
Heterogeneous Acceleration Pipeline for
Recommendation System Training

Muhammad Adnan† Yassaman Ebrahimzadeh Maboud† Divya Mahajan� Prashant J. Nair†

†The University of British Columbia �Georgia Institute of Technology

{adnan, yassaman, prashantnair}@ece.ubc.ca divya.mahajan@gatech.edu

Abstract—Recommendation models rely on deep learning net-
works and large embedding tables, resulting in computationally
and memory-intensive processes. These models are typically
trained using hybrid CPU-GPU or GPU-only configurations. The
hybrid mode combines the GPU’s neural network acceleration
with the CPUs’ memory storage and supply for embedding tables
but may incur significant CPU-to-GPU transfer time. In contrast,
the GPU-only mode utilizes High Bandwidth Memory (HBM)
across multiple GPUs for storing embedding tables. However,
this approach is expensive and presents scaling concerns.

This paper introduces Hotline, a heterogeneous acceleration
pipeline that addresses these concerns. Hotline develops a data-
aware and model-aware scheduling pipeline by leveraging the
insight that only a few embedding entries are frequently accessed
(popular). This approach utilizes CPU main memory for non-
popular embeddings and GPUs’ HBM for popular embeddings.
To achieve this, Hotline accelerator fragments a mini-batch into
popular and non-popular micro-batches (μ-batches). It gathers
the necessary working parameters for non-popular μ-batches
from the CPU, while GPUs execute popular μ-batches. The
hardware accelerator dynamically coordinates the execution of
popular embeddings on GPUs and non-popular embeddings from
the CPU’s main memory. Real-world datasets and models confirm
Hotline’s effectiveness, reducing average end-to-end training time
by 2.2× compared to Intel-optimized CPU-GPU DLRM baseline.

Index Terms—Recommender Systems, Multi-Node Distributed
Training, Accelerators.

I. INTRODUCTION

Recommendation models constitute a crucial and widely

deployed class of machine learning (ML) workloads [1].

These models employ compute-intensive neural networks and

memory-intensive embedding tables to store user and item

features [2]. With the increasing number of interactions be-

tween users and items, the size of these tables is expected to

grow significantly. Production-scale models can already reach

several terabytes and contain trillions of parameters [3–5].

The deep Learning Recommendation Model (DLRM) and

the Time-Based Sequence Model (TBSM) are popular com-

mercial models. These models are typically trained using either

a hybrid CPU-GPU mode or a GPU-only mode [6, 7]. In the

hybrid mode (Figure 1a), the CPU provides memory capacity

for the embedding entries, while GPUs offer high-throughput

data-parallel neural network execution [8]. However, this mode

suffers from inefficiencies due to three reasons: (1) GPUs

rely on the CPU to provide all embeddings, (2) the low-

Embedding
Update

Em
be

dd
in

gs

MLP Embedding CPU-GPU Communication Inter GPU Communication

CPU

GPUs Em
be

dd
in

g
G

ra
di

en
ts

Bottom
MLP Fwd
Bottom

MLP Fwd

Embedding
Lookup

Top MLP
Fwd/
Bwd

Top MLP
Fwd/
Bwd

Bottom
MLP
Bwd

Bottom
MLP
Bwd

All
Reduce

All
Reduce

(a) Hybrid CPU-GPU mode

Embedding
 All to All

All
Reduce

Embedding
Grad all to all

All
Reduce

Bottom
MLP Fwd

Embedding
Lookup

Top MLP
Fwd/
Bwd

Embedding
Update

Bottom
MLP
Bwd

(b) GPU-only mode

Fig. 1: The execution flow of a typical recommendation model

in the hybrid CPU-GPU and GPU-only. Due to their large

sizes, the embedding tables are stored and processed on CPUs.

The GPUs process the neural layers.

bandwidth CPU memory acts as a bottleneck, and (3) the

CPU’s execution of the embedding logic prevents full GPU

utilization throughout the training process.

Alternatively, the GPU-only mode, illustrated in Figure 1b,

employs multiple GPUs to store a single copy of the em-

beddings and trains in a model-parallel manner [9]. However,

this approach necessitates continuous all-to-all communication

between GPUs to share their embeddings. Additionally, in this

mode, one would need to grow the GPUs to enable the training

of larger datasets. For instance, the Terabyte dataset requires at

least four NVIDIA V100 GPUs to fit its embeddings. Ideally,

even larger applications must be enabled using fewer GPUs.

To overcome these limitations of existing training modes,

this paper introduces a novel heterogeneous acceleration

pipeline called Hotline. The primary goal of Hotline is to fully

exploit GPUs’ compute throughput and CPU-based memory

capacity without encountering any communication or compu-

tation bottlenecks. By combining the advantages of both the

hybrid and GPU-only modes, Hotline utilizes the GPU-only

mode for the entire training process. It leverages the CPU-

based main memory to store the majority of embeddings.

This is achieved through an innovative hardware accelera-

tor that pipelines the embedding gathering operation of the

CPU together with the compute on GPUs. This approach

ensures that GPUs are continuously fed from either the CPU-

based memory subsystem or their High Bandwidth Memories

1063

2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA)

979-8-3503-2658-1/24/$31.00 ©2024 IEEE
DOI 10.1109/ISCA59077.2024.00081

(HBM), avoiding stalls in the process. As a result, Hotline

provides a scalable throughput-optimized solution. Broadly,

the Hotline acceleration pipeline relies on two key insights.

1. Access-aware Embedding Layout in Memory: Hot-

line leverages the observation that real-world recommender

systems exhibit a high skew in popularity, causing certain

embedding entries to be accessed significantly more frequently

than others [10–14]. These frequently accessed embeddings,

referred to as frequently-accessed entries, have a small mem-

ory footprint but are computationally significant. To take

advantage of this access property, Hotline proposes an opti-

mized access-aware memory layout for embeddings. The hard-

ware accelerator in Hotline dynamically classifies frequently-

accessed embeddings and places them on the GPU memory,

while not-frequently-accessed embeddings are stored in the

CPU main memory. The hardware accelerator periodically

monitors the access pattern to ensure it captures the most up-

to-date trends in the training data.

2. Layout-aware Runtime Scheduling: Hotline employs

a dynamic runtime scheduler to achieve optimal compute

throughput with the new memory placement. This scheduler

divides a mini-batch into two micro-batches (μ-batches), and

subsequently, these μ-batches are categorized into two groups.

The first category comprises popular inputs that exclusively

access frequently-accessed embeddings and are directly sched-

uled onto the GPUs. Remarkably, we find that approximately

75% of the inputs fall into the first category across a wide

range of models. On the other hand, the second category con-

sists of the remaining inputs that may access both frequently-

accessed and not-frequently-accessed embeddings. If an input

accesses even a single non-frequently-accessed embedding, it

is classified as a non-popular input. For the first category of

popular inputs, all the required embeddings for the micro-batch

are directly scheduled onto the GPUs. In contrast, Hotline

gathers the not-frequently-accessed embeddings from the CPU

memory for the second category. However, accessing the

CPU’s main memory can stall the pipeline in such a system.

This is because the not-frequently-accessed embeddings are

stored in the CPU’s main memory and are in the critical path.

To overcome this challenge, Hotline introduces a novel

hardware accelerator that schedules the μ-batches in a data-

aware and model-aware manner. By doing so, Hotline ensures

that GPUs are not starved, allowing the system to gather the

not-frequently-accessed embeddings from the CPU memory

while executing the frequently-accessed inputs on the GPUs.

Contributions: This work makes three key contributions:

1) Identifies frequently-accessed embeddings dynamically at

runtime with negligible overhead.

2) Offers a dynamic data and model-aware scheduler to

efficiently pipeline the mini-batch dispatch onto GPUs

while concurrently obtaining not-frequently-accessed em-

beddings from the main memory.

3) Offers a runtime framework that increases training

throughput by stitching the training process of the rec-

ommender model across CPUs and GPUs.

We evaluated Hotline with publicly available deep learning

(DLRM) and time-sequence (TBSM) based recommendation

models and compared our approach against two baselines -

hybrid CPU-GPU and GPU-only baseline.

We compared Hotline against state-of-the-art deep learning

frameworks such as XDL [15], FAE [10], and Intel-optimized

DLRM [16]. On average, Hotline provides 3.4× speedup over

the 4-GPU XDL, 1.4× over FAE, and 2.2× speedup over

Intel optimized DLRM. It is noteworthy that Hotline only

rearranges inputs in a single mini-batch, but the updates to

the model are performed at parity with the baseline. Thus,

Hotline does not impact the accuracy or training fidelity of

the model. Hotline could train larger models, such as Criteo

Terabyte, with a single GPU, whereas the GPU-only baseline

required at least 4 GPUs to store its embeddings.

II. RECOMMENDATION SYSTEMS

Figure 2 illustrates the general structure of deep-learning-

based recommendation models, which rely on two types of

inputs: dense and sparse. Dense inputs are continuous fea-

tures, such as the user’s age, while sparse inputs represent

categorical features, such as the user’s location or videos

they have liked. The neural network component processes

dense inputs using Multi-Layer Perceptron (MLP) techniques,

while massive embedding tables handle sparse inputs. Each

embedding table represents a categorical feature, with the

number of rows corresponding to the possible items associated

with that feature. An MLP processes the outputs of both the

dense and sparse inputs to generate a prediction, such as the

likelihood of clicking or click-through rate (CTR).

A. Training Setup

Large recommender models can be trained using two dis-

tributed modes: the hybrid mode and the data-parallel mode.

In the hybrid mode, embeddings are stored and gathered on

the CPU, while neural networks are executed on GPUs in a

data-parallel manner. However, the training throughput of the

hybrid mode is often limited due to substantial data transfers

and reliance on low-bandwidth CPU main memory.

