performance bene�ts of FAE training over XDL
execution for a 4-GPU system. Speedup is normalized to XDL exe-
cution with mini-batch size of 1K, 256, 1K and 1K for Criteo Kaggle,
Taobao Alibaba, Criteo Terabyte and Avazu datasets respectively.
As the mini-batch size increases, we observe higher bene�ts be-
cause the overheads of FAE are amortized over a larger input set.
For instance, now the Embedding Replicator replicates the model
fewer times. However, with XDL, we do not see such an improve-
ment because of extra time being spent on creating and sending
larger mini-batches to the backend workers.

mini-batch size mini-batch size mini-batch size mini-batch size

Figure 15: Speedup of FAE with varying mini-batch sizes for
a 4-GPU system, compared to a 4-GPU XDL

.

5.2.5 Performance improvement for synthetic models. To under-
stand the e�cacy of FAE on varying types of model architectures,
we create synthetic con�gurations, shown in Table 8, to execute the
Terabyte dataset. Figure 16 shows the speedup of FAE across vari-
ous synthetic models. FAE provides 2.94⇥ average speedup across
small and large synthetic models as compared to XDL.

Table 8: Synthetic Models’ Con�guration

Dataset Bottom MLP Top MLP
SYN-M1 13-64 512-1
SYN-M2 13-512-64 512-256-1
SYN-M3 13-1024-512-64 512-1024-256-1
SYN-M4 13-1024-512-256-64 512-1024-512-256-1

Figure 16: Performance comparison of FAEwith XDL 4-GPU
across various synthetic models.

5.2.6 Power Benefits. Table 9 shows the per GPU power consump-
tion using the baseline and FAE for a 1024 mini-batch. FAE reduces
GPU power consumption by 9.7% in comparison to XDL. This is
primarily due to the reduced communication cost between devices.

Table 9: GPU Power Consumption Comparison

Dataset XDL DLRM FAE
Criteo Kaggle 61.83W 58.91W 55.81W

Alibaba 56.39W 60.21W 56.62W
Criteo Terabyte 59.71W 62.47W 57.03W

Avazu 60.2W 58.03W 56.4W

6 RELATEDWORK
Training machine learning models is an important and heavily
developed area of research. Optimizing training for deep neural net-
works training [8, 11, 12, 14, 57] has garnered most of the attention,
whereas Recommender models have been under-researched.

���

Optimizations data layout through caching: Work in the
past [58, 59] has delved into informed and domain-aware caching,
which is highly pertinent to current applications, with their ever
increasing requirement for compute and memory. In the deep learn-
ing realm, prior work [45] caches data on local SSD to eliminate
slow reads from remote storage and employs hashing based tech-
niques to incorporate thrashing-free strategies to e�ciently utilize
the shared cache. Instead, this work dives into the semantics of the
training inputs observed by recommender models and o�ers com-
pile time strategies to statistically ensure hot data is placed close
to compute. FAE is able to fully exploit the coarse grained GPU
based compute throughput without employing any dynamic hash-
ing. Work in [60] and [61] employ runtime techniques to improve
memory, communication, and I/O resources for training and reduce
data stall time, respectively. On the hardware side, works in [62]
propose techniques to store embedding tables in non-volatile memo-
ries and allocate a certain portion of DRAM for caching. This work,
however, does not support GPU based training executions with
replicated hot embeddings and does not deal with perceptive input
pre-processing to reduce communication overheads. Recent work
in [63–65] has also proposed solutions to accelerate near-memory
processing for embedding tables, but do not facilitate distributed
training of entire recommender models using GPUs.
Embedding parameter placement: Works in [66] o�ers a hier-
archical parameter server that builds a distributed hash table across
multiple GPUs. This work stores the working parameters close to
computation, i.e, GPU, at runtime, albeit treats all embedding entries
equally. Instead, FAE delves into the access pattern of each dataset
and uses this information to store the highly accessed embedding
entries in the GPU for the entirety of the training job. Work in [67],
aims to understand the implications of di�erent embedding table
placements within an heterogeneous data-centre. However, none of
the techniques leverage runtime access skew for their embedding
table placement that can improve the overall training performance.
Mitigating memory intensive training through compres-
sion, sparsity, and quantization: Past work has used compres-
sion [17–19], sparsity [68], and quantization [15] to reduce the
overall memory footprint of machine learning models. Prior work
in [69], optimizes training by modifying the model either through
mixed-precision training or eliminating rare categorical variables
to reduce the embedding table size. Even with these optimizations
real dataset’s entire embedding table cannot �t on a GPU. Moreover,
approaches that change the data representation and/or embedding
tables, require accuracy re-validation across a variety of models and
datasets. FAE enables apropos utilization of memory hierarchywith-
out employing overheads such as compression/decompression [16]
and sparse operations. FAE moreover performs full-precision train-
ing of the baseline model by leveraging the highly skewed access
pattern for embedded tables and increase the throughput for hot em-
bedding entries. Nevertheless, our framework is orthogonal to the
prior techniques and can be used in tandem with them to improve
the memory e�ciency even further.
Distributed deep learning training: Data parallel training [43]
forms the most common form of distributed training as it only
requires synchronization after the gradients generated in back-
ward pass of training. As models become bigger and bigger [31, 70],

