Accelerating Recommendation System Training by Leveraging Popular Choices

Muhammad Adnan

Yassaman Ebrahimzadeh Maboud Divya Mahajan* Prashant Nair 48th International Conference on Very Large Databases

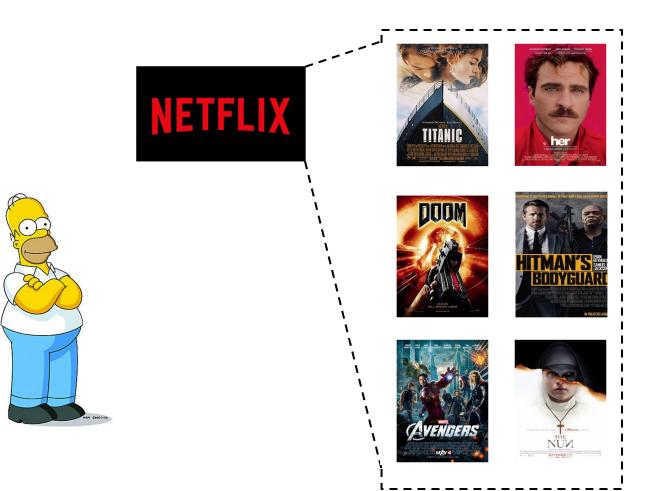
Recommendation Systems are Ubiquitous

Recommendation Systems in Industry

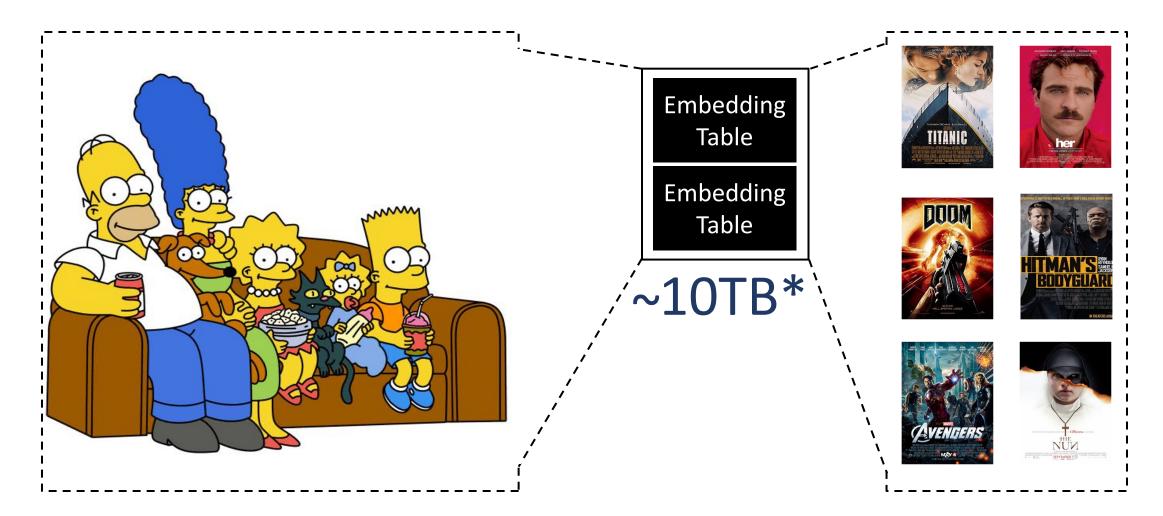
Computer Vision Recommendation Natural ∧ Meta Models Language Processing Others

Targeted Recommendation For Each of You

Targeted Recommendation For Each of You

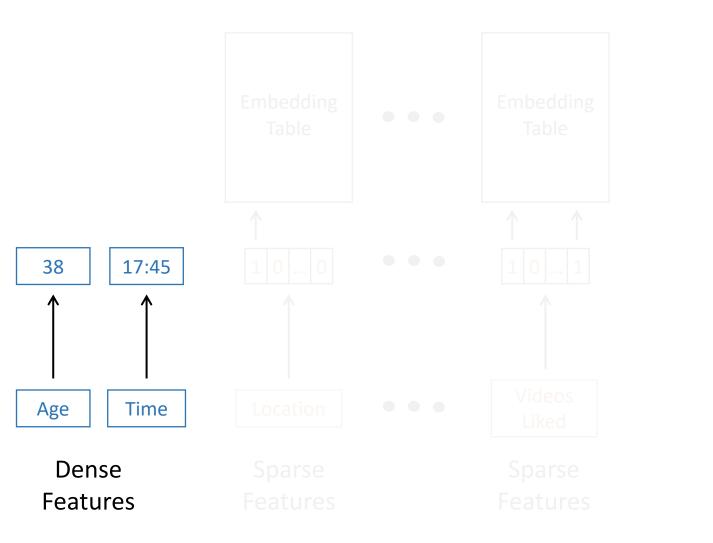


Users and Items Representation

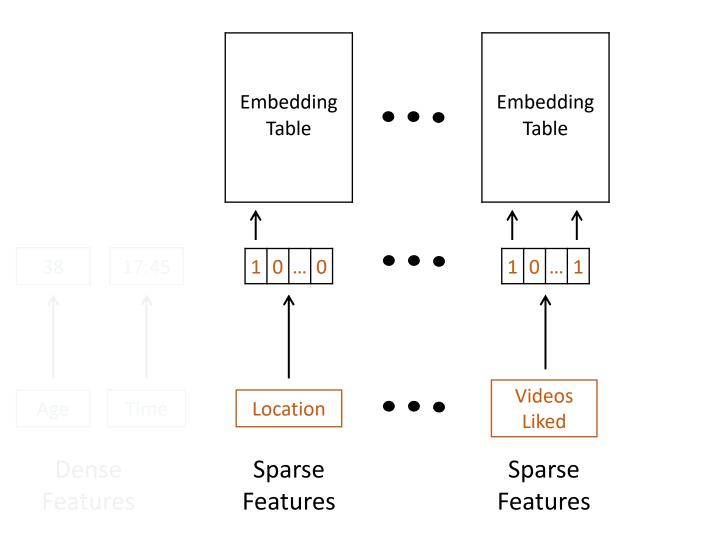


Zhao et al. MLSys'20.

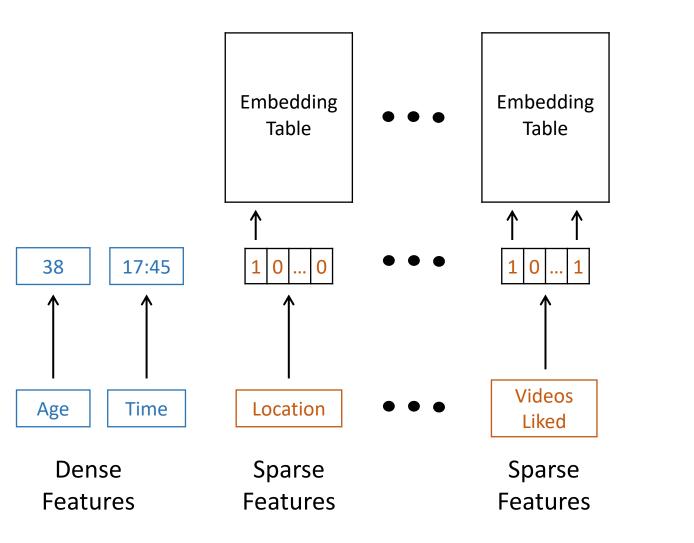
Deep Learning Recommendation Models



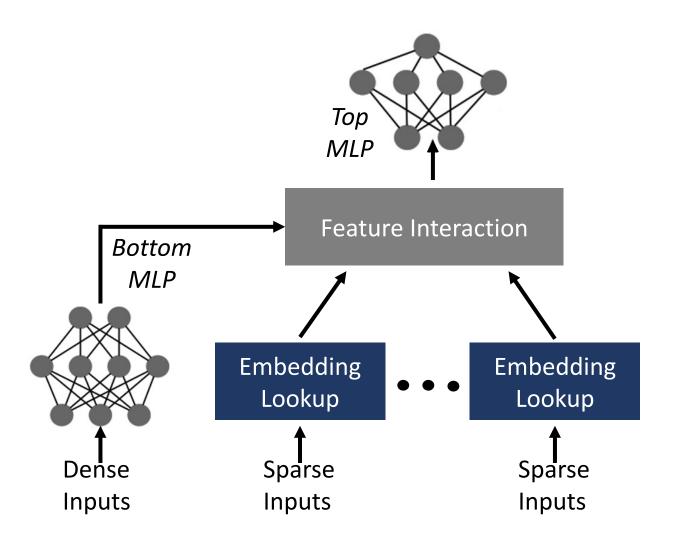
Deep Learning Recommendation Models

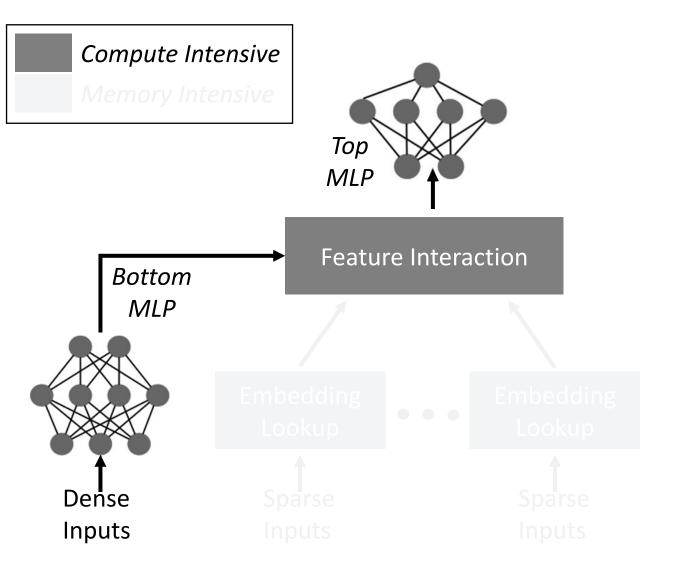


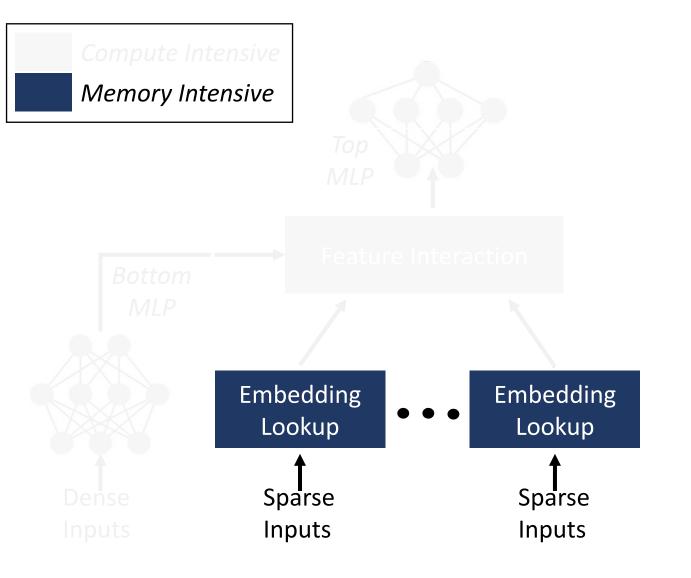
Deep Learning Recommendation Models

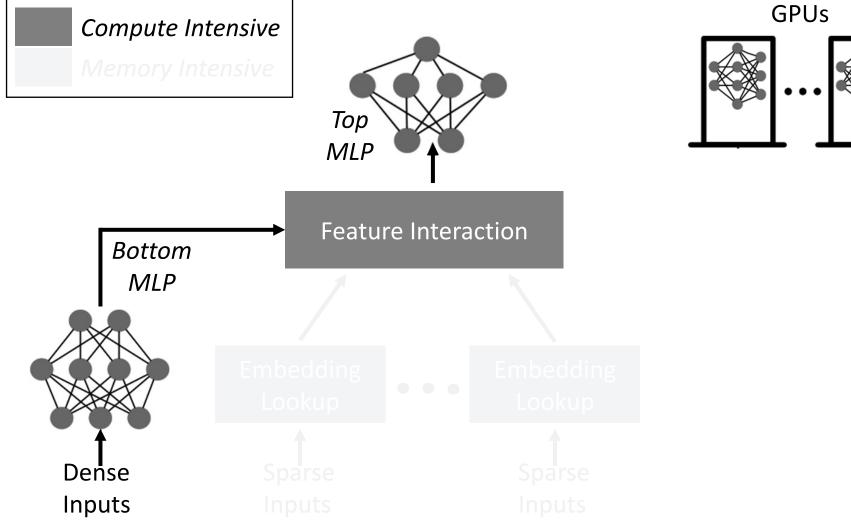


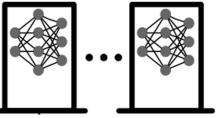
Recommendation Model: High-level Overview