1) Hybrid CPU-GPU Mode: Figure 3 illustrates the dis-

tribution of training time across four real-world models and

datasets. The results highlight that embedding operations, such

Feature Interaction

Embedding
Lookup

Embedding
Lookup

Dense
Features

Sparse
Features

Sparse
Features

Bottom
MLP

Top
MLP

Fig. 2: General structure of a deep-learning-based recommen-

dation model [6, 7, 17]. It consists of compute-bound neural

networks and memory-bound embedding tables.

1064

Fig. 3: The breakdown of the training time for an Intel-

optimized DLRM with 4-GPU in a hybrid CPU-GPU training

setup. The dotted parts of the bar are executed on the CPU

and present an opportunity for GPU-based acceleration.

as embedding-lookup in the forward pass, updating embed-

dings in the optimizer, and CPU-GPU communication, can

account for up to 75% of the training time in large datasets,

like Criteo Terabyte.

2) Single Node GPU-only Mode: In the GPU-only mode,

multiple GPUs are used to store all embeddings and perform

data-parallel neural network execution. However, this mode

experiences low compute utilization primarily because recom-

mendation models grow with the size of the embedding tables,

resulting in a larger memory footprint rather than an increase

in neural compute [3–5]. Consequently, the GPU devices must

scale with the size of the embedding table rather than the

neural network’s compute intensity. Figure 4 illustrates the

breakdown of training time for four real-world datasets using a

single node GPU-only system with NVLink [18] interconnect.

In a single node GPU-only system, transferring embeddings

across all devices requires all-to-all collectives. For

instance, in a 4-GPU system, we observed that this step

consumes nearly 12% of the total training time even after em-

ploying the fast NVLink interconnect. As the number of nodes

increases, the communication time also grows, potentially

limiting scalability and becoming the training bottleneck [19].

3) Multi Node GPU-only Mode: Distributed training across

multiple nodes exacerbates communication time, particularly

with all-to-all collectives. In our Dell EMC C4140

Fig. 4: The breakdown of the training time for DLRM in

single node GPU-only training setup. The single-node setup

uses NVLink interconnect across four GPUs.

Fig. 5: The training time breakdown for DLRM in a multi-

node GPU-only setup with four GPUs per node. The GPUs

use NVLink for intra-node GPU connections. The multi-node

setup uses 100Gbps InfiniBand for inter-node connectivity.

nodes, InfiniBand links provide a bandwidth of only 100Gbps,

while NVLink offers 2400Gbps for Nvidia-V100 GPUs. This

disparity makes communication a major bottleneck. As shown

in Figure 5, communication costs now exceed 50% of the

multi-node training time.

B. Popularity in Training Inputs

The Hotline framework leverages a fundamental charac-

teristic of recommendation models, where specific users and

items exhibit significantly higher popularity than others. This

phenomenon leads to certain embeddings being accessed far

more frequently than others, as illustrated in Figure 6 across

various real-world datasets. Typically, a small number of

frequently-accessed embeddings can receive over 100× more

access than others, catering to over 75% of inputs with only

approximately 512 MB of embeddings. Nevertheless, adapting

to changes in input popularity poses a complex challenge.

Fig. 6: Number of accesses per embedding entry per one

training epoch. Inputs that account for at least 1-in-every-

100000 embedding accesses are labelled as popular.

1065

III. CHALLENGES AND INSIGHTS

The frequently-accessed embeddings have a small memory

footprint and serve the majority of inputs, making it feasible

to place these frequently-accessed embeddings locally across

GPUs. This approach could eliminate the need to involve

CPUs for most inputs, leading to significant performance

benefits. However, this approach faces three key challenges.

Challenge 1 – Embeddings in CPUs and GPUs:
During the training process, mini-batches of input data ac-

cess a mix of frequently-accessed and non-frequently-accessed

embeddings, which are stored across both the CPU main

memory and the HBM of GPUs. Consequently, some embed-

dings from the CPU’s main memory must be collected and

transmitted to the GPU for embedding computations.

Our Approach: Hotline partitions each mini-batch into two
micro-batches (μ-batches). The inputs in a μ-batch either
access only frequently-accessed embeddings or any arbitrary
embeddings. First, Hotline schedules the μ-batches that
access only frequently-accessed embeddings on the GPU(s)
for execution. Concurrently, it collects the parameters for the
μ-batches that access embeddings from the CPU memory.

Challenge 2 – Segregation and Scheduling with CPU:
Achieving efficient mini-batch segregation and parameter gath-

ering can be accomplished using CPUs and GPUs instead

of hardware accelerators. However, GPUs are not optimized

for fine-grained mini-batch segregation. To address this, CPU-

based multi-processing can be employed for mini-batch seg-

regation, parameter gathering, and scheduling.

Fig. 7: CPU segregation and scheduling time for a mini-batch

using Intel Xeon CPU while the V100 GPU(s) training on a

mini-batch. We use mini-batches of 1K, 2K, and 4K inputs

for 1, 2, and 4-GPU execution, respectively. Each mini-batch

contains two μ-batches (popular and non-popular).

Our study, as illustrated in Figure 7, revealed that even

when utilizing all CPU cores, an Intel Xeon CPU exhibits a

mini-batch segregation latency up to 2.5× higher than that of

NVIDIA-V100 GPU(s) single mini-batch GPU-based training.

This is because CPU-based segregation necessitates numerous

memory look-ups to determine if an input is high access.

Fig. 8: The wall-clock time by varying CPU cores for segre-

gating a 4K input mini-batch of the Criteo Terabyte dataset.

The time overhead of CPU-based segregation plateaus with an

increasing number of cores.

We investigated the bottleneck in CPU-based segregation

by varying the number of CPU cores for segregating a Criteo

Terabyte dataset mini-batch. Figure 8 illustrates that adding

cores initially decreases segregation time slightly, but beyond

24 cores, segregation time plateaus. This indicates that the

issue lies with parallel memory accesses from the CPU cores

rather than CPU compute throughput. Therefore, segregation

is memory bound, and even hardware like the Data Streaming

Accelerator (DSA) (within Intel Sapphire Rapids), designed

for data copying and transformation, would not alleviate the

issue due to its inability to handle parallel memory lookups.

As the mini-batch size increases, the processing overhead

and latency for CPU-based segregation also increase pro-

portionately. CPUs cannot actively segregate and schedule

popular and non-popular μ-batches before the GPUs finish

their execution. Consequently, our experiments demonstrate

that GPUs remain idle for over 50% of the training time.

Our Approach: Hotline introduces a novel accelerator that
utilizes parallel lookup engines capable of performing fine-
grained tasks. These tasks include determining whether an
input is a high-access or low-access value, fragmenting the
mini-batches to form new μ-batches, and enabling efficient
parameter gathering for the μ-batches. With the help of
this accelerator, the acceleration pipeline can segregate and
schedule the non-popular μ-batch as soon as the GPUs finish
executing the popular μ-batch.

Challenge 3 – Evolving Access Skews: Prior studies have

used an offline profiler [10, 11] to identify frequently-accessed

embeddings. Some of these studies do not account for this

overhead, up to 15%, in their training times [10]. They also as-

sume that the training data is available before training and that

the set of frequently-accessed embeddings does not change

over time. However, training data in the recommender models

is mostly structured as user activity across some finite time.

As user behavior changes rapidly every few hours or days,

static profiling may not quickly identify the corresponding

shift embedding accesses [14]. Figure 9 shows the change in

user behavior for the Criteo Terabyte dataset across days.

1066

Fig. 9: Evolving skew in training data across days for Terabyte

dataset (Embedding Table 20). Thus, popular embeddings vary

sometimes as frequently as a few hours.

Our Approach: To address the abovementioned issues,
Hotline adopts a dynamic approach that samples a small
fraction of inputs (usually 5%) to identify frequently-accessed
embeddings. This minimizes the profiling overheads to be
�5% while enabling efficient tracking of frequently-accessed
embeddings across mini-batches. Furthermore, the acceler-
ator continuously re-calibrates the frequently-accessed em-
beddings to adapt to changes in training data.

IV. THE HOTLINE SYSTEM

The system comprises an InfiniBand-based multi-core

server. Each node has multiple GPU devices with inter-GPU

communication achieved via NVLink [18]. The Hotline system

places the accelerator on the low profile PCIe slot that GPUs

do not use, enabling it to access the DMA engine through the

PCIe switch and communicate directly with the CPU memory

as shown in Figure 10. Notably, the Hotline system requires

no modifications to the CPU and GPU devices. This system

operates in two phases:

1. The Learning Phase: The Hotline accelerator actively

determines the frequently-accessed embeddings at runtime. To

achieve this, the accelerator performs mini-batch sampling in

the first epoch. Our experiments demonstrate that sampling

just 5% of the mini-batches is sufficient to identify over

90% of the frequently-accessed embeddings. Based on the

sampled mini-batches, the accelerator progressively classi-

fies the accessed embeddings as either frequently-accessed

or non-frequently-accessed. Subsequently, the contents of

the frequently-accessed embeddings are replicated across all

GPUs, and the accelerator memory stores only the indices of

the frequently-accessed embeddings. In a multi-node setup, the

learning phase occurs on a single node’s Hotline accelerator,

after which the indices of frequently-accessed embeddings are

copied to the Hotline accelerators of all nodes.

2. The Acceleration Phase: The Hotline system’s accelera-
tion phase commences once the frequently-accessed embed-

dings are replicated on each GPU. During this phase, the

Hotline accelerator actively classifies a mini-batch into two

μ − batches based on input popularity. The system employs

GPUs to accelerate both μ − batches through pipelined ex-

ecution, as depicted in Figure 12. Notably, Hotline operates

on a finer scale, updating non-frequently-accessed embeddings

on the CPU and frequently-accessed ones on the GPU1. As

a result, Hotline updates embeddings at distinct locations on

CPUs or GPUs, thereby avoiding any coherence requests.

The frequently-accessed embeddings of the popular μ-batch

are synchronized across all GPUs with dense parameters via

an all-reduce collective. On the other hand, for the non-

popular μ-batch, frequently-accessed embeddings are updated

on GPUs, while the remainder is updated on the CPU’s main

memory using DMA.