model parallelism [12, 71] and pipeline parallelism [11] are becom-
ing common as they split a single model onto multiple devices.
Nonetheless, the techniques employed to automatically split the
models [72, 73], o�er model parallelism solutions to enable training
of large model with size constrained by the accelerator memory
capacity. However, none of these techniques dive into the semantics
of input data to perform an optimal split. This is because they are
mainly suitable for DNNs.

7 CONCLUSIONS
Recommendation models aim to learn user preferences and provide
a targeted user experience by employing very large embedding
tables. Even though these tables often cannot �t on GPU memory,
these models also comprise neural network layers that are well
suited for GPUs. These contrasting requirements splits the training
execution on CPUs (for memory capacity) and GPUs (for compute
throughput). Fortunately, for real-world data, we observe that em-
bedding tables exhibit a skewed data access pattern. This can be
attributed to certain training inputs (users and items) that are much
more popular than the others. This observation allows us to develop
a comprehensive framework, namely FAE, that uses statistical tech-
niques to quantify the hotness of embedding entries based on the
input dataset. This hotness of embedding tables in turn allows the
framework to optimally layout embedding so that the GPU mem-
ory is e�ciently utilized to store highly accessed data close to the
compute. To capture most of the performance bene�ts, FAE bundles
hot inputs and cold inputs in separate mini-batches. This helps FAE
accelerate the hot mini-batch by executing the whole model on
GPU and eliminate any CPU-GPU embedding data transfers. The
training for these hot inputs happens entirely on GPUs, thus reduc-
ing any CPU-GPU communication overhead between CPU-GPU
and GPU-GPU from embedding and neural network layers. Our
experiments on DLRM and TBSM recommender models with real
datasets show that FAE reduces the overall training time by 2.3⇥
and 1.52⇥ in comparison to XDL CPU-only and XDL CPU-GPU
execution while maintaining baseline accuracy.

ACKNOWLEDGEMENTS
This project is part of the STAR Lab at the University of British
Columbia (UBC). We express our thanks to the entire team of the
Advanced Research Computing center at UBC [55]. We also thank
the anonymous VLDB reviewers and Professor Arun Kumar for
their invaluable feedback. This work was partially supported by
the Natural Sciences and Engineering Research Council of Canada
(NSERC) [funding reference number RGPIN-2019-05059]. This work
is also research sponsored by Air Force Research Laboratory (AFRL)
and Defense Advanced Research Project Agency (DARPA) under
agreement number FA8650-20-2-7007. The U.S. Government is au-
thorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon.

The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing
the o�cial policies or endorsements, either expressed or implied,
of Air Force Research Laboratory (AFRL), Defense Advanced Re-
search Project Agency (DARPA), the U.S. Government, NSERC, the
Canadian Government, Microsoft, or UBC.

���

REFERENCES
[1] Carlos A. Gomez-Uribe and Neil Hunt. The net�ix recommender system:

Algorithms, business value, and innovation. ACM Trans. Manage. Inf. Syst.,
6(4), December 2016. ISSN 2158-656X. doi: 10.1145/2843948. URL https:
//doi.org/10.1145/2843948.

[2] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang,
Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-Jean
Wu, Alisson G. Azzolini, Dmytro Dzhulgakov, Andrey Mallevich, Ilia Cherni-
avskii, Yinghai Lu, Raghuraman Krishnamoorthi, Ansha Yu, Volodymyr Kon-
dratenko, Stephanie Pereira, Xianjie Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang
Xiong, and Misha Smelyanskiy. Deep learning recommendation model for per-
sonalization and recommendation systems. CoRR, abs/1906.00091, 2019. URL
https://arxiv.org/abs/1906.00091.