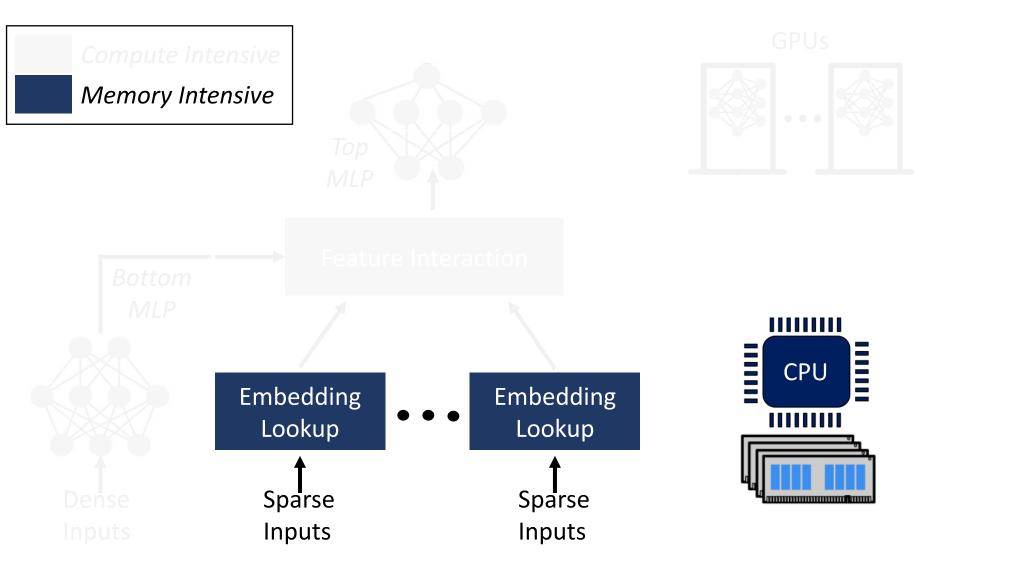




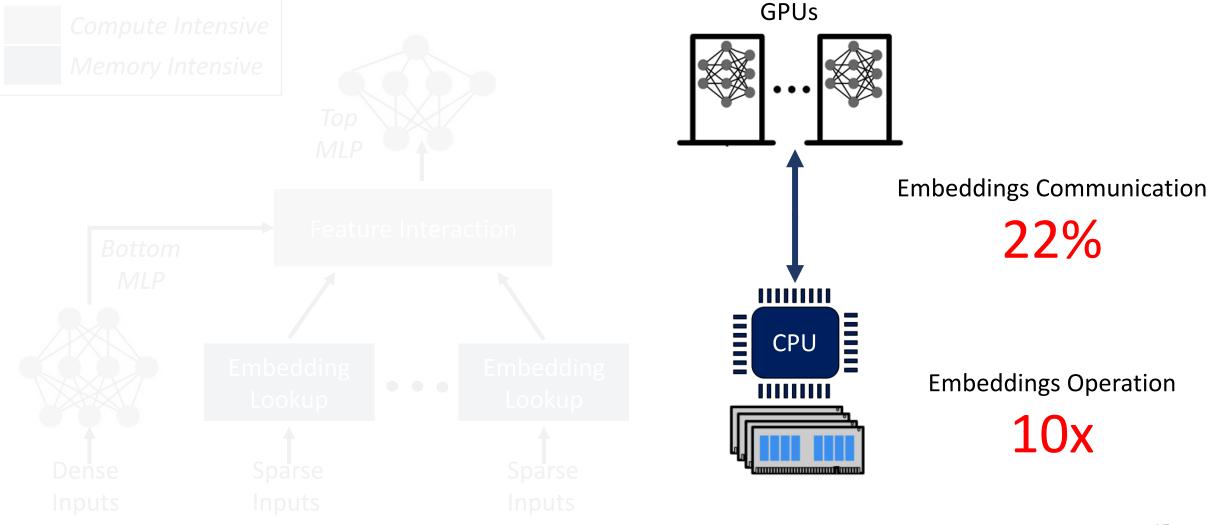








Hybrid Execution Mode - Inefficiencies

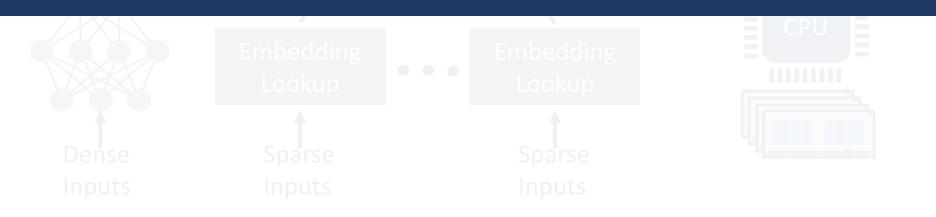


System Bottlenecks

Compute Intensive Memory Intensive

CPU-GPU Embeddings Communication: PCIe Bandwidth

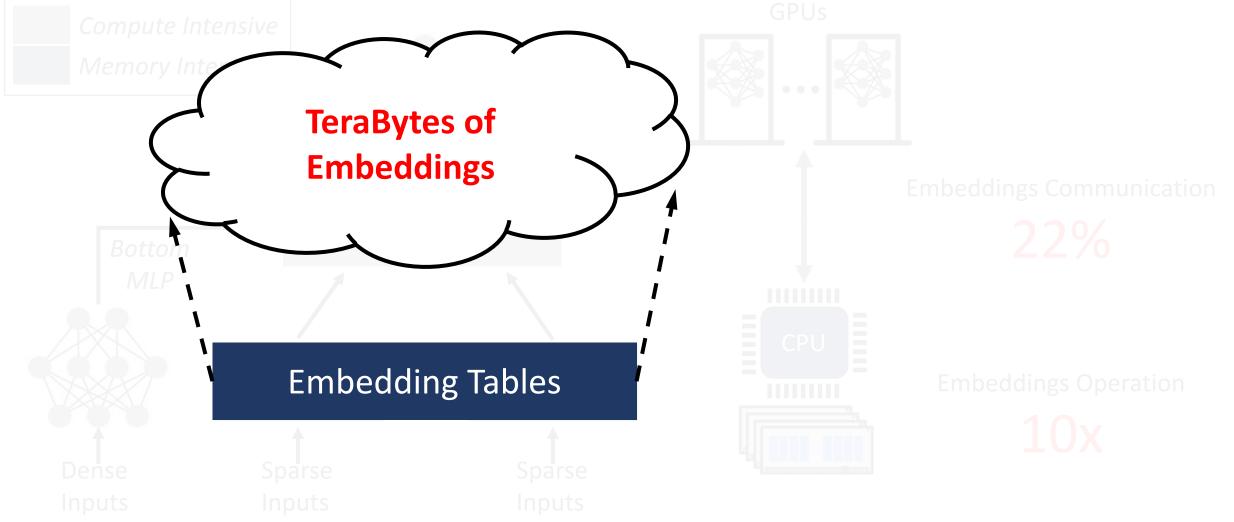
Embeddings Operations: CPU Main Memory Bandwidth



Embeddings Operation

10x

Are All Embeddings Equal?



Are All Embeddings Equal?