Sources of benefits: The benefits of Hotline arise from (1)

overlapping embedding lookup and communication required

for non-popular μ − batches with GPU-based execution of

popular μ − batches, (2) executing all operations, including

embedding lookup and update, on GPU HBM using a data and

model-aware pipeline scheduler, and (3) using a novel Hotline-

accelerator to pipeline segregation and parameter gathering for

a single mini-batch without stalling the GPU devices. Roofline

analysis showed a theoretical 3× gain from GPU HBM for

embedding lookups over Intel’s Optimized Embedding Bag

operator [16] for DDR4 memory. In practice, Hotline achieves

nearly a 2.2× improvement over Intel Optimized DLRM.

A. Model Updates with Hotline

Click-through rate (CTR) is modelled as a binary classifi-

cation problem with binary cross-entropy (BCE) loss. A mini-

batch (M) with n inputs is = {m1,m2, . . . ,mn}, where mi

is a single input. Across mini-batch M , the BCE loss (L) for

each input f(mi) is represented as Equation 1, where yi is the

target and pi is the predicted probability for the ith input.

f(mi) = yi log(pi) + (1− yi) log(1− pi) (1)

Thus the BCE loss (L) for M is represented as Equation 2.

Lbaseline =
n∑

i=1

f(mi) =
n∑

i=1

yi log(pi) + (1− yi) log(1− pi)

(2)

As shown in Figure 12, Hotline splits mini-batch M into

two μ-batches: popular and non-popular. The popular μ-batch

is represented as O = {o1, o2, . . . , ol}. Similarly, the non-

popular μ-batch is represented as X = {x1, x2, . . . , xk}. Often

l > k because the popular inputs are a larger portion of the

dataset. The two μ-batches are mutually exclusive, i.e., without

overlapping inputs. We express this using Equation 3.

O ∪ X = M O ∩ X = ∅ (3)

The BCE loss for O and X is denoted by Equation 4:

Lpopular =

l∑

i=1

f(oi)

Lnon−popular =

k∑

i=1

f(xi)

(4)

1Prior work, such as FAE [10], have coherence overheads. These overheads
stem from the requirement of synchronizing embeddings between CPUs and
GPUs, as illustrated in Figure 20. These synchronization processes happen at
each transition between popular and non-popular mini-batches.

1067

PCIe Switch

DMA Engine

DDR4
ChannelsCPU

N

PCIe Switch

DMA Engine

DDR4
ChannelsCPU

N

PCIe Switch

DMA Engine

Hotline Accelerator

DDR4
Channels

Frequently
Accessed

Embeddings

Low Profile x16 PCIe Slot

CPU
0

PCIe Switch

DMA Engine

Hotline Accelerator

DDR4
Channels

Frequently
Accessed

Embeddings

Low Profile x16 PCIe Slot

CPU
0

NIC NIC
100 Gbps Infiniband interconnect

NVLink

PCIe x16

Infiniband

NVLink

PCIe x16

Infiniband

Fig. 10: The Hotline system features an accelerator situated between the CPU and GPU(s), responsible for accessing the main

memory to retrieve training inputs and embeddings, which are then efficiently relayed to the GPU(s). In multi-node distributed

training, each node utilizes its own Hotline accelerator to oversee and execute parameter aggregation for its mini-batch.

The BCE loss of Hotline is denoted as Lhotline = Lpopular +
Lnon−popular. Now, using Equation 3, and Equation 4, we can

rewrite Equation 2 as Equation 5.

Lbaseline =

l∑

i=1

f(oi) +

k∑

i=1

f(xi) =

n∑

i=1

f(mi)

= Lpopular + Lnon−popular

= Lhotline

(5)

Therefore, the BCE loss calculated for baseline and Hot-

line is the same. Consequently, their gradients during back-

propagation are also identical. Thus, compared to baseline,

Hotline depicts no loss in training or testing accuracy.

V. THE HOTLINE ACCELERATOR

Figure 11 shows the block diagram of the Hotline acceler-

ator. We will now describe the micro-architectural details of

each component within the Hotline hardware accelerator.

A. Data Dispatcher

Figure 13 shows the Data Dispatcher block, which includes

the Address Registers containing the base address of each

embedding table in CPU and GPU memory. The Memory
Controller uses these Address Registers to generate embedding

addresses. The Input Classifier segregates incoming inputs

based on the Embedding Access Logger (EAL) information,

distinguishing them as popular or non-popular. While the

popular μ-batch executes, the dispatcher sends the non-popular

μ-batch from the input eDRAM to the Lookup Engine. Our

design shows that a small 2.5 MB of eDRAM can store mini-

batches with up to 16K inputs.

The non-popular μ-batch accesses arbitrary embeddings.

The memory controller sends a direct memory access (DMA)

request to the DMA engine for not-frequently-accessed em-

beddings and initiates a GPU read memory request for

frequently-accessed embeddings. The Reducer block processes

Streaming Interface

Data
Dispatcher

Embedding Vector Buffer

Input eDRAM
(Non-popular μ-batch)

Scheduler

ALU ALU ALU

Reducer

Bank Bank Bank Bank

Embedding Access Logger

Bank Bank Bank Bank

Embedding Access Logger Lookup EngineLookup Engine

Fig. 11: The components within the Hotline hardware accel-

erator block. The Hotline accelerator is connected to the low-

profile PCIe slot via a Streaming Interface.

working parameters from CPU and GPU memory, reducing

multiple embedding rows into a single embedding vector, and

then stores it in the Embedding Vector Buffer.

B. Embedding Access Logger (EAL)

The Embedding Access Logger (EAL) actively utilizes a

counter to track the frequency of access to embedding entries.

EAL stores only the indices of embedding entries with valid

bits and access counts. Figure 14 depicts the components of

EAL, which include a multi-banked Static Random Access

Memory (SRAM), a controller, and a queue.

A. Naive Embedding Tracking: Due to a large number

of sparse parameters in recommender models, per-entry fre-

quency counters would require gigabytes of on-chip storage.

Alternatively, storing the frequencies in CPU/GPU memory

1068

CPU
Multi-Process

KEY

CPU (Lock-Free)
Updates

GPU
Execution

Hotline Accelerator
Execution

TIME

(a) Baseline System

Embedding
Lookup

S
ca

tt
er

G
at

he
r

GPU-1

Embedding
Optimizer

Read
Minibatch

(b) Hotline Acceleration

GPU-2
GPU-3
GPU-4

GPU-1
GPU-2
GPU-3
GPU-4

G
at

he
r

Backward

GPU-1
GPU-2
GPU-3
GPU-4 E

m
b

ed
d

in
g

O

p
ti

m
iz

er

Update
Non-Popular
Embeddings

on CPU

{
{Forward Backward{

Read Next
Minibatch

Forward{
Read

Minibatch
Minibatch

Segregation

S
ca

tt
er

GPU-1
GPU-2
GPU-3
GPU-4

Popular
μ-batch

Non-Popular
μ-batch

Embedding
Lookup

Non-Popular
μ-batch

Non-Popular
Embeddings

from CPU

GPU-1
GPU-2
GPU-3
GPU-4

Forward{
Read Next
Minibatch

Minibatch
Segregation

S
ca

tt
er

GPU-1
GPU-2
GPU-3
GPU-4

Popular
μ-batch

Non-Popular
μ-batch

Embedding
Lookup

Non-Popular
μ-batch

Non-Popular
Embeddings

from CPU

GPU-1
GPU-2
GPU-3
GPU-4

Scatter Scatter

Fig. 12: The execution pipeline of Hotline involves the accelerator actively classifying a mini-batch into popular and non-

popular μ-batches, then scheduling the popular μ-batch onto the GPU(s). Simultaneously, the accelerator gathers the working

parameters for the non-popular μ-batch to schedule onto the GPU(s).

Streaming Interface

Memory
Controller

Input
Classifier

Address
Registers

Lookup Engine

To Input
eDRAM

From Embedding
Vector Buffer

non-popular
inputs

popular
inputs

To
Reducer

From
SchedulerData Dispatcher

Fig. 13: The Address Registers, Memory Controller, and Input

Classifier constitute the Data Dispatcher block.

would require three accesses: one to obtain the embeddings,

one to read the frequency, and another to update it.

B. Efficient Embedding Tracking: The EAL design is mo-

tivated by two observations: the size of frequently-accessed

embeddings is ≤512 MB and their access skews are extremely

high. Thus, EAL is designed as a cache-like structure that

tracks frequently-accessed embedding indices using a 4 MB

SRAM cache with 2 million blocks. EAL uses the Static

Re-reference Interval Predictor (SRRIP) replacement policy

with a 2-bit Re-reference Predictor Value (RRPV) counter

Controller

SRAM

m entries

Valid Access Count Identifier

1 - bit 2 - bits 14 - bits

Bank 1Bank 1 Bank 2Bank 2 Bank NBank N

QueueQueue Embedding Access Logger
(EAL)

Fig. 14: The Embedding Access Logger (EAL) block consists

of Multi-Banked SRAM, the Controller, and the Queue sub-

blocks. It tracks frequently accessed embeddings.

to reduce area overheads. As frequently-accessed embeddings

have >100× more frequent accesses, a 2-bit RRPV counter

(access counter or AC) with insertions at RRPV-1 value

captures >99% of the frequently-accessed embeddings with

70% tracking capability. Even if a non-frequently-accessed

embedding is misclassified as frequently-accessed or vice

versa, it has no impact on model fidelity.

To evaluate EAL with one-hot encoded inputs versus multi-

hot encoded inputs, we compared the hit rate of one-hot

encoded real-world datasets with multi-hot encoded synthetic

datasets (Section VII-F4). The hit rate of EAL for the multi-

hot encoded datasets decreases by only a maximum of 5%.

1069

Fig. 15: SRRIP-based tracker as compared to the Oracle LFU

scheme. On average, the SRRIP-based tracker can track 90%

of the frequently-accessed embeddings.