[3] B. Smith and G. Linden. Two decades of recommender systems at amazon.com.
IEEE Internet Computing, 21(3):12–18, 2017. doi: 10.1109/MIC.2017.72.

[4] T. Ishkhanov, M. Naumov, X. Chen, Y. Zhu, Y. Zhong, A. G. Azzolini, C. Sun,
F. Jiang, A. Malevich, and L. Xiong. Time-based sequence model for person-
alization and recommendation systems. CoRR, abs/2008.11922, 2020. URL
https://arxiv.org/abs/2008.11922.

[5] Maxim Naumov, John Kim, Dheevatsa Mudigere, Srinivas Sridharan, Xiaodong
Wang, Whitney Zhao, Serhat Yilmaz, Changkyu Kim, Hector Yuen, Mustafa
Ozdal, Krishnakumar Nair, Isabel Gao, Bor-Yiing Su, Jiyan Yang, and Mikhail
Smelyanskiy. Deep Learning Training in Facebook Data Centers: Design of
Scale-up and Scale-out Systems. arXiv e-prints, art. arXiv:2003.09518, March
2020.

[6] Norman P. Jouppi, Cli� Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,
Pierre-luc Cantin, Cli�ord Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt
Dau, Je�rey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati,
William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu,
Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Ja�ey, Alek Jaworski, Alexander
Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve
Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle
Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran
Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,
Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross,
Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham,
Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian,
Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric
Wilcox, and Doe Hyun Yoon. In-datacenter performance analysis of a tensor
processing unit. In Proceedings of the 44th Annual International Symposium on
Computer Architecture, ISCA ’17, page 1–12, NewYork, NY, USA, 2017. Association
for Computing Machinery. ISBN 9781450348928. doi: 10.1145/3079856.3080246.
URL https://doi.org/10.1145/3079856.3080246.

[7] Eric Chung, Jeremy Fowers, Kalin Ovtcharov, , Adrian Caul�eld, Todd Mas-
sengill, Ming Liu, Mahdi Ghandi, Daniel Lo, Steve Reinhardt, Shlomi Alka-
lay, Hari Angepat, Derek Chiou, Alessandro Forin, Doug Burger, Lisa Woods,
Gabriel Weisz, Michael Haselman, and Dan Zhang. Serving dnns in real time
at datacenter scale with project brainwave. IEEE Micro, 38:8–20, March 2018.
URL https://www.microsoft.com/en-us/research/publication/serving-dnns-real-
time-datacenter-scale-project-brainwave/.

[8] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li,
Tianshi Chen, Zhiwei Xu, Ninghui Sun, et al. Dadiannao: A machine-learning
supercomputer. In MICRO, 2014.

[9] Divya Mahajan, Jongse Park, Emmanuel Amaro, Hardik Sharma, Amir Yazdan-
bakhsh, Joon Kim, and Hadi Esmaeilzadeh. T����: A uni�ed template-based
framework for accelerating statistical machine learning. March 2016.

[10] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A Spatial Architecture for
Energy-E�cient Data�ow for Convolutional Neural Networks. In ISCA, 2016.

[11] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R.
Devanur, Gregory R. Ganger, Phillip B. Gibbons, and Matei Zaharia. Pipedream:
Generalized pipeline parallelism for dnn training. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, SOSP ’19, page 1–15, New York, NY,
USA, 2019. Association for Computing Machinery. ISBN 9781450368735. doi:
10.1145/3341301.3359646. URL https://doi.org/10.1145/3341301.3359646.

[12] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Xu
Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng
Chen. Gpipe: E�cient training of giant neural networks using pipeline parallelism.
In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-
Buc, Emily B. Fox, and Roman Garnett, editors, Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Processing Systems
2019, NeurIPS 2019, 8-14 December 2019, Vancouver, BC, Canada, pages 103–112,
2019. URL http://papers.nips.cc/paper/8305-gpipe-e�cient-training-of-giant-
neural-networks-using-pipeline-parallelism.

[13] Je�rey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark
Mao, Marc' aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, Quoc
Le, and Andrew Ng. Large scale distributed deep networks. In F. Pereira,

C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in Neu-
ral Information Processing Systems, volume 25, pages 1223–1231. Curran
Associates, Inc., 2012. URL https://proceedings.neurips.cc/paper/2012/�le/
6aca97005c68f1206823815f66102863-Paper.pdf.