3 #SceneryOutNow
142K Tweets
Bangtan Translations is Tweeting about this

4 #풍경OutNow 102K Tweets

5 **#ScenerybyTaehyung** 33.5K Tweets

6 V of BTS by BTS 102K Tweets

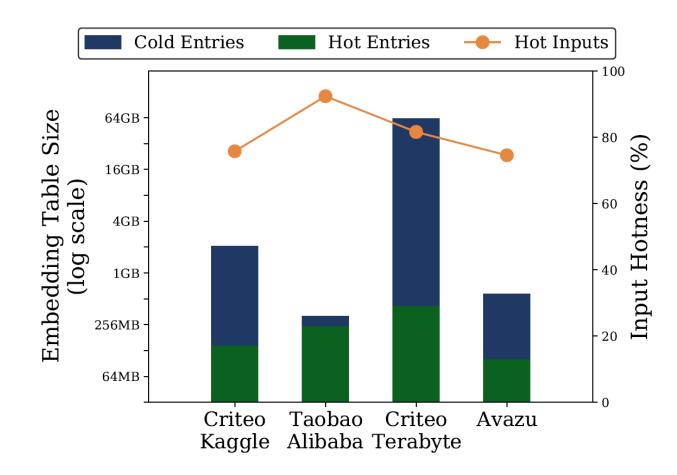
0

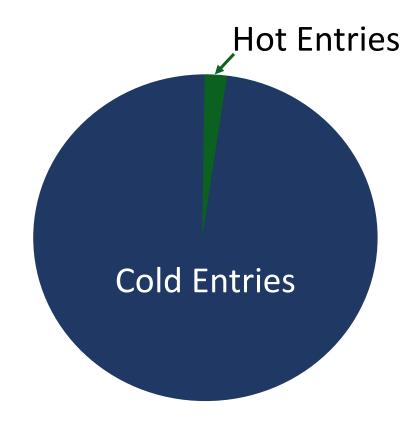
•••

amazon BESTSELLERS

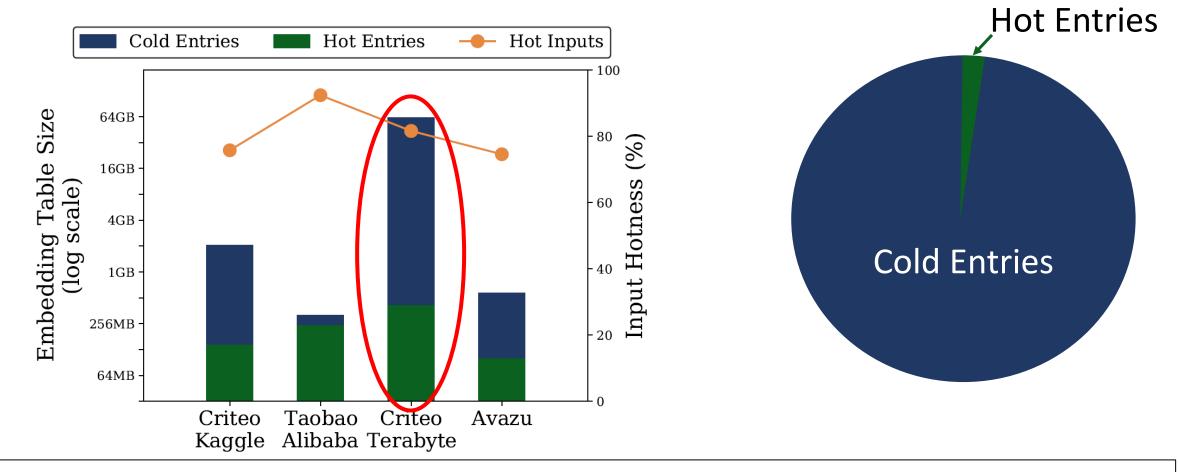
_

High Popularity in Training Data



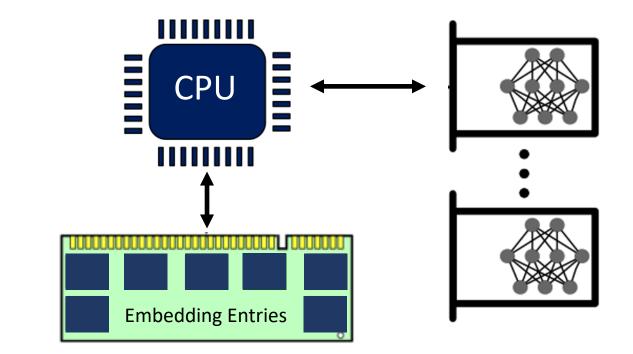


High Popularity in Training Data

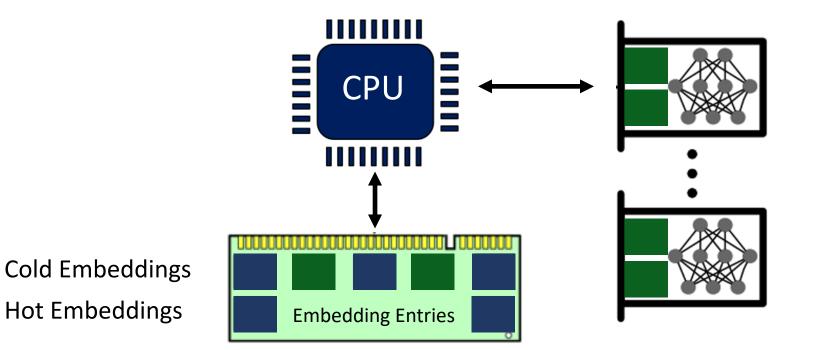


Criteo Terabyte \rightarrow Hot Entries $\rightarrow \sim 512$ MB (0.7%) $\rightarrow 82\%$ Hot Inputs

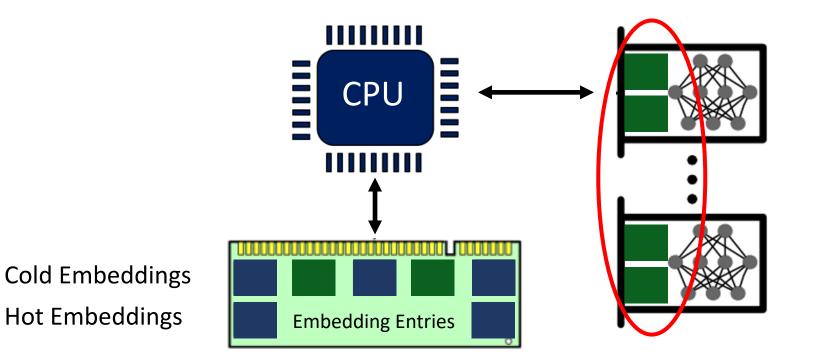
Embedding Layout across Memories



Embedding Layout across Memories



Embedding Layout across Memories

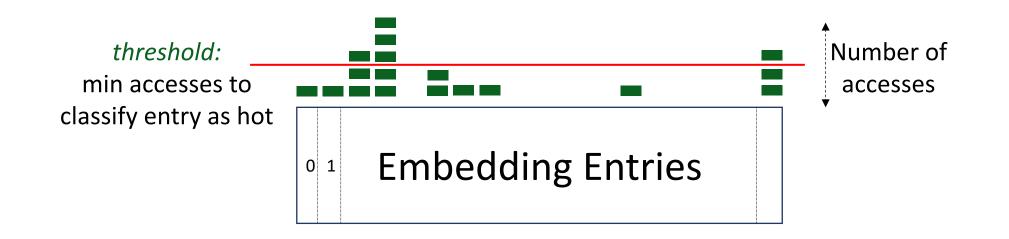


Converting popularity into a quantifiable metric

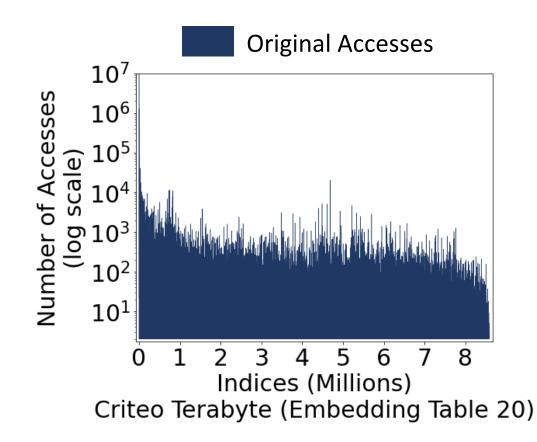
⁰ ¹ Embedding Entries

Converting popularity into a quantifiable metric

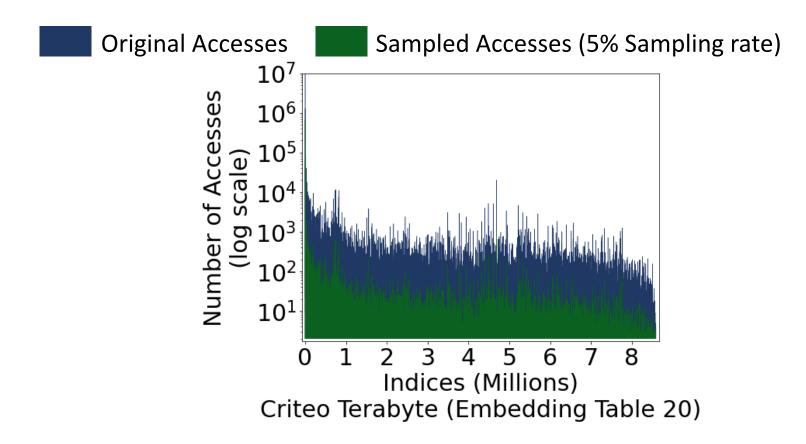
Training Data



Hot embeddings identification without parsing entire training data



Hot embeddings identification without parsing entire training data

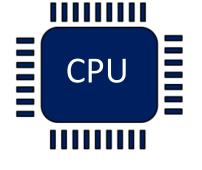


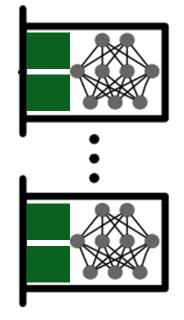
All inputs in a mini-batch need to access the *hot embedding entries*