Figure 15 compares the SRRIP logger to an Oracle logger 2.

C. Multi-Banked SRAM for Parallel Lookup: Hotline

enables parallel lookups by dividing the EAL into multiple

banks. Figure 16 shows our empirical design space explo-

ration, which reveals the average number of requests issued

as the number of banks (n) and input queue size (m) vary.

On average, a 512-sized queue with 64 banks allows for 60

parallel requests per iteration without collisions. A controller

schedules requests from the lookup engine block to the 512-

entry queue. Periodically, the EAL switches to the ‘learning’

phase to capture changes in popular embeddings.

Fig. 16: Impact of Queue Size and Banks on the number of

parallel requests per iteration. Embedding Access Logger uses

a 512 queue with 64 banks to enable 60 parallel requests.

C. The Lookup Engine

The Lookup Engine is a parallel 2D lookup network that

extracts embedding entries from every training input. It can

achieve 26× throughput per input if it requires 26 distinct

embedding tables. Additionally, the 2D lookup network allows

for exploiting parallelism within the mini-batch. During the

learning phase, the Lookup engine provides EAL with the

indices accessed by each input. The Lookup Engine classifies

inputs as popular during the acceleration phase if all embed-

ding indices are within EAL.

A single lookup engine, as shown in Figure 17, contains

registers for embedding table numbers, hot embedding index,

and a randomizer. The randomizer hashes the (Embedding

2We could use the Least Frequently Used (LFU) replacement policy
to understand the access frequency. However, this incurs significant area
overheads, as each cache block would require a 24-bit counter (Figure 6
shows embeddings can have up to 10 million accesses).

Randomizer

EMB Table EMB Index

Left Shifter

Index Identifier

Hot EMB Index

Hit

Lookup Engine Array
Lookup Engine

= =

EA
L Id

en
tif

ie
r

A.
C

V

Id
en

tif
ie

r
A.

C
V

Fig. 17: The Lookup Engine. The lookup engine determines

the embedding entries required by an input.

Index, Embedding Table) tuple to scatter embedding index

values across EAL and prevent trashing. A low-latency Fiestal

Network implements the randomizer [20].

D. The Reducer

The Reducer performs a sparse-length element-wise sum

operation using a simple arithmetic unit array. It reduces mul-

tiple embedding rows into a single vector through a pooling

operation and saves the result in the Embedding Vector Buffer.

E. Instruction Set Architecture

The Hotline accelerator relies on a driver to communicate

with the CPU’s main memory and GPU devices. The driver

interacts with the DMA engine to access not-frequently-

accessed embeddings on CPU main memory and GPU devices

via a PCIe link. It uses instructions, as listed in Table I, to

read/write the necessary data into these devices.

TABLE I: Hotline’s Instruction Set

Instruction Operand 1 Operand 2 Description
dma rd(op1, op2) mem start idx # bytes DMA read request
dma wr(op1, op2) mem start idx # bytes DMA write request
v add(op1, op2) input vector emb vec buff element wise addition
v mul(op1, op2) input vector emb vec buff element wise dot product
s wr(op1, op2) reg idx base addr write emb base addr
gpu rd(op1, op2) gpu device id sparse idx read emb idx from GPU device

VI. EVALUATION METHODOLOGY

A. Models

Table II presents the specifications of four open-sourced

recommender models that were evaluated using Hotline. The

models have varying numbers of sparse parameters, ranging

from 5.1M for RM1 to 266M for RM3. These models consist

of a top and bottom multi-layer perceptron (MLP) with a deep

learning attention layer for RM1. On the other hand, RM2
and RM3 have more sparse features and larger embedding

tables, making them embedding-dominated models. RM4 has

an average-sized dense neural network and sparse embedding

tables. Benchmarks such as Deep Learning (DLRM) [6] and

Time-based Sequence Models (TBSM) [7] were used to train

these models, with TBSM training the RM1 model and DLRM

training the RM2, RM3, and RM4 models.

1070

TABLE II: Recommender Model Architecture and Parameters

Model Dataset Time Features Parameters Neural Network Configuration Size
Series Dense Sparse Dense Sparse Sparse Dim Bottom MLP Top MLP DNN (GB)

RM1 Taobao Alibaba [21] 21 1 3 7.3 k 5.1 M 16 1-16 30-60-1 Attn. Layer 0.3

RM2 Criteo Kaggle [22] 1 13 26 287.5 k 33.8 M 16 13-512-256-64-16 512-256-1 - 2

RM3 Criteo Terabyte [23] 1 13 26 549.1 k 266 M 64 13-512-256-64 512-512-256-1 - 63

RM4 Avazu [24] 1 1 21 281.4 k 9.3 M 16 1-512-256-64-16 512-256-1 - 0.55

(a) Criteo Kaggle (b) Taobao Alibaba (c) Criteo Terabyte (d) Avazu

Fig. 18: The accuracy of Hotline with full-precision training. Hotline maintains exactly identical training fidelity as the baseline.

B. Datasets

We train on four real-world datasets, listed in Table II.

Taobao Alibaba [21] is a user behavior dataset for recommen-

dation problems with implicit feedback. Criteo Kaggle [22]

dataset contains advertising data and is obtained from the

Display Advertising Challenge to capture user preferences by

predicting CTR. Criteo Terabyte [23] is the largest publicly

available dataset for user click logs. The Avazu [24] dataset

is taken from a CTR prediction competition by Kaggle.

C. Software libraries and setup

We configured DLRM and TBSM using Pytorch-1.9 with

the torch.distributed backend to support scalable distributed

training and performance optimizations [25]. To achieve GPU-

to-GPU communication for collective operations like gather,

scatter, and all-reduce, we used NVIDIA Collective Commu-

nication Library (NCCL) [26] on NVLink-2.0. We compared

our results with other implementations such as XDL [15],

Intel-optimized DLRM [16], and FAE [10]. The XDL-based

implementation uses Tensorflow-1.2 [27].

TABLE III: System Specifications

Device Architecture Memory Storage
CPU Intel Xeon 192 GB 1.9 TB

Silver 4116 (2.1 GHz) DDR4 (76.8 GB/s) NVMe SSD
GPU Nvidia Tesla 16 GB -

V100 (1.2 GHz) HBM-2.0 (900 GB/s)

D. Server Specifications

Table III provides information about the server used for

the experiments. The server employs a 24-core Intel Xeon

Silver 4116 (2.1 GHz) processor based on Skylake architecture

and is equipped with 4 NVIDIA Tesla-V100 GPUs. The

communication between the GPUs, Hotline accelerator, and

the rest of the system is facilitated via a 16x PCIe Gen3 bus.

All experiments are conducted on a single server.

E. Measurements

We measure the model’s convergence time using wall clock

time. The Verilog RTL architecture of the Hotline accelerator

is validated using Synopsys DC at 350 MHz with 45nm
technology. Cacti is used to estimate the area/energy of mem-

ory components and their access time. The accelerator details

can be found in Table IV. The runtime of the accelerator is

calculated using the compute and access cycles obtained from

Synopsys DC and Cacti through RTL simulation. Additionally,

we estimate the time it takes to gather the working parameters

using real-system DMA and HBM latencies and incorporate

this latency in the pipeline. The end-to-end training time

includes the latency for executing the non-popular μ-batch

with parameters already available on the GPU. To mitigate

HBM contention, we fetch frequently-accessed embeddings

from different GPUs in a round-robin fashion, ensuring a

balanced memory load on each device.

TABLE IV: Accelerator Specifications

Parameters Settings Parameters Settings
Frequency 350 MHz EAL size 4 MB
No of Reducer ALU Units 16 No of Lookup Engines 64
Input eDRAM size 2.5 MB Embedding Vector Buffer 0.5 kB
Total Area 7.01 mm2 Average Energy 132 mJ

VII. RESULTS AND ANALYSIS

A. Training Accuracy

We evaluated the accuracy of Hotline using full-precision

DLRM and TBSM model implementations. Figure 18 il-

lustrates the Area Under Curve (AUC) accuracy metric for

Kaggle, Terabyte, and Avazu established by MLPerf [28, 29].

We observed that Hotline followed the baseline test and

train accuracy and had no accuracy implications. This is

because Hotline fragments a mini-batch into two μ-batches

that continue to update the same embeddings. The baseline

implementation and Hotline update these embeddings with

1071

Fig. 19: The performance comparison of Hotline with XDL, Intel optimized DLRM, and FAE implementations (normalized to

a 1-GPU XDL). On average, even a 1-GPU Hotline provides 3.1× higher performance than the baseline.

Fig. 20: Latency breakdown of 1, 2, and 4 GPU implementations of software frameworks and Hotline. The overhead of

CPU-GPU communication time increases as the number of GPUs scale because of inter-GPU communication.

identical gradients in each mini-batch. Table V also compares

the testing accuracy, AUC, and cross-entropy loss across

datasets for DLRM (baseline) and Hotline.

TABLE V: Comparison of Accuracy Metrics

Dataset DLRM Hotline

Accuracy (%) AUC Logloss Accuracy (%) AUC Logloss

Criteo Kaggle 78.64 0.798 0.456 78.64 0.798 0.456

Taobao Alibaba 89.11 92.61 0.270 89.11 92.61 0.270

Criteo Terabyte 81.20 0.792 0.421 81.20 0.792 0.421

Avazu 83.61 0.766 0.387 83.61 0.766 0.387

B. Comparison with Hybrid Baseline

1) Performance comparisons: Figure 19 compares Hotline

with three state-of-the-art software implementations while

varying the number of GPUs. XDL [15] uses a parameter

server approach, Intel-Optimized DLRM [16] executes embed-

dings on the CPU with lock-free updates, and FAE [10] utilizes

input popularity with offline pre-processing and CPU-based
scheduling without pipelining. While Hotline is designed to

adapt to changing trends in user behaviour (Section III (Chal-

lenge 3) and Figure 9), FAE cannot capture such changing

trends as it employs a static offline profiler while also incurring

a 15% overhead. In contrast, Hotline periodically updates the

frequently accessed embeddings with minimal overhead. We

use weak scaling to scale mini-batch size with GPUs, and all

numbers are normalized to XDL’s 1-GPU setup.