[14] Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, unjie Qian, Wen-
cong Xiao, and Fan Yang. Analysis of large-scale multi-tenant gpu clusters for
dnn training workloads. In Proceedings of the 2019 USENIX Conference on Usenix
Annual Technical Conference, USENIX ATC ’19, page 947–960, USA, 2019. USENIX
Association. ISBN 9781939133038.

[15] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing
deep neural networks with pruning, trained quantization and hu�man coding.
arXiv preprint arXiv:1510.00149, 2015.

[16] Jing Li, Hung-Wei Tseng, Chunbin Lin, Yannis Papakonstantinou, and Steven
Swanson. Hippogri�db: Balancing i/o and gpu bandwidth in big data analytics.
Proc. VLDB Endow., 9(14):1647–1658, October 2016. ISSN 2150-8097. doi: 10.14778/
3007328.3007331. URL https://doi.org/10.14778/3007328.3007331.

[17] Yang Sun, Fajie Yuan, Min Yang, Guoao Wei, Zhou Zhao, and Duo Liu. A generic
network compression framework for sequential recommender systems. In Pro-
ceedings of the 43rd International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, SIGIR ’20, page 1299–1308, New York, NY,
USA, 2020. Association for Computing Machinery. ISBN 9781450380164. doi:
10.1145/3397271.3401125. URL https://doi.org/10.1145/3397271.3401125.

[18] Xiaorui Wu, Hong Xu, Honglin Zhang, Huaming Chen, and Jian Wang. Saec:
similarity-aware embedding compression in recommendation systems. In Pro-
ceedings of the 11th ACM SIGOPS Asia-Paci�c Workshop on Systems, pages 82–89,
2020.

[19] A. Jain, A. Phanishayee, J. Mars, L. Tang, and G. Pekhimenko. Gist: E�cient
data encoding for deep neural network training. In 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA), pages 776–789, 2018.
doi: 10.1109/ISCA.2018.00070.

[20] Seokin Hong, Bulent Abali, Alper Buyuktosunoglu, Michael B. Healy, and
Prashant J. Nair. Touché: Towards ideal and e�cient cache compression by
mitigating tag area overheads. In Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO ’52, page 453–465, New
York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450369381.
doi: 10.1145/3352460.3358281. URL https://doi.org/10.1145/3352460.3358281.

[21] Seokin Hong, Prashant J. Nair, Bulent Abali, Alper Buyuktosunoglu, Kyu-Hyoun
Kim, and Michael B. Healy. Attaché: Towards ideal memory compression
by mitigating metadata bandwidth overheads. In Proceedings of the 51st An-
nual IEEE/ACM International Symposium on Microarchitecture, MICRO-51, page
326–338. IEEE Press, 2018. ISBN 9781538662403. doi: 10.1109/MICRO.2018.00034.
URL https://doi.org/10.1109/MICRO.2018.00034.

[22] Amin Ghasemazar, Prashant Nair, and Mieszko Lis. Thesaurus: E�cient cache
compression via dynamic clustering. In Proceedings of the Twenty-Fifth Interna-
tional Conference on Architectural Support for Programming Languages and Oper-
ating Systems, ASPLOS ’20, page 527–540, New York, NY, USA, 2020. Association
for Computing Machinery. ISBN 9781450371025. doi: 10.1145/3373376.3378518.
URL https://doi.org/10.1145/3373376.3378518.

[23] Vinson Young, Prashant J. Nair, and Moinuddin K. Qureshi. Dice: Compressing
dram caches for bandwidth and capacity. In Proceedings of the 44th Annual
International Symposium on Computer Architecture, ISCA ’17, page 627–638, New
York, NY, USA, 2017. Association for Computing Machinery. ISBN 9781450348928.
doi: 10.1145/3079856.3080243. URL https://doi.org/10.1145/3079856.3080243.

[24] Jianyu Huang, Jongsoo Park, Ping Tak Peter Tang, Andrew Tulloch, et al. Mixed-
precision embedding using a cache. arXiv preprint arXiv:2010.11305, 2020.

[25] AvilashMukherjee, Kumar Saurav, Prashant Nair, Sudip Shekhar, andMieszko Lis.
A case for emerging memories in dnn accelerators. In 2021 Design, Automation
Test in Europe Conference Exhibition (DATE), pages 938–941, 2021. doi: 10.23919/
DATE51398.2021.9474252.