All inputs in a mini-batch need to access the *hot embedding entries*

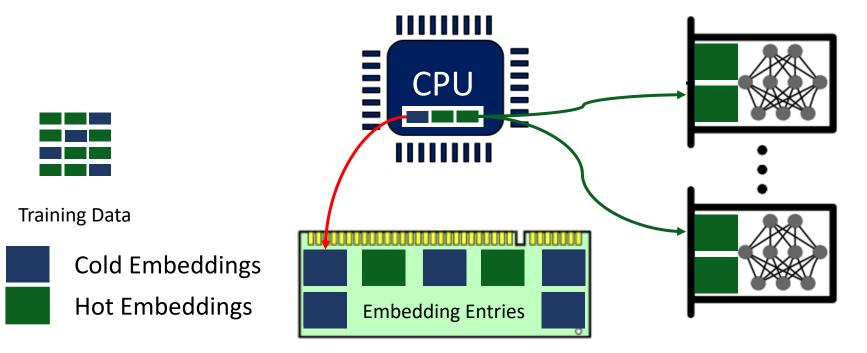
Training Data

Cold Embeddings Hot Embeddings



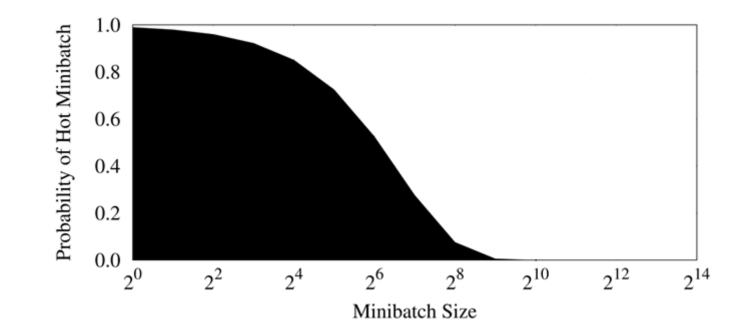


All inputs in a mini-batch need to access the *hot embedding entries*



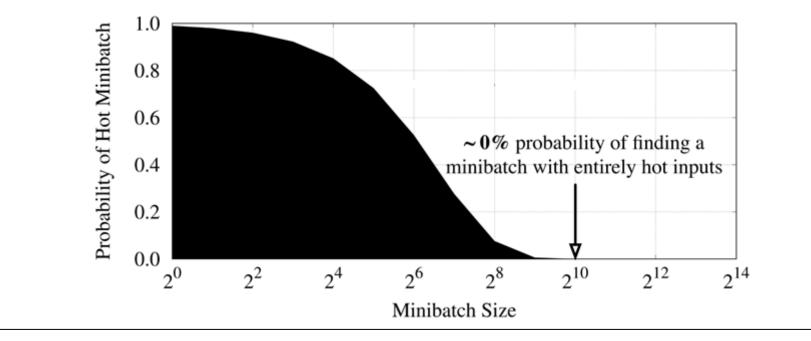
Challenges – Embedding Layout

All inputs in a mini-batch need to access the *hot embedding entries*

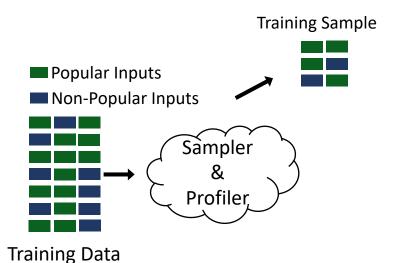


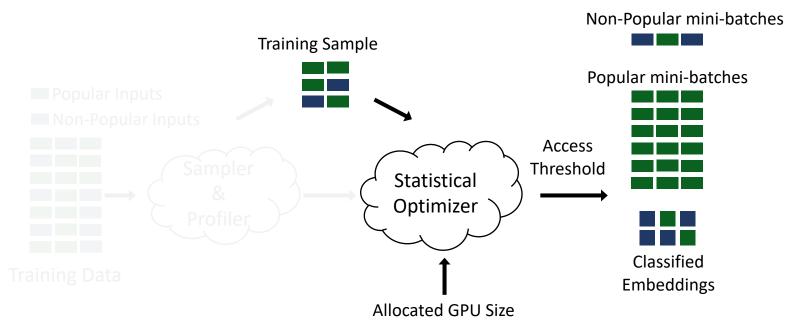
Challenges – Embedding Layout

All inputs in a mini-batch need to access the *hot embedding entries*

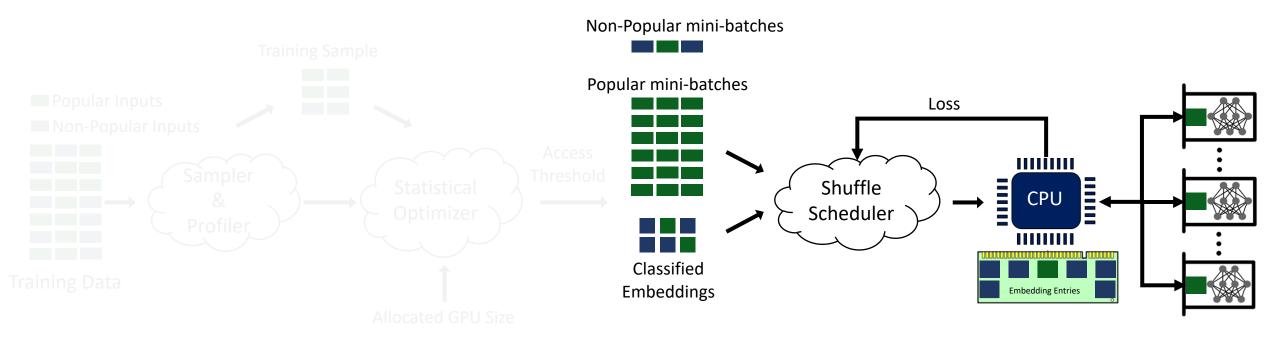


Inputs \rightarrow *popular and non-popular categories* \rightarrow mini-batches

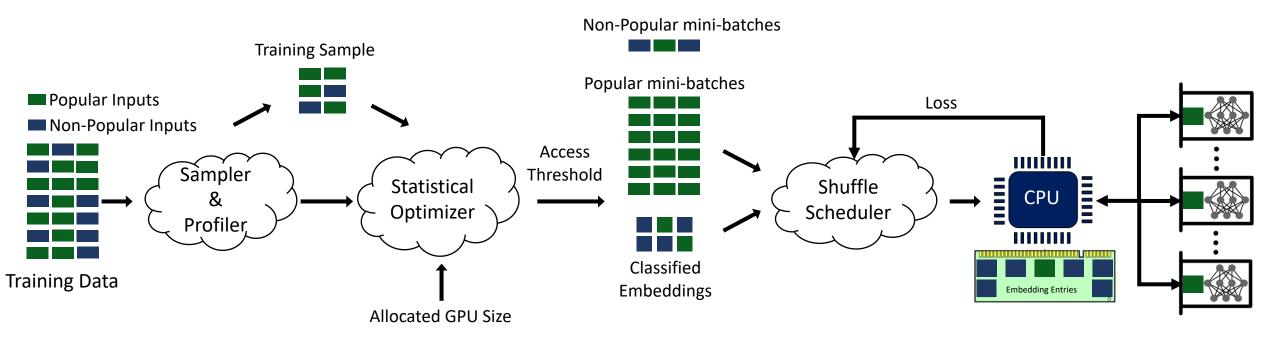




FAE Data Layout



FAE Data Layout



FAE Data Layout

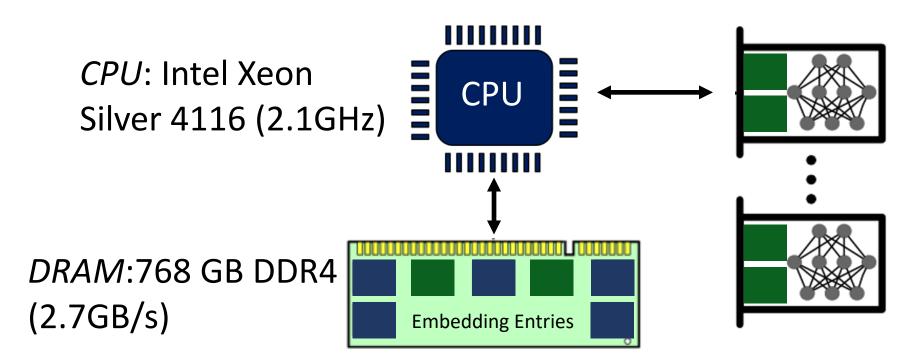
FAE Framework-Mitigating System Bottlenecks

CPU-GPU Embeddings Communication: PCIe Bandwidth

No CPU-GPU Communication for Popular Mini-batches

Popular Mini-batch → High Bandwidth GPU Memory

Evaluation: System Setup



GPU: Nvidia Tesla V100 16GB *HBM* device

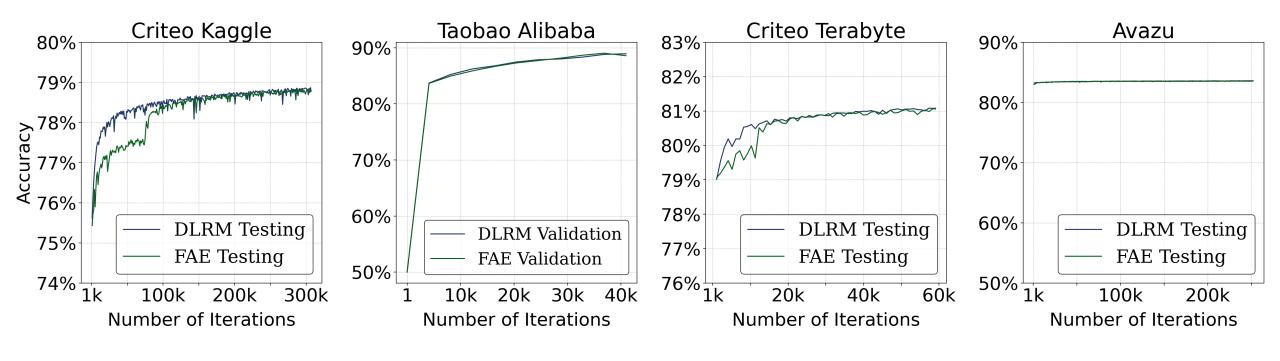
memory

Baselines and Benchmarks

Baseline	XDL ¹	Open Source DLRM ²
----------	------------------	----------------------------------

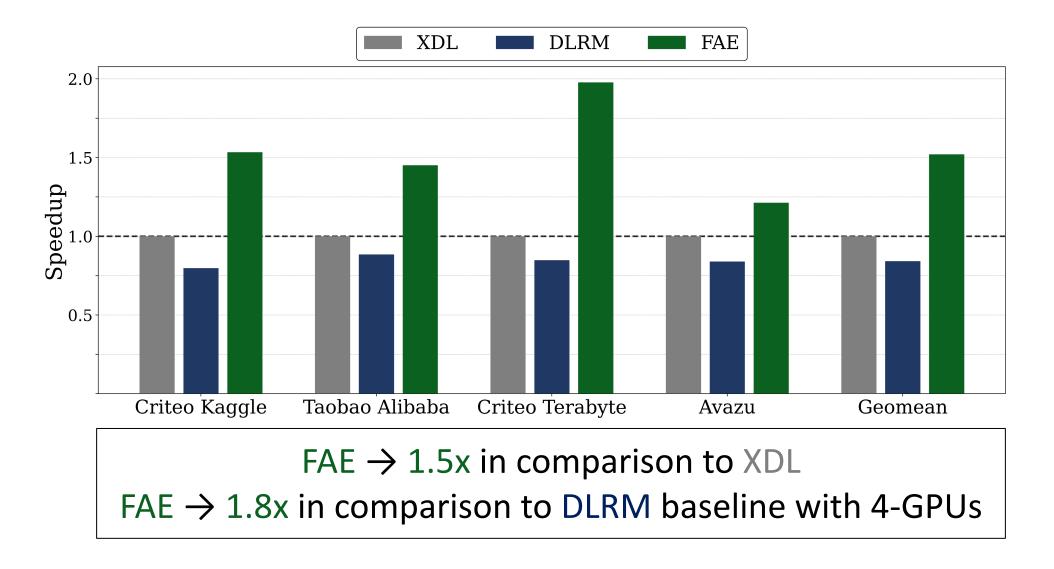
Datasets	Criteo Terabyte	Criteo Kaggle	Taobao Alibaba	Avazu
----------	--------------------	------------------	-------------------	-------

Accuracy Comparison



FAE always achieves baseline accuracy

Performance Comparison



Conclusion

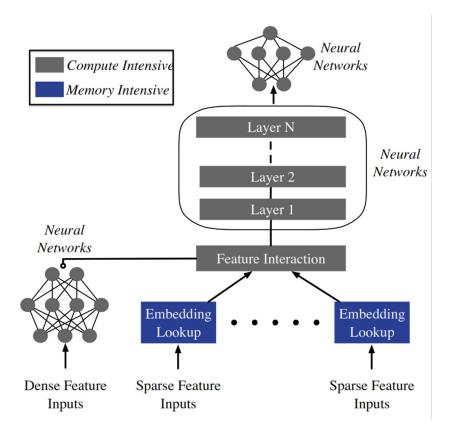
- FAE meets the baseline accuracy across all models and datasets
- Accelerates training
 - 1.5x compared to XDL
 - 1.8x compared to DLRM

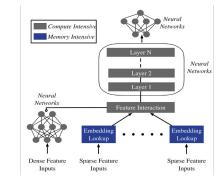
Questions?

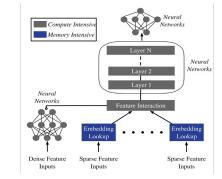
http://people.ece.ubc.ca/adnan/

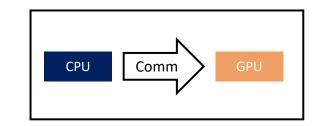
https://github.com/STAR-Laboratory/Accelerating-RecSys-Training