Figure 19 shows that Hotline reduces training time as the

recommender model is executed on GPU(s). Hotline has a

speedup of 3.1× and 3.2× for 1-GPU and 2-GPU setups,

and 3.4× for 4-GPU setups, on average across all models

and datasets, over XDL. Compared to optimized DLRM,

Hotline has a speedup of 3.1×, 3.1×, and 2.2× for 1-GPU, 2-

GPU, and 4-GPU implementations, respectively. Hotline also

outperforms FAE with a speedup of 1.5×, 1.5×, and 1.4×
for the 1-GPU, 2-GPU, and 4-GPU setups, respectively. This

is due to efficient runtime scheduling on a massively-parallel

Hotline accelerator instead of the CPU.

2) Latency breakdown: Figure 20 demonstrates the latency

breakdown of Hotline and three hybrid baselines. The Criteo

Kaggle and Terabyte datasets, which are more embedding and

memory intensive, comprise high CPU–GPU communication

time. Hotline eliminates the CPU-GPU communication time

for popular μ-batch being completely executed on GPU.

In contrast, for non-popular μ-batch, it hides the parameter

gathering under popular μ-batch execution. In the case of the

Taobao dataset, which is dominated by the neural network,

deep learning execution surpasses the communication time.

Overall overhead is shown in Figure 20. This overhead for

Hotline includes online profiling and is minimal, primarily be-

cause online profiling done at the start of training is not hidden

under GPU execution. Still, all subsequent profiling is hidden

under GPU execution, significantly reducing overhead. Also,

the lookup engine parallelizes the input accesses from EAL

for embedding indices. This results in fast online profiling. In

our evaluation, we transitioned to the access learning phase

twice within a single epoch. Users can specify the frequency

at which the learning phase is invoked.

In contrast, our experiments reveal that offline profilers have

a 15% additional overhead in training time [10]. Prior work

often overlooks this overhead of the static offline profiler in

the overall training time [10, 11]. Additionally, FAE incurs

coherence overhead from embedding synchronization when

switching between popular and non-popular data.

3) Throughput improvements: Figure 21 shows that for a

4-GPU system, Hotline achieves higher throughput than the

optimized DLRM baseline, averaging 2.6× more epochs/hour.

The throughput of Hotline increases rapidly for larger mini-

1072

Fig. 21: Training throughput (Epochs/hour) with 4-GPU exe-

cutions. Hotline achieves, on average, 2.6× more throughput

than the optimized DLRM baseline.

batches due to its ability to utilize a larger popular μ-batch,

which can be fully executed on GPU, hiding parameter gath-

ering and communication latency for non-popular μ-batches.

C. Comparison: GPU-only Baseline

We compare Hotline against Nvidia’s GPU-only baseline,

HugeCTR [9]. HugeCTR scales the number of GPUs to fit

the entire model using model-parallel training for embeddings

and data-parallel training for the neural network. Figure 22

compares Criteo Kaggle and Criteo Terabyte datasets.

HugeCTR can train small models like Criteo Kaggle on a

single GPU, so its results are normalized to 1-GPU HugeCTR.

However, for large models like Criteo Terabyte, HugeCTR

throws an Out of Memory (OOM) error and cannot fit the

model within 1 or 2 GPUs, so its results are normalized to 4

GPUs. Hotline eliminates all-to-all communication and

achieves a speedup of 1.13×.

Fig. 22: The speedup of Hotline compared to HugeCTR.

Hotline eliminates all-to-all communication.

It is unfair to compare Hotline, a hybrid training scheme,

to a GPU-only training scheme. Hotline can train even large

datasets such as Terabyte with a single GPU. These datasets

would otherwise be unable to be trained on a single GPU. The

GPU-only mode needs at least four GPUs for such datasets.

D. Comparison: CPU-based Design

Figure 23 compares Hotline to a multi-process CPU-based

segregator and scheduler. Using the CPU for mini-batch

segregation and working parameter gathering results in GPU

stalls as the CPU cannot hide the latency behind popular μ-

batch execution. Hotline outperforms this alternative approach,

providing significant performance benefits.

Fig. 23: Hotline speedup normalized to CPU-based Hotline

implementation. Hotline provides up to 3.5× higher speedup.

E. Comparison: Lookahead-Based Software Baselines

Software-oriented approaches [14, 30, 31] have explored

utilizing skewed embedding access patterns by prefetching

future mini-batch embeddings into a GPU-based cache. How-

ever, such lookahead-based approaches introduce complexities

related to data hazards, cache eviction, and model accuracy.

For example, cDLRM [31] utilizes stale embeddings to miti-

gate data hazards at the expense of reduced model accuracy.

Fig. 24: Speedup of Hotline compared to ScratchPipe-Ideal.

Figure 24 compares Hotline to ScratchPipe [30]. Scratch-

Pipe [30] is not open-source. Thus, the exact implementation

is unknown. Due to this, we re-implemented ScratchPipe with

optimistic assumptions and relaxed the stringent read-after-

write (RAW) dependencies for model updates. We anticipate

a more substantial speedup for Hotline if ScratchPipe adheres

strictly to RAW dependencies. ScratchPipe-Ideal represents

an ideal implementation of ScratchPipe [30] with relaxed

read-after-write (RAW) dependencies. It performs similarly to

Hotline for a single GPU. However, as the number of GPUs in-

creases, ScratchPipe-Ideal encounters scalability issues due to

all-to-all communication. In contrast, Hotline achieves

an average speedup of 1.2× for 4 GPUs.

F. Sensitivity Studies

1) Varying Popular/Non-Popular μ-batch Ratio: We ex-

plored various popular to non-popular μ-batch ratios using a

synthetic dataset. Real-world datasets consistently exhibited

an average ratio of 3:1 for popular to non-popular μ-batches,

each with 512 MB of frequently-accessed embeddings. Fig-

ure 25 illustrates Hotline’s ability to effectively conceal em-

bedding gather latency even with a 3:7 popular to non-

popular μ-batch ratio. Such low ratios are rare in real-world

datasets, typically following a Zipfian distribution [10, 32].

1073

Fig. 25: Effect of varying the ratio of popular to non-popular

μ-batches. Hotline effectively conceals embedding gather la-

tency even with a 3:7 popular to non-popular μ-batch ratio.

2) Varying Mini-batch Size: Hotline benefits increase with

larger mini-batch sizes, as shown in Figure 26. The sched-

uler issues fewer input-dispatch commands, and larger mini-

batches provide more parallelism opportunities for GPUs.

Fig. 26: Hotline speedup with varying mini-batch sizes. The

benefits of Hotline increase with larger mini-batch sizes.

3) Varying EAL Size: Figure 27 shows popular inputs cap-

tured with varying the EAL size. For highly skewed datasets

like Criteo and Avazu, a 2MB logger is sufficient to capture

frequently-accessed indices. However, EAL sizes above 4MB

offer diminishing returns for the less skewed Taobao dataset.

Fig. 27: EAL design space exploration shows a 4MB SRAM

sufficiently captures the frequently used embedding indices.

4) Varying Model Size: We generated synthetic models

and datasets with multi-hot encoded inputs to understand

the efficacy of Hotline to model size increase. Multi-hot

encoded lookups influence the frequency of popular μ-batches.

However, due to the heavy-tailed distribution of accesses, over

75% of these inputs are popular. As shown in Section VII-F1,

this high proportion of popular inputs adequately conceals the

parameter gathering latency for non-popular μ-batches.

Figure 28 shows the performance of Hotline across two

synthetic models and datasets. Our experiments show that the

benefits of Hotline are sustained even for larger models. As

the model size increases, the sparse features increase from 102

to 204, and the performance gains decrease from 2.5x to 2.2x.

This decrease can be attributed to the Hotline accelerator’s

parallel lookup engine size remaining the same at 64. With

more sparse features, the Hotline accelerator requires more

cycles to segregate the input mini-batch, given the fixed size

of the parallel lookup engine.

Model: SYN-M1

Model: SYN-M

Dense Features
Sparse Features
Size (GB)

Dense Features
Sparse Features
Size (GB)

54
102
196

102
204
390

Synthetic Model Configurations

Fig. 28: Performance of Hotline versus Intel-Optimized

DLRM across synthetic models for a 4-GPU system. The

benefits of Hotline are sustained even for larger models.

G. Comparison: Performance/Watt, Area, and Power

Figure 29 shows the Throughput/Watt improvement and

area/power consumption of Hotline components. The EAL

consumes the most power and area due to its SRAM structure.

Despite the 7.01 mm2 area overhead and extra power con-

sumption, Hotline’s performance benefits outweigh the power

overheads, providing 3.9× performance/Watt improvement .

Hotline Accelerator
Area and Power Breakdown

Fig. 29: Throughput/Watt comparison with Area and Power

breakdown of the Hotline accelerator.

H. Multi Node Distributed Training

In the multi-node setup, we evaluated large synthetic models

(SYN-M1 and SYN-M2) described in Section VII-F4. We

compared Hotline to HugeCTR across configurations of 1, 2,

and 4 nodes, with mini-batches of 4k, 8k, and 16k. SYN-M1

(196GB) fits only in a 4-node setup, while SYN-M2 (390GB)

exceeds the capacity of 4 nodes (16 NVIDIA V100 GPUs).

Figure 30 demonstrates Hotline achieving a 1.89× speedup

on 4 nodes by eliminating all-to-all communication,

which constitutes over 50% of total training time. Scaling

from one to two nodes encounters challenges due to all-
reduce synchronization over InfiniBand and CPU-mediated

parameter gathering from other nodes. Nevertheless, Hotline’s

efficiency enables training large models on a single GPU

without increasing the GPU count.