[26] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. Neural collaborative �ltering. In Proceedings of the 26th International
Conference on World Wide Web, WWW ’17, page 173–182, Republic and Canton
of Geneva, CHE, 2017. International World Wide Web Conferences Steering
Committee. ISBN 9781450349130. doi: 10.1145/3038912.3052569. URL https:
//doi.org/10.1145/3038912.3052569.

[27] CriteoLabs. Criteo display ad challenge, . https://www.kaggle.com/c/criteo-
display-ad-challenge.

[28] Alibaba. User behavior data from taobao for recommendation. https://tianchi.
aliyun.com/dataset/dataDetail?dataId=649&userId=1.

[29] CriteoLabs. Terabyte click logs, . https://labs.criteo.com/2013/12/download-
terabyte-click-logs.

[30] Kaggle. Avazu mobile ads ctr. https://www.kaggle.com/c/avazu-ctr-prediction.
[31] C Rosset. Turing-nlg: A 17-billion-parameter language model by microsoft.

Microsoft Blog, 2019.
[32] Gordon E. Moore. Cramming more components onto integrated circuits. Elec-

tronics, 38(8), April 1965.
[33] N. Hardavellas, M. Ferdman, B. Falsa�, and A. Ailamaki. Toward dark silicon in

servers. IEEE Micro, 31(4):6–15, July–Aug. 2011.

���

[34] Weijie Zhao, Jingyuan Zhang, Deping Xie, Yulei Qian, Ronglai Jia, and Ping Li.
Aibox: Ctr prediction model training on a single node. In Proceedings of the 28th
ACM International Conference on Information and Knowledge Management, pages
319–328, 2019.

[35] M. Horowitz. 1.1 computing’s energy problem (and what we can do about it).
2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), pages 10–14, 2014.

[36] K. Cho, M. Lee, K. Park, T. T. Kwon, Y. Choi, and Sangheon Pack. Wave: Popularity-
based and collaborative in-network caching for content-oriented networks. In
2012 Proceedings IEEE INFOCOM Workshops, pages 316–321, 2012. doi: 10.1109/
INFCOMW.2012.6193512.

[37] Fragkiskos Papadopoulos, Maksim Kitsak, M. A. Serrano, Marian Boguna, and
Dmitri Krioukov. Popularity versus similarity in growing networks. Nature, 489
(7417):537–40, Sep 27 2012. URL https://ezproxy.library.ubc.ca/login?url=https:
//www-proquest-com.ezproxy.library.ubc.ca/docview/1095114119?accountid=
14656. Copyright - Copyright Nature Publishing Group Sep 27, 2012; Document
feature - Illustrations; Graphs; ; Last updated - 2019-09-06; CODEN - NATUAS.

[38] Youngeun Kwon, Yunjae Lee, and Minsoo Rhu. Tensor casting: Co-designing
algorithm-architecture for personalized recommendation training. arXiv preprint
arXiv:2010.13100, 2020.

[39] C. Wu, D. Brooks, K. Chen, D. Chen, S. Choudhury, M. Dukhan, K. Hazelwood,
E. Isaac, Y. Jia, B. Jia, T. Leyvand, H. Lu, Y. Lu, L. Qiao, B. Reagen, J. Spisak, F. Sun,
A. Tulloch, P. Vajda, X. Wang, Y. Wang, B. Wasti, Y. Wu, R. Xian, S. Yoo, and
P. Zhang. Machine learning at facebook: Understanding inference at the edge. In
2019 IEEE International Symposium on High Performance Computer Architecture
(HPCA), pages 331–344, Feb 2019. doi: 10.1109/HPCA.2019.00048.

[40] U. Gupta, C. Wu, X. Wang, M. Naumov, B. Reagen, D. Brooks, B. Cottel, K. Hazel-
wood, M. Hempstead, B. Jia, H. S. Lee, A. Malevich, D. Mudigere, M. Smelyan-
skiy, L. Xiong, and X. Zhang. The architectural implications of facebook’s dnn-
based personalized recommendation. In 2020 IEEE International Symposium
on High Performance Computer Architecture (HPCA), pages 488–501, 2020. doi:
10.1109/HPCA47549.2020.00047.

[41] Nvidia. Accelerating wide deep recommender inference on gpus, 2017.
https://developer.nvidia.com/blog/accelerating-wide-deep-recommender-
inference-on-gpus/.