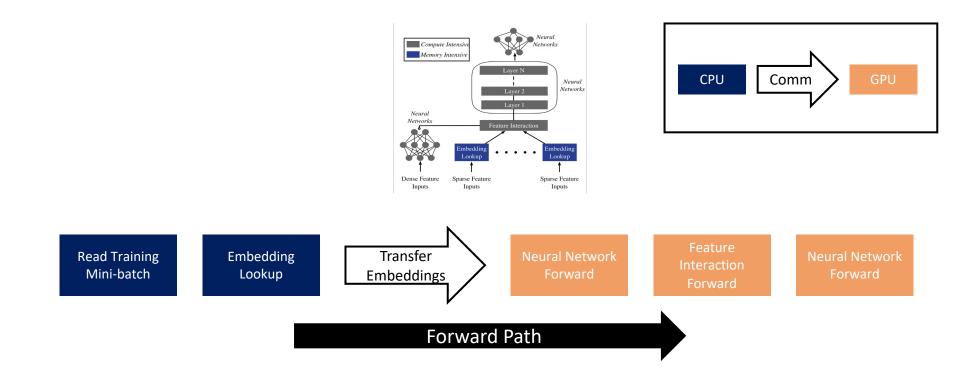
Backup Slides

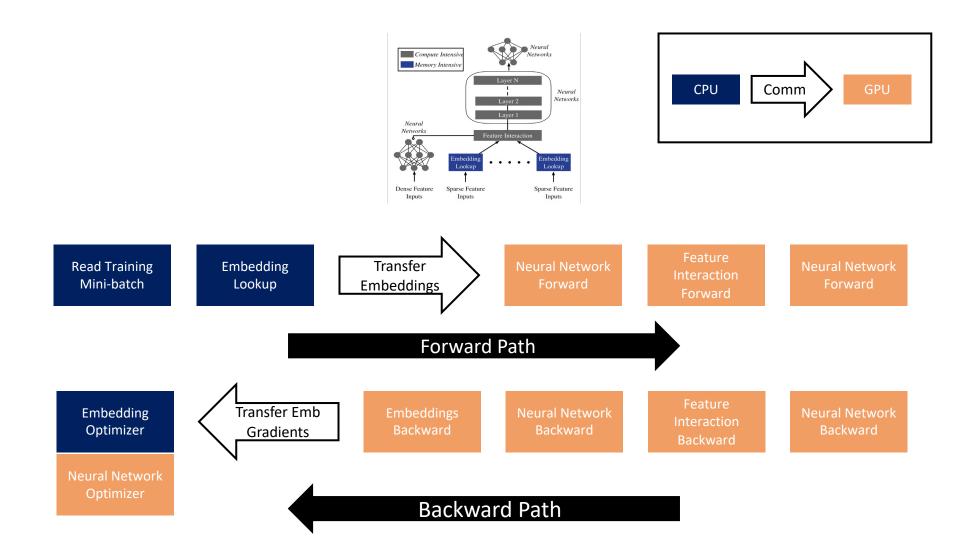


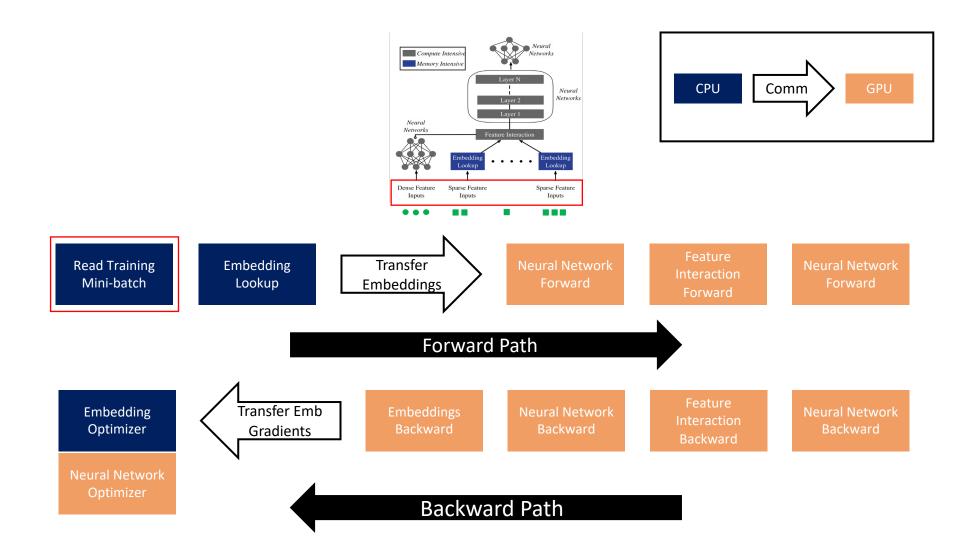


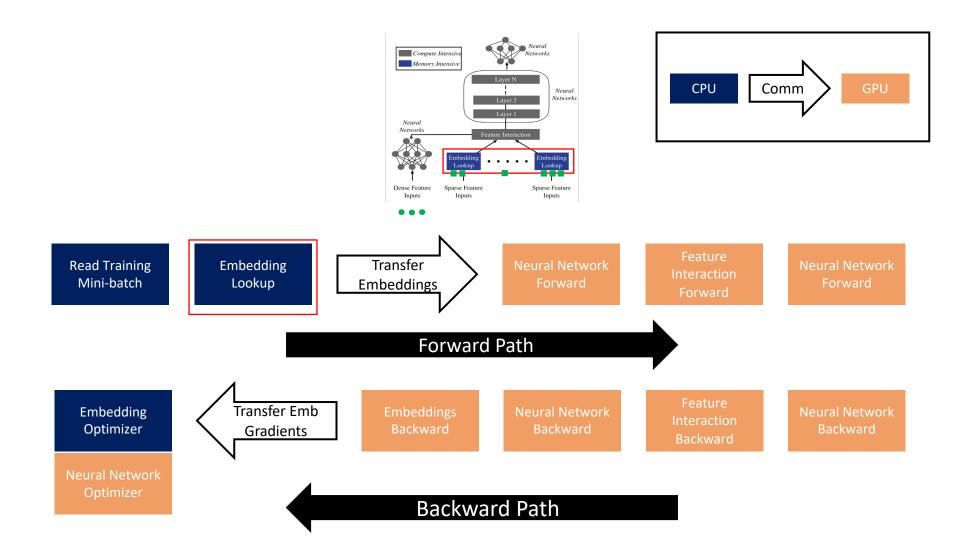


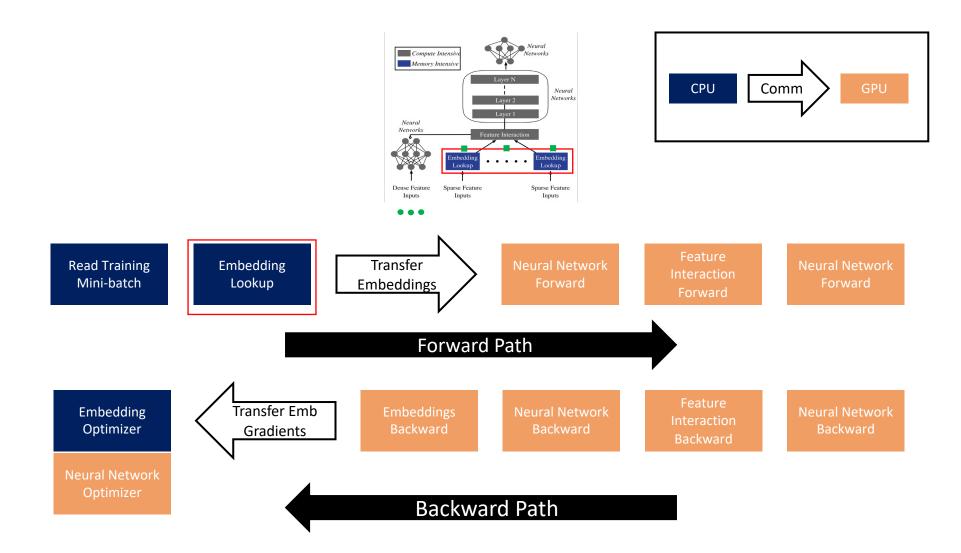


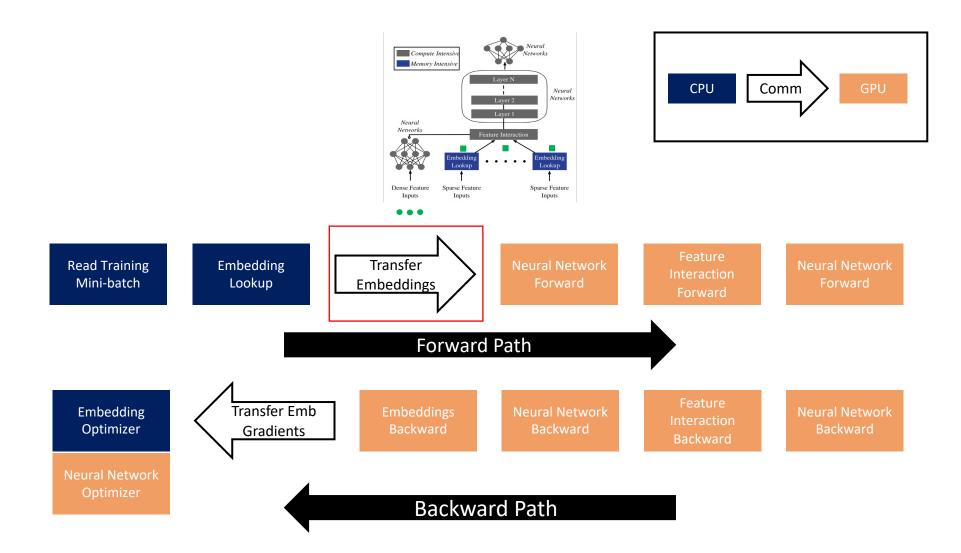


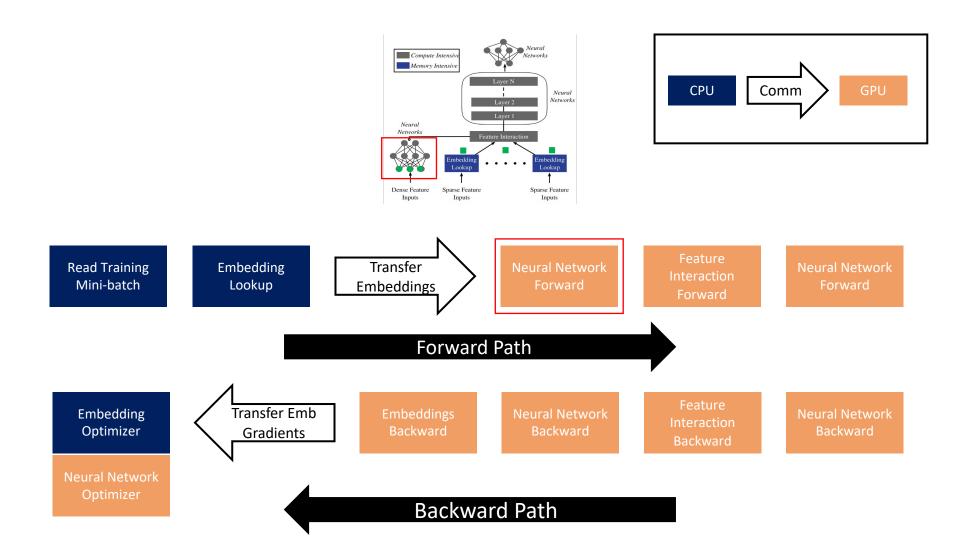


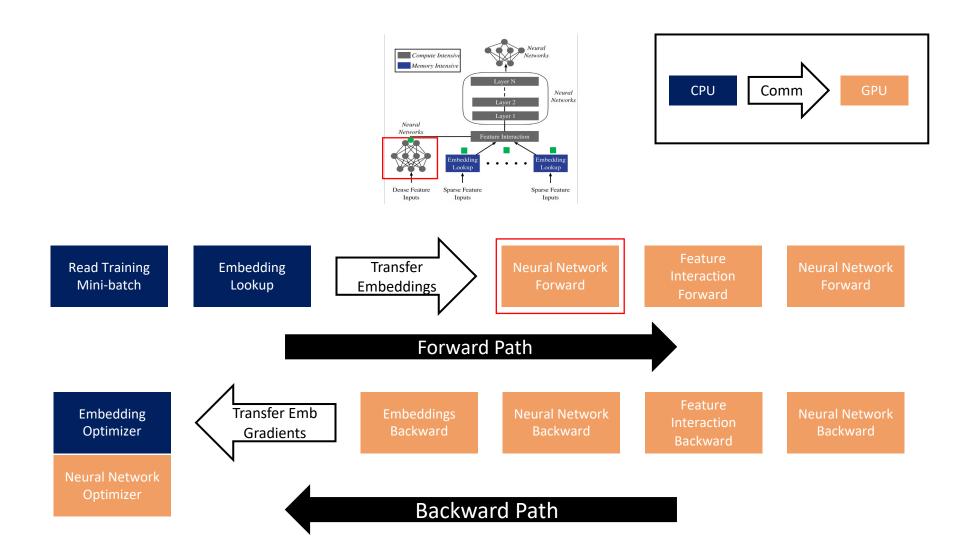


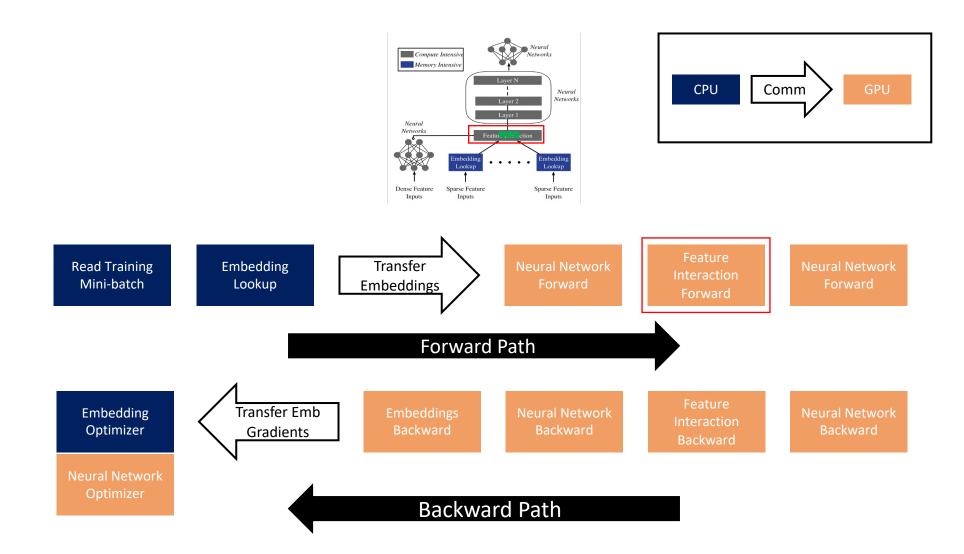


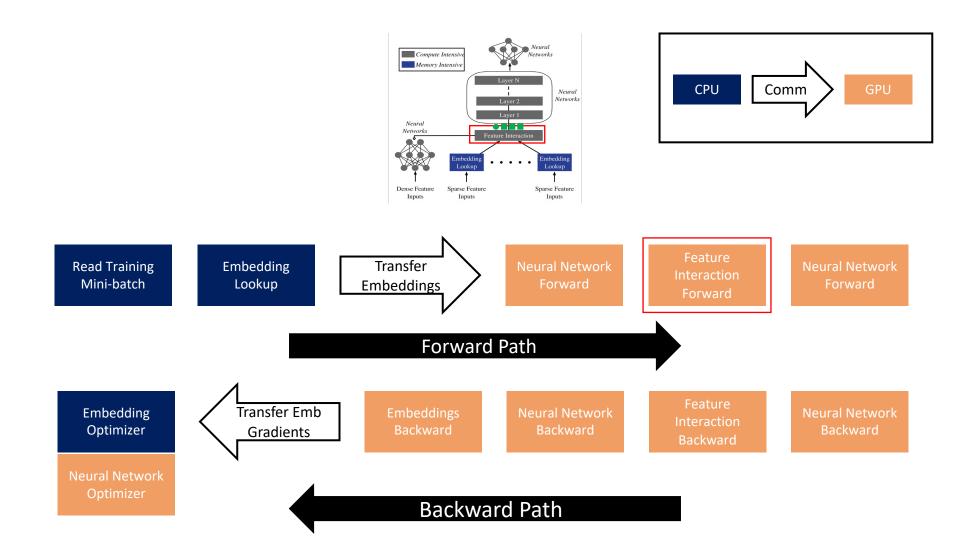


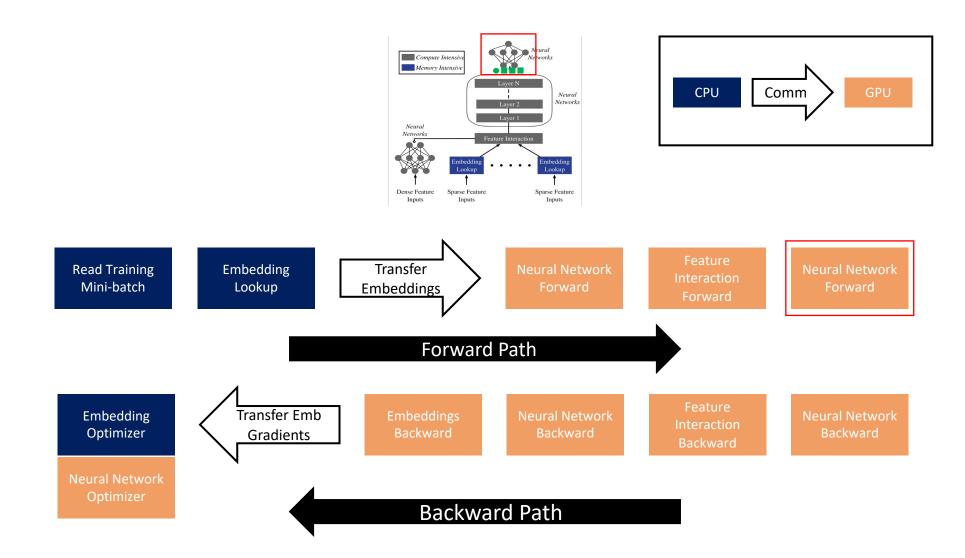


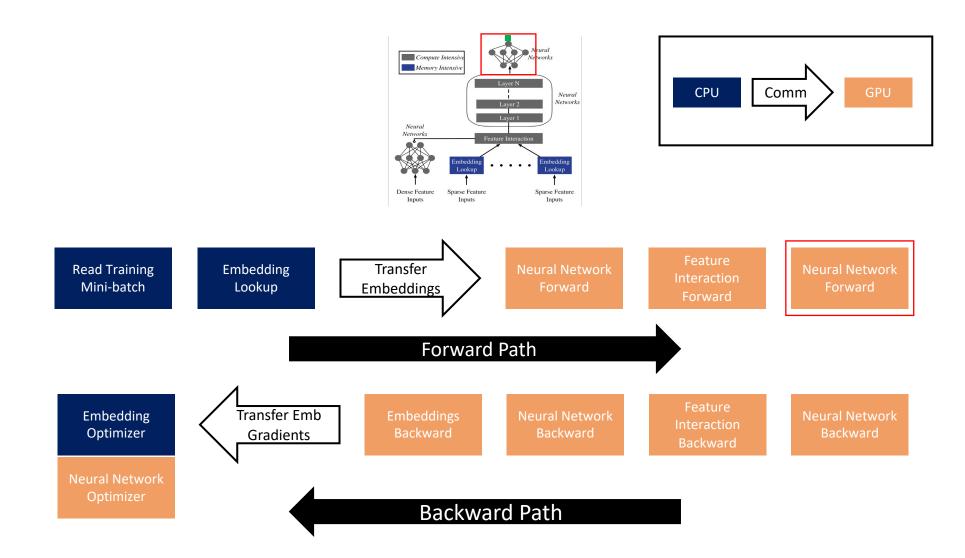


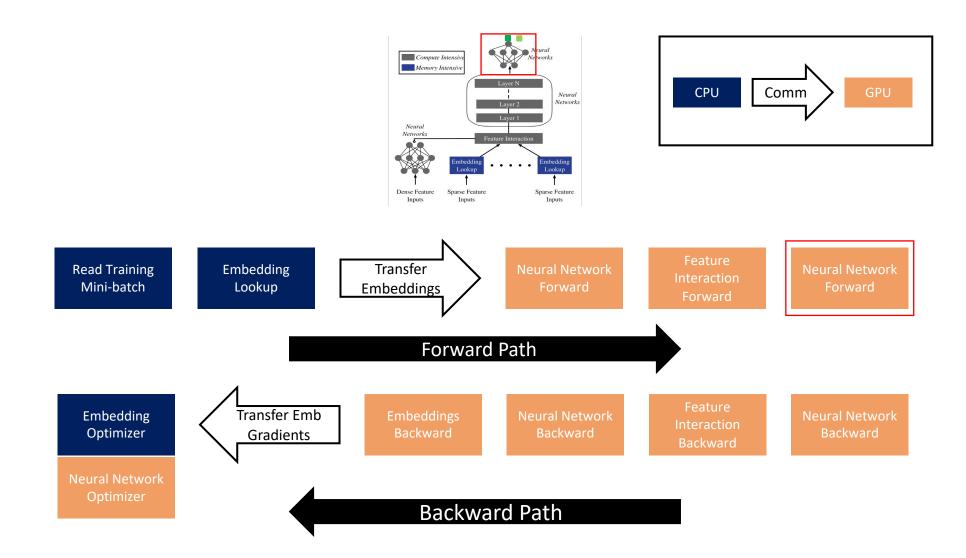


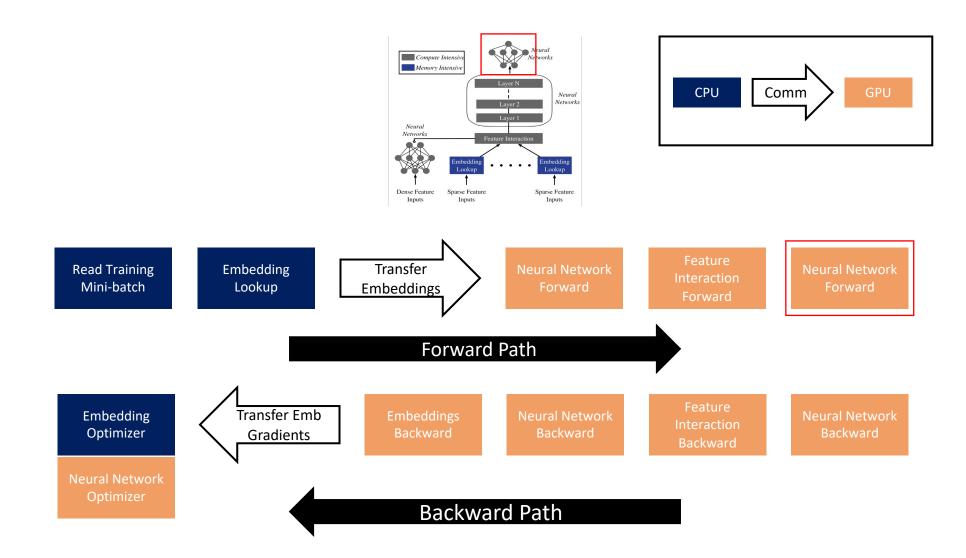


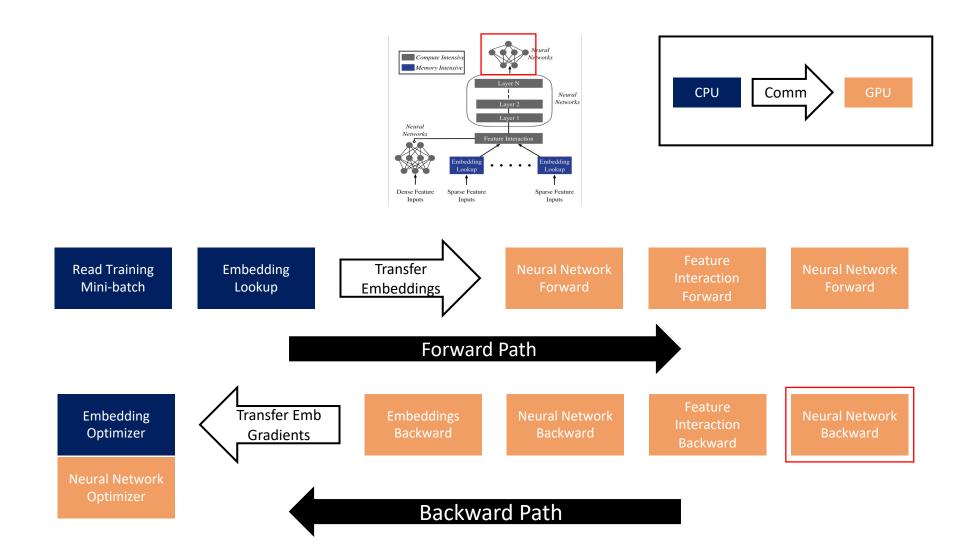