1074

Fig. 30: Hotline scalability for multi-node setting with large

synthetic models. The speedup is benchmarked with 4-node

HugeCTR for SYN-M1 and 1-node Hotline for SYN-M2.

VIII. RELATED WORK

Recommendation models and designs: Prior work has pri-

marily focused on optimizing the inference phase of rec-

ommendation models, as shown in [33–40]. However, some

solutions have also been proposed for training optimizations

and acceleration, such as [32, 41–43]. These solutions, how-

ever, do not maximize throughput by effectively utilizing

memory and bandwidth in a distributed GPU system. Recently,

NEO [44] was introduced, which leverages 4-D parallelism

for recommendation model training. While NEO can further

benefit from embedding placement and patterns in training

data, it is orthogonal to Hotline.

Embedding parameter placement: Prior methods [10, 11]

rely on offline profiling and static embedding placement

based on training data skew. In contrast, Hotline dynami-

cally adapts to changing data patterns without such over-

heads. Recent works [1, 4] explore alternative embedding

table placements but lack preprocessing to reduce communi-

cation overheads. Bandana [45] suggests storing embedding

tables in non-volatile memory with DRAM caching. Other

approaches [32, 41, 42, 46] accelerate near-memory processing

but lack support for distributed training with GPUs. Prior

work [47, 48] performs embedding placement across GPU-

device for GPU-only training, while Hotline targets a two-tier

memory hierarchy for hybrid training.

Mitigating memory intensive training: Prior work has fo-

cused on optimizing the model using mixed-precision training

or eliminating rare categorical variables to reduce embedding

table size [49, 50]. However, changing the data representation

or embedding tables requires accuracy re-validation. Compres-

sion and sparsity have also been used to reduce model memory

footprint [51–55]. In contrast, Hotline performs full-precision

training without the overheads of compression/decompression

and sparse operations. It only leverages access skew and is

independent of these techniques.

Embedding Representation: Previous research has explored

various methods to represent categorical features within lim-

ited memory, aiming to accommodate multiple feature values

with a restricted number of embeddings. The hashing trick [56]

applies a simple hash function to constrain feature embed-

dings. Compositional Embeddings [41] leverages complemen-

tary partitions of categorical features, utilizing multiple smaller

embedding tables and combining embeddings from each table.

ROBE [57] accesses contiguous blocks in shared memory

for enhanced memory access. Unified Embeddings [58] con-

solidates all categorical features within a single embedding

table, allowing for collisions of feature values within and

across features. DHE [59] employs an orthogonal approach,

representing feature values using MLPs and encoders instead

of embeddings. Hotline can be applied atop any embedding

representation technique.

Embedding Prefetching: Previous studies [14, 30, 31] have

investigated prefetching embeddings into a GPU-based cache

for the next mini-batch of training. However, this prefetching-

based approach introduces complexities such as data hazards,

complex cache eviction policies, and asynchronous training

with limited scalability. In contrast, Hotline avoids these

complexities through pipeline scheduling within a minibatch.

Machine learning accelerators: There are proposals for

accelerators designed to execute the compute portion of deep

learning models [60–64], including some for collaborative

filtering-based recommender models [43, 65, 66]. However,

Hotline does not aim to design a specialized architecture

for optimizing the computing of deep learning-based recom-

mender models. Hotline accelerator can pipeline and poten-

tially enhance these existing accelerators.

IX. CONCLUSIONS

This paper proposes Hotline, a heterogeneous acceleration

pipeline to address memory and bandwidth constraints in

recommendation models. Hotline leverages the insight that

only a few embedding table entries are popular and frequently

accessed. It sends inputs directly to the GPUs, which use

frequently-accessed embeddings. It retrieves the required em-

beddings for the remaining inputs while the GPUs process

popular inputs. Hotline uses a novel accelerator to dynamically

segregate and dispatch the data, hiding the data transfer latency

behind the GPU execution of popular inputs. Our experiments

on real-world datasets and models show that Hotline reduces

average training time by 2.2× compared to Intel-optimized

CPU-GPU DLRM baseline.

ACKNOWLEDGEMENTS

This project is part of the STAR Lab at The University

of British Columbia (UBC). We thank the entire Advanced

Research Computing Center team at UBC [67]. We also

thank the anonymous reviewers from ISCA 2024 for their

invaluable feedback. Muhammad Adnan’s Ph.D. is supported

by Intel Transformation Server Architecture (TSA) and the

Natural Sciences and Engineering Research Council of Canada

(NSERC) [funding reference number RGPIN-2019-05059]

Grants. The views and conclusions contained herein are those

of the authors. They should not be interpreted as representing

the official policies or endorsements, expressed or implied,

of NSERC, the Canadian Government, Georgia Tech, or The

University of British Columbia.

1075

REFERENCES

[1] Bilge Acun, Matthew Murphy, Xiaodong Wang, Jade

Nie, Carole-Jean Wu, and Kim Hazelwood. Understand-

ing Training Efficiency of Deep Learning Recommenda-

tion Models at Scale, 2020.

[2] Jui-Ting Huang, Ashish Sharma, Shuying Sun, Li Xia,

David Zhang, Philip Pronin, Janani Padmanabhan,

Giuseppe Ottaviano, and Linjun Yang. Embedding-
Based Retrieval in Facebook Search, page 2553–2561.

Association for Computing Machinery, New York, NY,

USA, 2020.

[3] Mark Zhao, Niket Agarwal, Aarti Basant, Buğra Gedik,

Satadru Pan, Mustafa Ozdal, Rakesh Komuravelli, Jerry

Pan, Tianshu Bao, Haowei Lu, Sundaram Narayanan,

Jack Langman, Kevin Wilfong, Harsha Rastogi, Carole-

Jean Wu, Christos Kozyrakis, and Parik Pol. Un-

derstanding data storage and ingestion for large-scale

deep recommendation model training: Industrial prod-

uct. In Proceedings of the 49th Annual International
Symposium on Computer Architecture, ISCA ’22, page

1042–1057, New York, NY, USA, 2022. Association

for Computing Machinery. ISBN 9781450386104.

doi: 10.1145/3470496.3533044. URL https://doi.org/

10.1145/3470496.3533044.

[4] Weijie Zhao, Deping Xie, Ronglai Jia, Yulei Qian, Rui-

quan Ding, Mingming Sun, and Ping Li. Distributed

Hierarchical GPU Parameter Server for Massive Scale

Deep Learning Ads Systems, 2020.

[5] Dheevatsa Mudigere, Yuchen Hao, Jianyu Huang, Zhi-

hao Jia, Andrew Tulloch, Srinivas Sridharan, Xing Liu,

Mustafa Ozdal, Jade Nie, Jongsoo Park, Liang Luo,

Jie (Amy) Yang, Leon Gao, Dmytro Ivchenko, Aarti

Basant, Yuxi Hu, Jiyan Yang, Ehsan K. Ardestani, Xi-

aodong Wang, Rakesh Komuravelli, Ching-Hsiang Chu,

Serhat Yilmaz, Huayu Li, Jiyuan Qian, Zhuobo Feng,

Yinbin Ma, Junjie Yang, Ellie Wen, Hong Li, Lin Yang,

Chonglin Sun, Whitney Zhao, Dimitry Melts, Krishna

Dhulipala, KR Kishore, Tyler Graf, Assaf Eisenman,

Kiran Kumar Matam, Adi Gangidi, Guoqiang Jerry Chen,

Manoj Krishnan, Avinash Nayak, Krishnakumar Nair,

Bharath Muthiah, Mahmoud khorashadi, Pallab Bhat-

tacharya, Petr Lapukhov, Maxim Naumov, Ajit Mathews,

Lin Qiao, Mikhail Smelyanskiy, Bill Jia, and Vijay

Rao. Software-hardware co-design for fast and scal-

able training of deep learning recommendation mod-

els. In Proceedings of the 49th Annual International
Symposium on Computer Architecture, ISCA ’22, page

993–1011, New York, NY, USA, 2022. Association

for Computing Machinery. ISBN 9781450386104.

doi: 10.1145/3470496.3533727. URL https://doi.org/

10.1145/3470496.3533727.

[6] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael

Shi, Jianyu Huang, Narayanan Sundaraman, Jongsoo

Park, Xiaodong Wang, Udit Gupta, Carole-Jean Wu,

Alisson G. Azzolini, Dmytro Dzhulgakov, Andrey Mal-

levich, Ilia Cherniavskii, Yinghai Lu, Raghuraman

Krishnamoorthi, Ansha Yu, Volodymyr Kondratenko,

Stephanie Pereira, Xianjie Chen, Wenlin Chen, Vi-

jay Rao, Bill Jia, Liang Xiong, and Misha Smelyan-

skiy. Deep Learning Recommendation Model for Per-

sonalization and Recommendation Systems. CoRR,

abs/1906.00091, 2019.

[7] T. Ishkhanov, M. Naumov, X. Chen, Y. Zhu, Y. Zhong,

A. G. Azzolini, C. Sun, F. Jiang, A. Malevich, and

L. Xiong. Time-based Sequence Model for Per-

sonalization and Recommendation Systems. CoRR,

abs/2008.11922, 2020.

[8] Myeongjae Jeon, Shivaram Venkataraman, Amar Phan-

ishayee, unjie Qian, Wencong Xiao, and Fan Yang.

Analysis of Large-Scale Multi-Tenant GPU Clusters for

DNN Training Workloads. In Proceedings of the 2019
USENIX Conference on Usenix Annual Technical Con-
ference, USENIX ATC ’19, page 947–960, USA, 2019.

USENIX Association.

[9] NVIDIA Merlin: HugeCTR. https://github.com/

NVIDIA-Merlin/HugeCTR.

[10] Muhammad Adnan, Yassaman Ebrahimzadeh Maboud,

Divya Mahajan, and Prashant Nair. Accelerating Rec-

ommendation System Trainingby Leveraging Popular

Choices. In VLDB, 2022.