[42] Biye Jiang, Chao Deng, Huimin Yi, Zelin Hu, Guorui Zhou, Yang Zheng, Sui
Huang, Xinyang Guo, Dongyue Wang, Yue Song, Liqin Zhao, Zhi Wang, Peng
Sun, Yu Zhang, Di Zhang, Jinhui Li, Jian Xu, Xiaoqiang Zhu, and Kun Gai. Xdl:
An industrial deep learning framework for high-dimensional sparse data. In
Proceedings of the 1st International Workshop on Deep Learning Practice for High-
Dimensional Sparse Data, DLP-KDD ’19, New York, NY, USA, 2019. Association
for Computing Machinery. ISBN 9781450367837. doi: 10.1145/3326937.3341255.
URL https://doi.org/10.1145/3326937.3341255.

[43] Alex Krizhevsky, Ilya Sutskever, and Geo�rey E. Hinton. Imagenet classi�cation
with deep convolutional neural networks. Commun. ACM, 60(6):84–90, May 2017.
ISSN 0001-0782. doi: 10.1145/3065386. URL https://doi.org/10.1145/3065386.

[44] Tomasz Nykiel, Michalis Potamias, Chaitanya Mishra, George Kollios, and Nick
Koudas. Mrshare: Sharing across multiple queries in mapreduce. Proc. VLDB
Endow., 3(1–2):494–505, September 2010. ISSN 2150-8097. doi: 10.14778/1920841.
1920906. URL https://doi.org/10.14778/1920841.1920906.

[45] Abhishek Vijaya Kumar and Muthian Sivathanu. Quiver: An informed stor-
age cache for deep learning. In 18th USENIX Conference on File and Storage
Technologies (FAST 20), pages 283–296, Santa Clara, CA, February 2020. USENIX
Association. ISBN 978-1-939133-12-0. URL https://www.usenix.org/conference/
fast20/presentation/kumar.

[46] Divya Mahajan, Joon Kyung Kim, Jacob Sacks, Adel Ardalan, Arun Kumar, and
Hadi Esmaeilzadeh. In-rdbms hardware acceleration of advanced analytics. Proc.
VLDB Endow., 11(11):1317–1331, July 2018. ISSN 2150-8097. doi: 10.14778/3236187.
3236188. URL https://doi.org/10.14778/3236187.3236188.

[47] Nvlink. URL https://developer.nvidia.com/nccl.
[48] Runger Montgomery. Applied statistics and probability for engineers.
[49] B. Recht and C. Ré. Parallel stochastic gradient algorithms for large-scale matrix

completion. Mathematical Programming Computation, 5:201–226, 2013.
[50] Léon Bottou. Stochastic gradient descent tricks. In Neural networks: Tricks of the

trade, pages 421–436. Springer, 2012.
[51] Lutz Prechelt. Early stopping-but when? In Neural Networks: Tricks of the trade,

pages 55–69. Springer, 1998.
[52] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,

Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
Automatic di�erentiation in pytorch. 2017.

[53] Nvidia. NVIDIA Collective Communications Library (NCCL). https://docs.nvidia.
com/deeplearning/nccl/index.html.

[54] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg Corrado, Andy Davis, Je�rey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian Goodfellow, Andrew Harp, Geo�rey Irving, Michael Isard, Yangqing

Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan
Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensor�ow:
Large-scale machine learning on heterogeneous distributed systems, 2015. URL
http://download.tensor�ow.org/paper/whitepaper2015.pdf.

[55] UBC Advanced Research Computing, "UBC ARC Sockeye." UBC Advanced Re-
search Computing, 2019, doi: 10.14288/SOCKEYE.

[56] Mlperf becnhmarks. https://mlcommons.org/en/training-normal-10/.
[57] Jongse Park, Hardik Sharma, Divya Mahajan, Joon Kyung Kim, Preston Olds, and

Hadi Esmaeilzadeh. Scale-out acceleration for machine learnng. October 2017.
[58] Andrew Tomkins, R. Hugo Patterson, and Garth Gibson. Informed multi-process

prefetching and caching. SIGMETRICS Perform. Eval. Rev., 25(1):100–114, June
1997. ISSN 0163-5999. doi: 10.1145/258623.258680. URL https://doi.org/10.1145/
258623.258680.