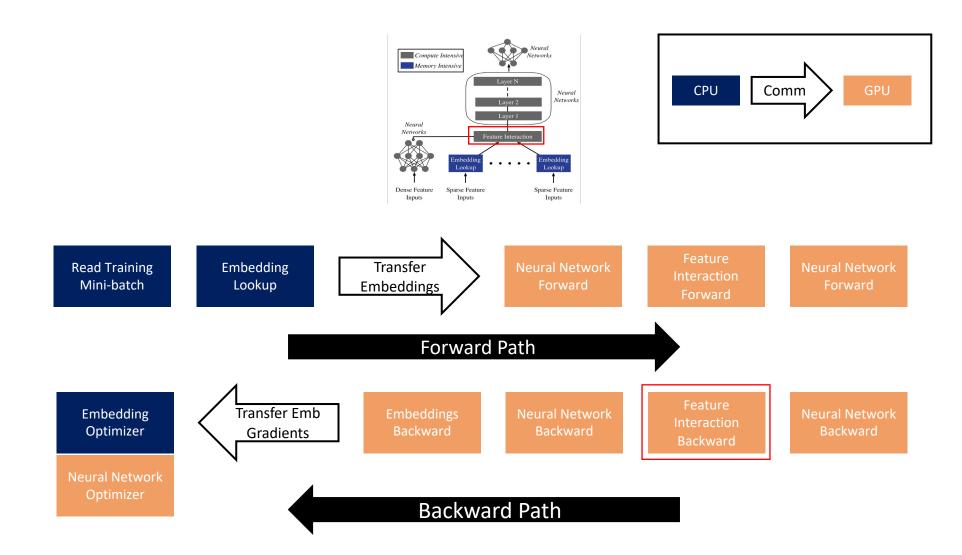


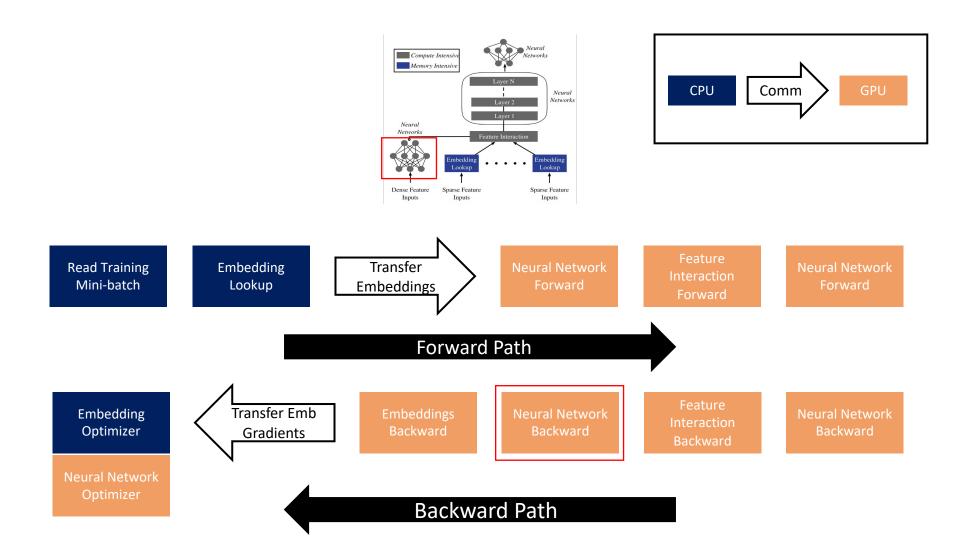


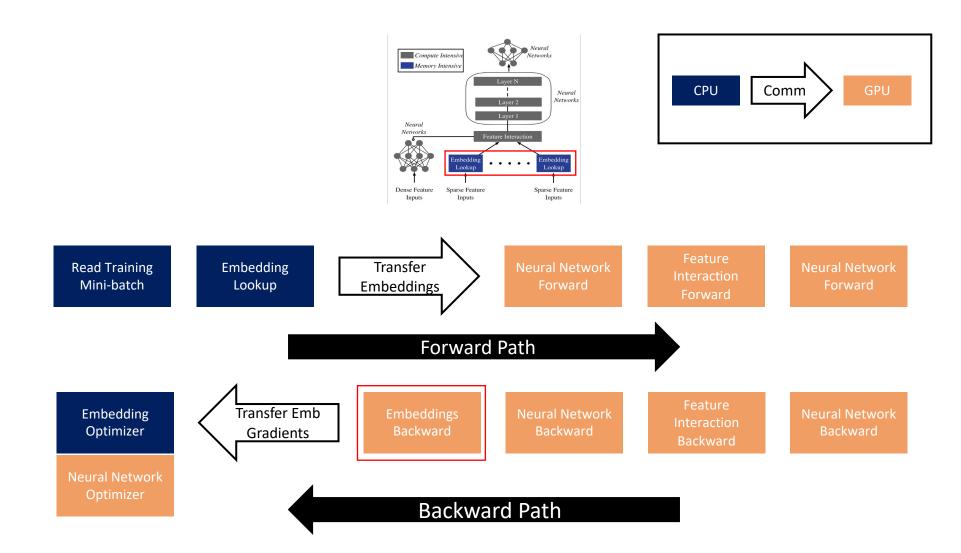


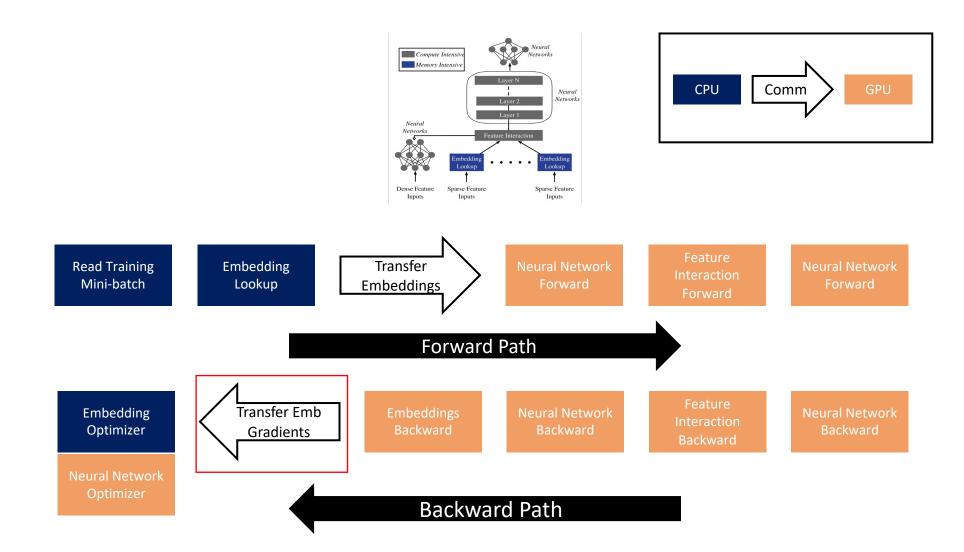




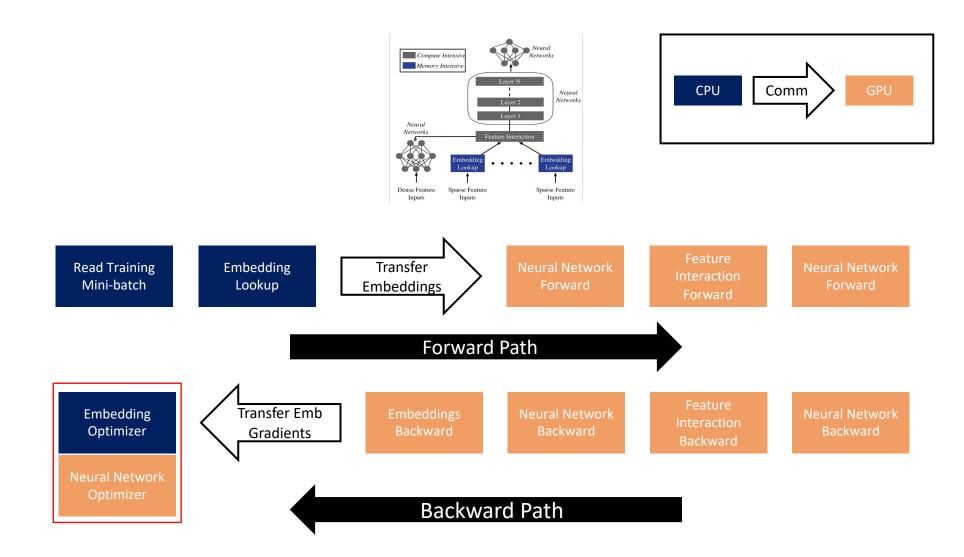




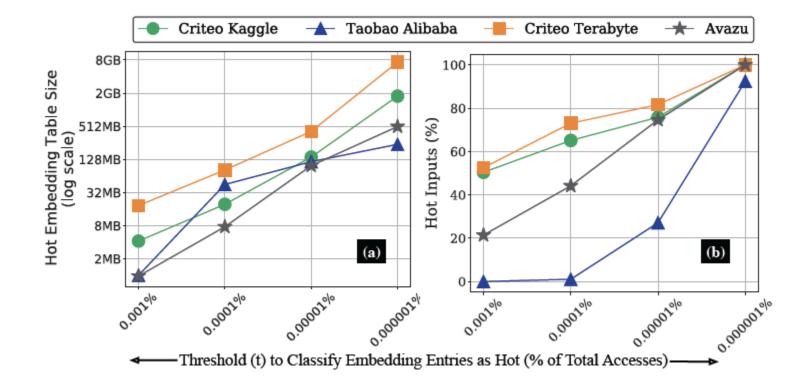




Hybrid Execution Training Flow



Access Threshold vs Hot Inputs & Hot Embs



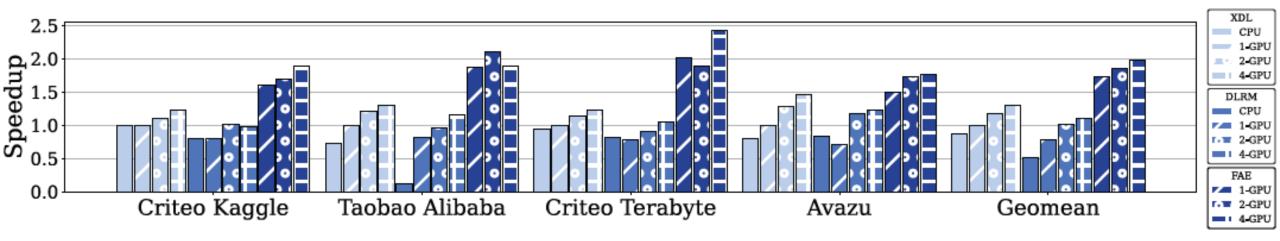
Recommendation Models

Workload	Dataset	Training Input		Model Features		Embedding Tables			Neural Network Configuration		
		Samples	Size	Dense	Sparse	Rows	Row Dim	Size	Bottom MLP	Top MLP	DNN
RMC1 (TBSM [4])	Taobao (Alibaba) [28]	10 M	1 GB	1	3	5.1M	16	0.3 GB	1-16 & 22-15-15	30-60-1	Attn. Layer
RMC2 (DLRM [2])	Criteo Kaggle [27]	45 M	2.5 GB	13	26	33.8M	16	2 GB	13-512-256-64-16	512-256-1	-
RMC3 (DLRM [2])	Criteo Terabyte [29]	80 M	45 GB	13	26	266M	64	63 GB	13-512-256-64	512-512-256-1	-
RMC4 (DLRM [2])	Avazu [30]	32.3 M	2.4 GB	1	21	9.3M	16	0.55 GB	1-512-256-64-16	512-256-1	-

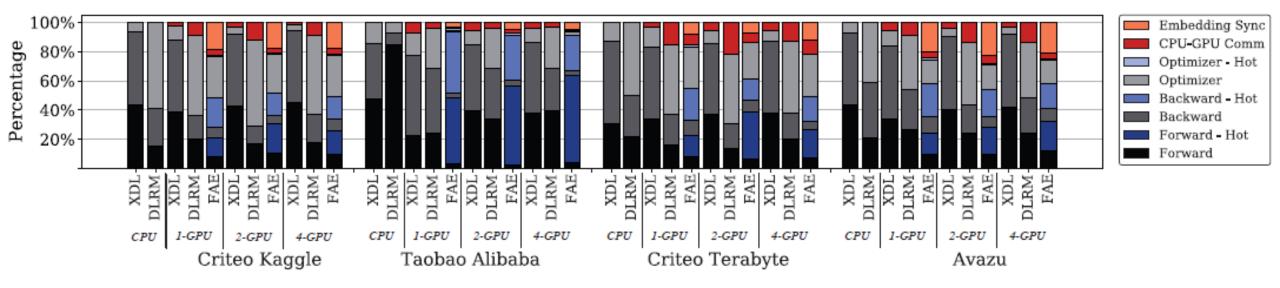
Accuracy Metric

Dataset	х	DL		FAE			
Dutabet	Accuracy (%)	AUC	Logloss	Accuracy (%)	AUC	Logloss	
Criteo Kaggle	78.86	0.802	0.452	78.86	0.802	0.452	
Taobao Alibaba	89.21	-	0.269	89.03	-	0.271	
Criteo Terabyte	81.07	0.802	0.424	81.06	0.802	0.424	
Avazu	83.61	0.758	0.390	83.60	0.758	0.391	

Speedup Comparison

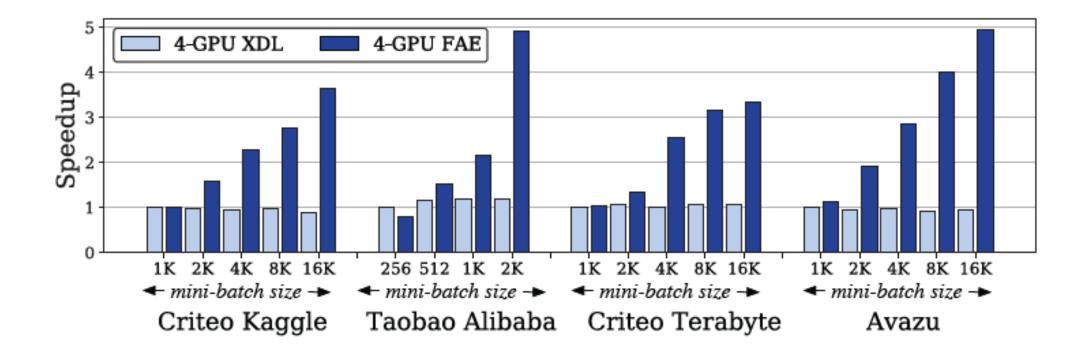


Latency Breakdown



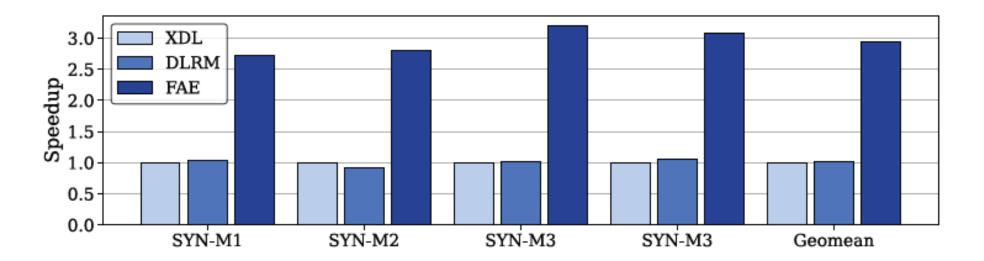
FAE reduces average total data transfer by 50% and incurs a 13% overhead on the end-to-end training time

Scalability with Mini-batch Size



Synthetic Models

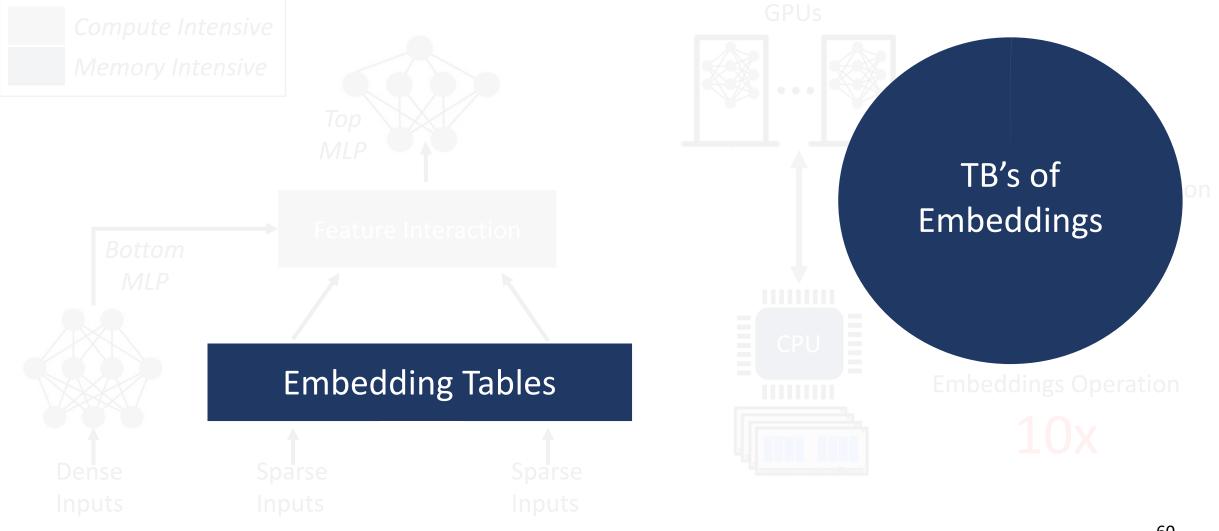
Dataset	Bottom MLP	Top MLP		
SYN-M1	13-64	512-1		
SYN-M2	13-512-64	512-256-1		
SYN-M3	13-1024-512-64	512-1024-256-1		
SYN-M4	13-1024-512-256-64	512-1024-512-256-1		

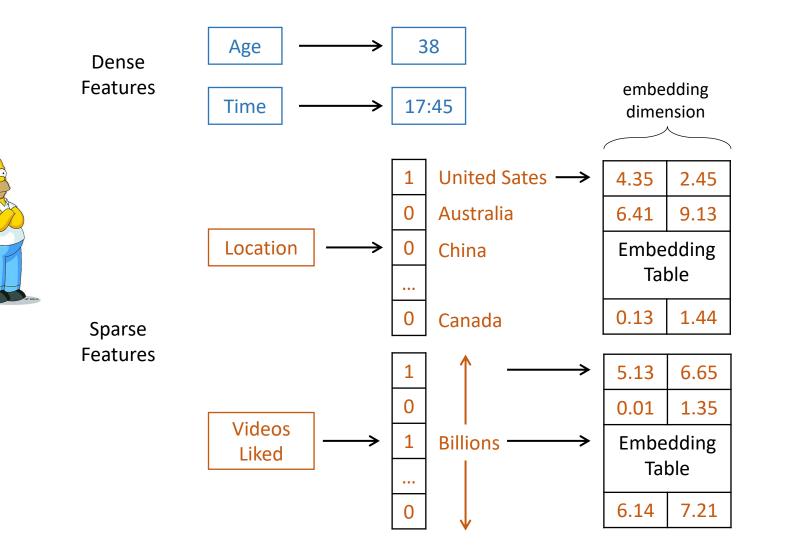


Challenges – Embedding Layout

• Training consecutively on popular and non-popular mini-batches can have impact on training accuracy.

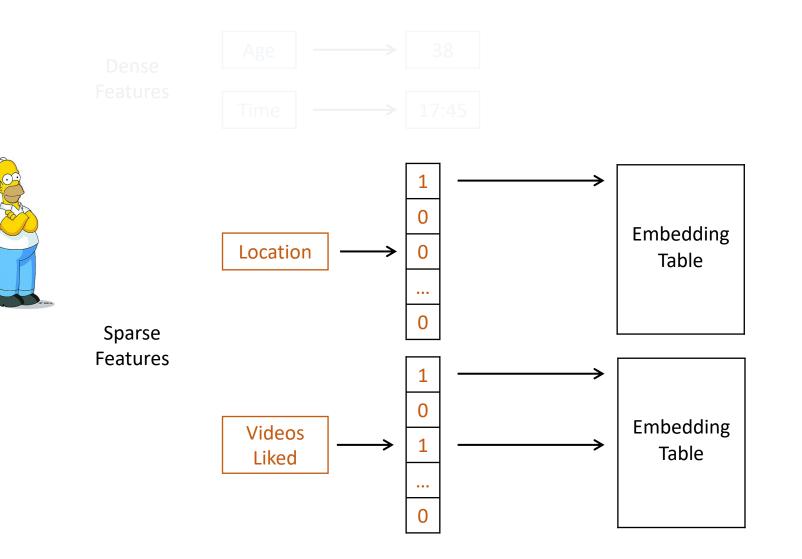
Are All Embeddings Equal?

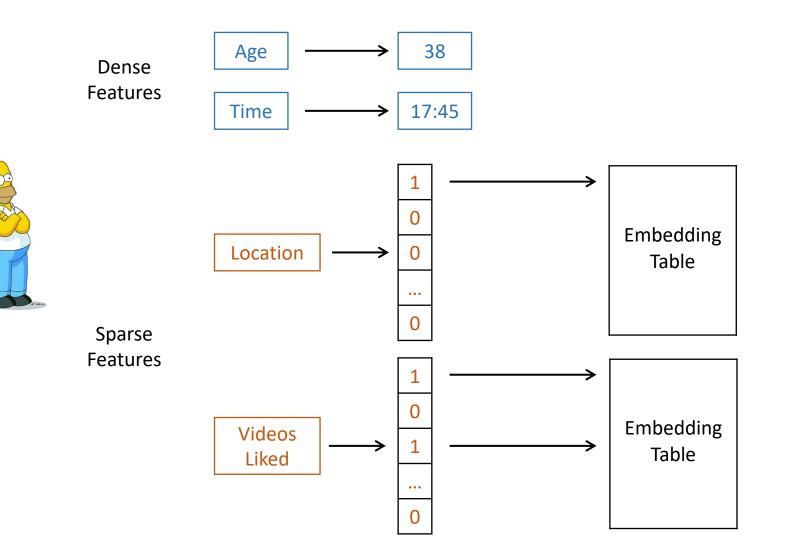




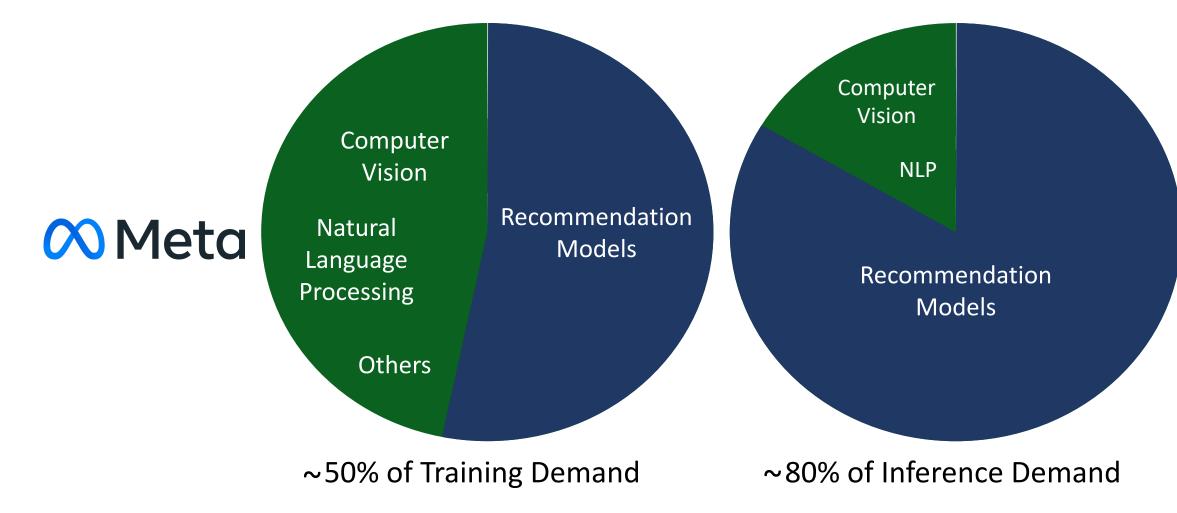


62





Recommendation Systems in Industry



Recommendation Systems in Industry