[11] Geet Sethi, Bilge Acun, Niket Agarwal, Christos

Kozyrakis, Caroline Trippel, and Carole-Jean Wu. Rec-

shard: Statistical feature-based memory optimization for

industry-scale neural recommendation, 2022.

[12] K. Cho, M. Lee, K. Park, T. T. Kwon, Y. Choi, and

Sangheon Pack. WAVE: Popularity-based and collabo-

rative in-network caching for content-oriented networks.

In 2012 Proceedings IEEE INFOCOM Workshops, pages

316–321, 2012.

[13] Fragkiskos Papadopoulos, Maksim Kitsak, M. A. Ser-

rano, Marian Boguna, and Dmitri Krioukov. Popularity

versus similarity in growing networks. Nature, 489

(7417):537–40, Sep 27 2012.

[14] Saurabh Agarwal, Ziyi Zhang, and Shivaram Venkatara-

man. Bagpipe: Accelerating deep recommendation model

training, 2022. URL https://arxiv.org/abs/2202.12429.

[15] Biye Jiang, Chao Deng, Huimin Yi, Zelin Hu, Guorui

Zhou, Yang Zheng, Sui Huang, Xinyang Guo, Dongyue

Wang, Yue Song, Liqin Zhao, Zhi Wang, Peng Sun,

Yu Zhang, Di Zhang, Jinhui Li, Jian Xu, Xiaoqiang

Zhu, and Kun Gai. XDL: An Industrial Deep Learning

Framework for High-Dimensional Sparse Data. DLP-

KDD ’19, New York, NY, USA, 2019. Association for

Computing Machinery.

[16] Dhiraj Kalamkar, Evangelos Georganas, Sudarshan Srini-

vasan, Jianping Chen, Mikhail Shiryaev, and Alexander

Heinecke. Optimizing Deep Learning Recommender

Systems Training on CPU Cluster Architectures. In

Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis, SC ’20. IEEE Press, 2020.

1076

[17] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie,

Xia Hu, and Tat-Seng Chua. Neural collaborative filter-

ing. In Proceedings of the 26th International Conference
on World Wide Web, WWW ’17, page 173–182, Republic

and Canton of Geneva, CHE, 2017. International World

Wide Web Conferences Steering Committee. ISBN

9781450349130. doi: 10.1145/3038912.3052569. URL

https://doi.org/10.1145/3038912.3052569.

[18] Nvidia. Nvlink, . https://www.nvidia.com/en-us/data-

center/nvlink/.

[19] meta. Meta recommender model training on ZionEX

devices. https://www.infoq.com/news/2021/05/facebook-

zionex-training/.

[20] Michael Luby and Charles Rackoff. How to construct

pseudorandom permutations from pseudorandom func-

tions. SIAM Journal on Computing, 17(2):373–386,

1988.

[21] Alibaba. User Behavior Data from Taobao for

Recommendation. https://tianchi.aliyun.com/dataset/

dataDetail?dataId=649userId=1.

[22] CriteoLabs. Criteo Display Ad Challenge, . https:

//www.kaggle.com/c/criteo-display-ad-challenge.

[23] CriteoLabs. Terabyte Click Logs, . https://

labs.criteo.com/2013/12/download-terabyte-click-logs.

[24] Kaggle. Avazu mobile ads CTR. https:

//www.kaggle.com/c/avazu-ctr-prediction.

[25] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin,

Alban Desmaison, Luca Antiga, and Adam Lerer. Auto-

matic differentiation in PyTorch. 2017.

[26] Nvidia. NVIDIA Collective Communications Li-

brary (NCCL). https://docs.nvidia.com/deeplearning/

nccl/index.html, .

[27] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg Corrado,

Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-

mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irv-

ing, Michael Isard, Yangqing Jia, Rafal Jozefowicz,

Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan

Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris

Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner,

Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent

Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol

Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke,

Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-

Scale Machine Learning on Heterogeneous Distributed

Systems, 2015. URL http://download.tensorflow.org/

paper/whitepaper2015.pdf.

[28] MLPerf Benchmarks. https://mlcommons.org/en/

training-normal-10/.

[29] Carole-Jean Wu, Robin Burke, Ed H. Chi, Joseph Kon-

stan, Julian McAuley, Yves Raimond, and Hao Zhang.

Developing a Recommendation Benchmark for MLPerf

Training and Inference, 2020.

[30] Youngeun Kwon and Minsoo Rhu. Training personal-

ized recommendation systems from (gpu) scratch: Look

forward not backwards. In Proceedings of the 49th
Annual International Symposium on Computer Architec-
ture, ISCA ’22, page 860–873, New York, NY, USA,

2022. Association for Computing Machinery. ISBN

9781450386104. doi: 10.1145/3470496.3527386. URL

https://doi.org/10.1145/3470496.3527386.

[31] Keshav Balasubramanian, Abdulla Alshabanah, Joshua D

Choe, and Murali Annavaram. Cdlrm: Look ahead

caching for scalable training of recommendation models.

In Proceedings of the 15th ACM Conference on Recom-
mender Systems, RecSys ’21, page 263–272, New York,

NY, USA, 2021. Association for Computing Machinery.

ISBN 9781450384582. doi: 10.1145/3460231.3474246.

URL https://doi.org/10.1145/3460231.3474246.

[32] A. Ginart, M. Naumov, D. Mudigere, Jiyan Yang, and

J. Zou. Mixed Dimension Embeddings with Application

to Memory-Efficient Recommendation Systems. ArXiv,

abs/1909.11810, 2019.

[33] Ranggi Hwang, Taehun Kim, Youngeun Kwon, and Min-

soo Rhu. Centaur: A Chiplet-based, Hybrid Sparse-Dense

Accelerator for Personalized Recommendations. arXiv
preprint arXiv:2005.05968, 2020.

[34] Udit Gupta, Samuel Hsia, Vikram Saraph, Xiaodong

Wang, Brandon Reagen, Gu-Yeon Wei, Hsien-Hsin S

Lee, David Brooks, and Carole-Jean Wu. DeepRec-

Sys: A System for Optimizing End-To-End At-scale

Neural Recommendation Inference. arXiv preprint
arXiv:2001.02772, 2020.

[35] Nvidia. Accelerating wide deep recommender inference

on gpus, 2017. https://developer.nvidia.com/blog/

accelerating-wide-deep-recommender-inference-on-

gpus/.

[36] Youngeun Kwon, Yunjae Lee, and Minsoo Rhu. Tensor-

dimm: A practical near-memory processing architecture

for embeddings and tensor operations in deep learning. In

Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, pages 740–753, 2019.

[37] U. Gupta, C. Wu, X. Wang, M. Naumov, B. Reagen,

D. Brooks, B. Cottel, K. Hazelwood, M. Hemp-

stead, B. Jia, H. S. Lee, A. Malevich, D. Mudigere,

M. Smelyanskiy, L. Xiong, and X. Zhang. The Ar-

chitectural Implications of Facebook’s DNN-Based Per-

sonalized Recommendation. In 2020 IEEE International
Symposium on High Performance Computer Architecture
(HPCA), pages 488–501, 2020.

[38] Haojie Ye, Sanketh Vedula, Yuhan Chen, Yichen Yang,

Alex Bronstein, Ronald Dreslinski, Trevor Mudge, and

Nishil Talati. Grace: A scalable graph-based approach

to accelerating recommendation model inference. In

Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, Volume 3, pages 282–301, 2023.

[39] Daniar H Kurniawan, Ruipu Wang, Kahfi S Zulkifli,

Fandi A Wiranata, John Bent, Ymir Vigfusson, and

Haryadi S Gunawi. Evstore: Storage and caching ca-

pabilities for scaling embedding tables in deep recom-

1077

mendation systems. 2023.

[40] Samuel Hsia, Udit Gupta, Bilge Acun, Newsha Ardalani,

Pan Zhong, Gu-Yeon Wei, David Brooks, and Carole-

Jean Wu. Mp-rec: Hardware-software co-design to

enable multi-path recommendation. In Proceedings of
the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems, Volume 3, pages 449–465, 2023.

[41] Hao-Jun Michael Shi, Dheevatsa Mudigere, Maxim Nau-

mov, and Jiyan Yang. Compositional Embeddings Using
Complementary Partitions for Memory-Efficient Recom-
mendation Systems, page 165–175. Association for

Computing Machinery, New York, NY, USA, 2020.

[42] L. Ke, U. Gupta, B. Y. Cho, D. Brooks, V. Chan-

dra, U. Diril, A. Firoozshahian, K. Hazelwood, B. Jia,

H. S. Lee, M. Li, B. Maher, D. Mudigere, M. Naumov,

M. Schatz, M. Smelyanskiy, X. Wang, B. Reagen, C. Wu,

M. Hempstead, and X. Zhang. RecNMP: Accelerating

Personalized Recommendation with Near-Memory Pro-

cessing. In 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA), pages

790–803, 2020.

[43] Jongse Park, Hardik Sharma, Divya Mahajan,

Joon Kyung Kim, Preston Olds, and Hadi Esmaeilzadeh.

Scale-Out Acceleration for Machine Learnng. October

2017.

[44] Dheevatsa Mudigere, Yuchen Hao, Jianyu Huang, Zhi-

hao Jia, Andrew Tulloch, Srinivas Sridharan, Xing Liu,

Mustafa Ozdal, Jade Nie, Jongsoo Park, Liang Luo,

Jie (Amy) Yang, Leon Gao, Dmytro Ivchenko, Aarti

Basant, Yuxi Hu, Jiyan Yang, Ehsan K. Ardestani, Xi-

aodong Wang, Rakesh Komuravelli, Ching-Hsiang Chu,

Serhat Yilmaz, Huayu Li, Jiyuan Qian, Zhuobo Feng,

Yinbin Ma, Junjie Yang, Ellie Wen, Hong Li, Lin Yang,

Chonglin Sun, Whitney Zhao, Dimitry Melts, Krishna

Dhulipala, KR Kishore, Tyler Graf, Assaf Eisenman,

Kiran Kumar Matam, Adi Gangidi, Guoqiang Jerry Chen,

Manoj Krishnan, Avinash Nayak, Krishnakumar Nair,

Bharath Muthiah, Mahmoud khorashadi, Pallab Bhat-

tacharya, Petr Lapukhov, Maxim Naumov, Ajit Mathews,

Lin Qiao, Mikhail Smelyanskiy, Bill Jia, and Vijay

Rao. Software-hardware co-design for fast and scal-

able training of deep learning recommendation mod-

els. In Proceedings of the 49th Annual International
Symposium on Computer Architecture, ISCA ’22, page

993–1011, New York, NY, USA, 2022. Association

for Computing Machinery. ISBN 9781450386104.

doi: 10.1145/3470496.3533727. URL https://doi.org/

10.1145/3470496.3533727.

[45] Assaf Eisenman, Maxim Naumov, Darryl Gardner, Misha

Smelyanskiy, Sergey Pupyrev, Kim Hazelwood, Asaf

Cidon, and Sachin Katti. Bandana: Using non-volatile

memory for storing deep learning models. Proceedings
of Machine Learning and Systems, 1:40–52, 2019.

[46] Dheevatsa Mudigere, Yuchen Hao, Jianyu Huang, Zhi-

hao Jia, Andrew Tulloch, Srinivas Sridharan, Xing Liu,

Mustafa Ozdal, Jade Nie, Jongsoo Park, Liang Luo,

Jie Amy Yang, Leon Gao, Dmytro Ivchenko, Aarti

Basant, Yuxi Hu, Jiyan Yang, Ehsan K. Ardestani, Xi-

aodong Wang, Rakesh Komuravelli, Ching-Hsiang Chu,

Serhat Yilmaz, Huayu Li, Jiyuan Qian, Zhuobo Feng,

Yinbin Ma, Junjie Yang, Ellie Wen, Hong Li, Lin Yang,

Chonglin Sun, Whitney Zhao, Dimitry Melts, Krishna

Dhulipala, KR Kishore, Tyler Graf, Assaf Eisenman,

Kiran Kumar Matam, Adi Gangidi, Guoqiang Jerry Chen,

Manoj Krishnan, Avinash Nayak, Krishnakumar Nair,

Bharath Muthiah, Mahmoud khorashadi, Pallab Bhat-

tacharya, Petr Lapukhov, Maxim Naumov, Ajit Mathews,

Lin Qiao, Mikhail Smelyanskiy, Bill Jia, and Vijay

Rao. Software-Hardware Co-design for Fast and Scalable

Training of Deep Learning Recommendation Models,

2021.

[47] Daochen Zha, Louis Feng, Qiaoyu Tan, Zirui Liu,

Kwei-Herng Lai, Bhargav Bhushanam, Yuandong Tian,

Arun Kejariwal, and Xia Hu. Dreamshard: Gener-

alizable embedding table placement for recommender

systems. In Alice H. Oh, Alekh Agarwal, Danielle

Belgrave, and Kyunghyun Cho, editors, Advances in
Neural Information Processing Systems, 2022. URL

https://openreview.net/forum?id= atSgd9Np52.

[48] Daochen Zha, Louis Feng, Bhargav Bhushanam, Dhruv

Choudhary, Jade Nie, Yuandong Tian, Jay Chae, Yinbin

Ma, Arun Kejariwal, and Xia Hu. Autoshard: Automated

embedding table sharding for recommender systems. In

Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pages 4461–

4471, 2022.

[49] Mengdi Huang Nvidia Inc. Vinh Nguyen, Tomasz Grel.

Optimizing the Deep Learning Recommendation Model

on NVIDIA GPUs. https://developer.nvidia.com/blog/

optimizing-dlrm-on-nvidia-gpus.

[50] Jie Amy Yang, Jianyu Huang, Jongsoo Park, Ping Tak Pe-

ter Tang, and Andrew Tulloch. Mixed-Precision Embed-

ding Using a Cache, 2020.

[51] Yang Sun, Fajie Yuan, Min Yang, Guoao Wei, Zhou

Zhao, and Duo Liu. A Generic Network Compression

Framework for Sequential Recommender Systems. In

Proceedings of the 43rd International ACM SIGIR Con-
ference on Research and Development in Information
Retrieval, SIGIR ’20, page 1299–1308, New York, NY,

USA, 2020. Association for Computing Machinery.

[52] A. Jain, A. Phanishayee, J. Mars, L. Tang, and G. Pekhi-

menko. Gist: Efficient Data Encoding for Deep Neu-

ral Network Training. In 2018 ACM/IEEE 45th An-
nual International Symposium on Computer Architecture
(ISCA), pages 776–789, 2018.

[53] Xiaorui Wu, Hong Xu, Honglin Zhang, Huaming Chen,

and Jian Wang. Saec: similarity-aware embedding com-

pression in recommendation systems. In Proceedings
of the 11th ACM SIGOPS Asia-Pacific Workshop on
Systems, pages 82–89, 2020.

[54] Jeremy Fowers, Kalin Ovtcharov, Karin Strauss, Eric

1078

Chung, and Greg Stitt. A High Memory Band-

width FPGA Accelerator for Sparse Matrix-Vector Mul-

tiplication. In International Symposium on Field-
Programmable Custom Computing Machines. IEEE, May

.

[55] Zheng Wang, Yuke Wang, Boyuan Feng, Dheevatsa

Mudigere, Bharath Muthiah, and Yufei Ding. El-rec:

efficient large-scale recommendation model training via

tensor-train embedding table. In 2022 SC22: Inter-
national Conference for High Performance Computing,
Networking, Storage and Analysis (SC), pages 1007–

1020. IEEE Computer Society, 2022.

[56] Wenlin Chen, James Wilson, Stephen Tyree, Kilian Wein-

berger, and Yixin Chen. Compressing neural networks

with the hashing trick. In International conference on
machine learning, pages 2285–2294. PMLR, 2015.

[57] Aditya Desai, Li Chou, and Anshumali Shrivastava.

Random offset block embedding (robe) for compressed

embedding tables in deep learning recommendation sys-

tems. Proceedings of Machine Learning and Systems, 4:

762–778, 2022.

[58] Benjamin Coleman, Wang-Cheng Kang, Matthew

Fahrbach, Ruoxi Wang, Lichan Hong, Ed Chi, and

Derek Cheng. Unified embedding: Battle-tested feature

representations for web-scale ml systems. Advances in
Neural Information Processing Systems, 36, 2024.

[59] Wang-Cheng Kang, Derek Zhiyuan Cheng, Tiansheng

Yao, Xinyang Yi, Ting Chen, Lichan Hong, and Ed H

Chi. Learning to embed categorical features without

embedding tables for recommendation. In Proceedings
of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, pages 840–850, 2021.

[60] Norman P. Jouppi, Cliff Young, Nishant Patil, David

Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah

Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick

Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark,

Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean,

Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Got-

tipati, William Gulland, Robert Hagmann, C. Richard

Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt,

Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander

Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch,

Naveen Kumar, Steve Lacy, James Laudon, James Law,

Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke,

Alan Lundin, Gordon MacKean, Adriana Maggiore,

Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi

Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,

Mark Omernick, Narayana Penukonda, Andy Phelps,

Jonathan Ross, Matt Ross, Amir Salek, Emad Samadiani,

Chris Severn, Gregory Sizikov, Matthew Snelham, Jed

Souter, Dan Steinberg, Andy Swing, Mercedes Tan,

Gregory Thorson, Bo Tian, Horia Toma, Erick Tuttle,

Vijay Vasudevan, Richard Walter, Walter Wang, Eric

Wilcox, and Doe Hyun Yoon. In-Datacenter Performance

Analysis of a Tensor Processing Unit. In Proceedings of
the 44th Annual International Symposium on Computer
Architecture, ISCA ’17, page 1–12, New York, NY, USA,

2017. Association for Computing Machinery.

[61] Hardik Sharma, Jongse Park, Divya Mahajan, Emmanuel

Amaro, Joon Kyung Kim, Chenkai Shao, Asit Misra, and

Hadi Esmaeilzadeh. From high-level deep neural models

to fpgas. In MICRO, 2016.

[62] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee,

S. K. Lee, J. M. Hernández-Lobato, G. Wei, and

D. Brooks. Minerva: Enabling Low-Power, Highly-

Accurate Deep Neural Network Accelerators. In 2016
ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA), pages 267–278, June

2016.

[63] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss:

A Spatial Architecture for Energy-Efficient Dataflow for

Convolutional Neural Networks. In ISCA, 2016.

[64] Eric Chung, Jeremy Fowers, Kalin Ovtcharov, , Adrian

Caulfield, Todd Massengill, Ming Liu, Mahdi Ghandi,

Daniel Lo, Steve Reinhardt, Shlomi Alkalay, Hari

Angepat, Derek Chiou, Alessandro Forin, Doug Burger,

Lisa Woods, Gabriel Weisz, Michael Haselman, and Dan

Zhang. Serving DNNs in Real Time at Datacenter Scale

with Project Brainwave. IEEE Micro, 38:8–20, March

2018.

[65] Divya Mahajan, Jongse Park, Emmanuel Amaro, Hardik

Sharma, Amir Yazdanbakhsh, Joon Kim, and Hadi

Esmaeilzadeh. TABLA: A unified template-based frame-

work for accelerating statistical machine learning. March

2016.

[66] Divya Mahajan, Joon Kyung Kim, Jacob Sacks, Adel

Ardalan, Arun Kumar, and Hadi Esmaeilzadeh. In-

rdbms hardware acceleration of advanced analytics. Proc.
VLDB Endow., 11(11):1317–1331, July 2018. ISSN

2150-8097. doi: 10.14778/3236187.3236188. URL

https://doi.org/10.14778/3236187.3236188.

[67] UBC Advanced Research Computing, ”UBC ARC Sock-

eye.” UBC Advanced Research Computing, 2019, doi:

10.14288/SOCKEYE.

1079