[59] Michael Stonebraker. Operating system support for database management. Com-
mun. ACM, 24(7):412–418, July 1981. ISSN 0001-0782. doi: 10.1145/358699.358703.
URL https://doi.org/10.1145/358699.358703.

[60] Y. Zhu, F. Chowdhury, H. Fu, A. Moody, K. Mohror, K. Sato, and W. Yu. Entropy-
aware i/o pipelining for large-scale deep learning on hpc systems. In 2018
IEEE 26th International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS), pages 145–156, 2018. doi:
10.1109/MASCOTS.2018.00023.

[61] Jayashree Mohan, Amar Phanishayee, Ashish Raniwala, and Vijay Chidambaram.
Analyzing and mitigating data stalls in dnn training. In VLDB 2021, January
2021. URL https://www.microsoft.com/en-us/research/publication/analyzing-
and-mitigating-data-stalls-in-dnn-training/.

[62] Assaf Eisenman, Maxim Naumov, Darryl Gardner, Misha Smelyanskiy, Sergey
Pupyrev, Kim Hazelwood, Asaf Cidon, and Sachin Katti. Bandana: Using non-
volatile memory for storing deep learning models. Proceedings of Machine Learn-
ing and Systems, 1:40–52, 2019.

[63] A. Ginart, M. Naumov, D. Mudigere, Jiyan Yang, and J. Zou. Mixed dimension
embeddings with application to memory-e�cient recommendation systems.
ArXiv, abs/1909.11810, 2019.

[64] L. Ke, U. Gupta, B. Y. Cho, D. Brooks, V. Chandra, U. Diril, A. Firoozshahian,
K. Hazelwood, B. Jia, H. S. Lee, M. Li, B. Maher, D. Mudigere, M. Naumov,
M. Schatz, M. Smelyanskiy, X. Wang, B. Reagen, C. Wu, M. Hempstead, and
X. Zhang. Recnmp: Accelerating personalized recommendation with near-
memory processing. In 2020 ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA), pages 790–803, 2020. doi: 10.1109/ISCA45697.2020.
00070.

[65] Hao-Jun Michael Shi, Dheevatsa Mudigere, Maxim Naumov, and Jiyan Yang.
Compositional Embeddings Using Complementary Partitions for Memory-E�cient
Recommendation Systems, page 165–175. Association for Computing Machinery,
New York, NY, USA, 2020. ISBN 9781450379984. URL https://doi.org/10.1145/
3394486.3403059.

[66] Weijie Zhao, Deping Xie, Ronglai Jia, Yulei Qian, Ruiquan Ding, Mingming Sun,
and Ping Li. Distributed hierarchical gpu parameter server for massive scale
deep learning ads systems, 2020.

[67] Bilge Acun, Matthew Murphy, Xiaodong Wang, Jade Nie, Carole-Jean Wu, and
Kim Hazelwood. Understanding training e�ciency of deep learning recommen-
dation models at scale, 2020.

[68] Jeremy Fowers, Kalin Ovtcharov, Karin Strauss, Eric Chung, and Greg Stitt. A
high memory bandwidth fpga accelerator for sparse matrix-vector multiplication.
In International Symposium on Field-Programmable Custom Computing Machines.
IEEE, May 2014. URL http://research.microsoft.com/apps/pubs/default.aspx?id=
217166.

[69] Mengdi Huang Nvidia Inc. Vinh Nguyen, Tomasz Grel. Optimizing the deep
learning recommendation model on nvidia gpus. https://developer.nvidia.com/
blog/optimizing-dlrm-on-nvidia-gpus.

[70] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and Bryan Catanzaro.
Megatron-lm: Training multi-billion parameter language models using model
parallelism. ArXiv, abs/1909.08053, 2019.

[71] Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman.
Project adam: Building an e�cient and scalable deep learning training system. In
11th USENIX Symposium on Operating Systems Design and Implementation (OSDI
14), pages 571–582, Broom�eld, CO, October 2014. USENIX Association. ISBN
978-1-931971-16-4. URL https://www.usenix.org/conference/osdi14/technical-
sessions/presentation/chilimbi.

[72] Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond data and model parallelism
for deep neural networks. SysML 2019, 2019.

[73] Jakub M Tarnawski, Amar Phanishayee, Nikhil Devanur, Divya Mahajan, and
Fanny Nina Paravecino. E�cient algorithms for device placement of dnn graph
operators. Advances in Neural Information Processing Systems, 33, 2020.

���

