
Structural Coding: A Low-Cost Scheme to Protect CNNs from
Large-Granularity Memory Faults

Ali Asgari Khoshouyeh
University of British Columbia

Vancouver, Canada
aasgarik@alum.ubc.ca

Florian Geissler
Intel Labs

Munich, Germany
florian.geissler@intel.com

Syed Qutub
Intel Labs

Munich, Germany
syed.qutub@intel.com

Michael Paulitsch
Intel Labs

Munich, Germany
michael.paulitsch@intel.com

Prashant J. Nair
University of British Columbia

Vancouver, Canada
prashantnair@ece.ubc.ca

Karthik Pattabiraman
University of British Columbia

Vancouver, Canada
karthikp@ece.ubc.ca

ABSTRACT
The advent of High-Performance Computing has led to the adop-
tion of Convolutional Neural Networks (CNNs) in safety-critical
applications such as autonomous vehicles. However, CNNs are
vulnerable to DRAM errors corrupting their parameters, thereby
degrading their accuracy. Existing techniques for protecting CNNs
from DRAM errors are either expensive or fail to protect from large-
granularity, multi-bit errors, which occur commonly in DRAMs.

We propose a software-implemented coding scheme, Structural
Coding (SC) for protecting CNNs from large-granularity memory
errors. SC achieves three orders of magnitude reduction in Silent
Data Corruption (SDC) rates of CNNs compared to no protection.
Its average error correction coverage is also significantly higher
than other software techniques to protect CNNs from faults in the
memory. Further, its average performance, memory, and energy
overheads are respectively 3%, 15.71%, and 4.38%. These overheads
are much lower than other software protection techniques.

CCS CONCEPTS
•Computer systems organization→ Embedded systems; Pro-
cessors and memory architectures; •Hardware→ Error detection
and error correction; System-level fault tolerance; •Comput-
ing methodologies → Neural networks.

KEYWORDS
Memory faults, Deep Neural Networks, Error Correction
ACM Reference Format:
Ali Asgari Khoshouyeh, Florian Geissler, Syed Qutub, Michael Paulitsch,
Prashant J. Nair, and Karthik Pattabiraman. 2023. Structural Coding: A Low-
Cost Scheme to Protect CNNs from Large-Granularity Memory Faults. In
The International Conference for High Performance Computing, Networking,
Storage and Analysis (SC ’23), November 12–17, 2023, Denver, CO, USA. ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3581784.3607084

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SC ’23, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0109-2/23/11. . . $15.00
https://doi.org/10.1145/3581784.3607084

Goal

RADAR[60]

MILR[86]

Ali et al.[11]
FILR[69]

FT-ClipAct[43]
Ranger[23]

Multi-bit Error Correction
Pe
rf
or
m
an
ce

O
ve
rh
ea
d

Figure 1: Existing software correction techniques with their
performance overhead on the Y-axis and their correction
coverage of multi-bit errors on the X-axis. We aim to design
a software correction technique with low performance over-
head and high multi-bit error correction capability.

1 INTRODUCTION
Among Machine Learning (ML) workloads in High-Performance
Computing (HPC) [84], a wide range of safety-critical systems,
such as Autonomous Vehicles (AVs), relies on the combination of
Convolutional Neural Networks (CNNs) and Dynamic Random
Access Memories (DRAMs)[4, 7]. However, DRAMs are susceptible
to soft errors, leading to failures. Studies reveal that DRAMmodules
alone have a raw Failure In Time (FIT) rate [5, 58] significantly
exceeding the recommended FIT rate of 10 (for the entire chip) by
AV safety standards such as ISO 26262 [6]. For example, at the scale
of a million operating AVs with a DRAM FIT rate of 50, the mean
time to failure will be less than a day. These soft errors encompass
both single-bit and multi-bit faults, with comparable occurrence
frequencies and spanning multiple words [15, 58, 101, 102]. We call
multi-bit faults spanning multiple words as large-granularity faults.
This paper targets soft errors that result in large-granularity faults.

Traditionally, hardware-based Error Correction Coding (ECC)
has been used to mitigate DRAM faults. However, the widely used
ECC, known as SEC-DED (Single Error Correction, Double Error
Detection), can only correct single-bit faults. Only variations of
Chipkill [27] can correct both single-bit and multi-bit faults. Unfor-
tunately, Chipkill is twice as expensive as SEC-DED[77], can lead to
up to 4× higher memory bandwidth overheads [107], and imposes
a significant energy burden [20, 49, 50]. Given the significance of
metrics like cost, performance, and energy consumption, especially
in domains like AV design [4, 111], Chipkill becomes undesirable.

1

https://doi.org/10.1145/3581784.3607084
https://doi.org/10.1145/3581784.3607084
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3581784.3607084&domain=pdf&date_stamp=2023-11-11

SC ’23, November 12–17, 2023, Denver, CO, USA Ali Asgari Khoshouyeh, Florian Geissler, SyedQutub, Michael Paulitsch, Prashant J. Nair, and Karthik Pattabiraman

In response, researchers have introduced software-based ECC
approaches to mitigate DRAM faults. Fig. 1 shows a representa-
tive set of these techniques. Unfortunately, these proposals either
neglect to address large-granularity faults [23, 43, 60, 69], or they
incur substantial performance [11] or latency [86] overheads (as
shown in Section 7). We aim to develop a software-based technique
that corrects multi-bit faults in DRAM, including large-granularity
faults. However, there are two challenges:
(1) As real-time applications use CNNs [92], the performance over-

head of our technique must be low. Minimizing performance
overheads is especially challenging when protecting the large
body of CNN parameters stored in DRAM [97].

(2) The memory footprint and bandwidth overhead of our tech-
nique must be low, as they increase energy consumption and
performance overhead. Keeping these overheads low is challeng-
ing for heterogeneous errors, ranging from those that spread
across memory to localized clusters.
To address the above challenges, we leverage the property that

the CNN parameter values are distributed around zero [61]. We
propose a single floating-point summation as a checksum that pro-
vides effective and efficient detection (Section 5.2.7). The efficiency
of the detection mitigates the performance overhead of the com-
mon case of having no faults. We design a coding scheme based on
real-number codes [12] as they provide a flexible strategy with a
trade-off between overhead and capability. Moreover, they have an
adjustable symbol size, allowing for efficiently correcting bursts of
multi-bit faults. We call our coding scheme Structural Coding (SC),
as it is based on the structure of the CNN.

To the best of our knowledge, SC is the first technique to provide
strong error correction for CNN parameters against large-granularity
multi-bit faults in DRAMs (a) without requiring any hardware sup-
port and (b) while incurring low performance and memory overheads.
Additionally, existing CNN applications can use Structural Coding
requiring neither significant developer effort, nor network retrain-
ing, thus making it practical.

We make four key contributions in this paper:
(1) We model a broad set of real-world memory failure modes, from

small-granularity errors (bit-flips) to large-granularity errors
(e.g., row failures), to study the effect of memory faults on ML
applications. We consider a conservative, extrapolated bit-error
rate in future DRAMs based on publicly reported memory error
trends (Section 3).

(2) We propose a novel error correction technique, Structural Cod-
ing (SC), for CNNs that recovers from multi-bit memory errors
(Section 4). We optimize our technique to keep the performance
overhead low and the memory overhead sub-linear with the
size of the CNN while providing robust protection (comparable
to high-overhead techniques such as keeping three copies in
the same memory device) (Section 4.4).

(3) We implement SC as an automated tool for CNNs developed
with PyTorch [83], enabling seamless adoption of SC without
requiring developer effort or retraining (released publicly1).

(4) We evaluate SC on a system with Intel(R) Core𝑇𝑀 i7 CPU. We
measure SC’s error-correction coverage, performance overhead,
memory overhead, and energy overhead. We compare these

1https://github.com/DependableSystemsLab/structural-coding

metrics to four state-of-the-art software-based error correction
techniques on six CNN classifiers and hardware-based Chipkill.

From our experiments, we find that SC achieves up to 1000× lower
Silent Data Corruption (SDC) rates of CNNs under a wide variety
of fault models compared to an unprotected network. SC also pro-
vides a higher average coverage than prior techniques. Furthermore,
based on experiments on a machine with Intel(R) Core𝑇𝑀 i7 CPU,
SC’s average memory footprint overhead is 15.71%, and its average
energy consumption overhead is 4.38%. Additionally, the average
performance overhead of SC is only 2.07% in the typical case of hav-
ing no faults. These performance, energy, and memory overheads
are lower than other protection techniques, despite SC providing
higher coverage for additional fault types. Unlike prior techniques,
we find that SC provides high coverage even at high bit-error rates.
Finally, we find that the average energy overhead of SC is about
3.4x lower than commercial hardware Chipkill implementations.

2 BACKGROUND AND MOTIVATION
2.1 DRAM-based Memory Systems
Modern main-memory systems are primarily composed of modules
placed on a channel [47, 48]. These modules may contain multiple
ranks ofDRAM chips. EachDRAMchip is internally split into several
banks. These banks are organized into rows and columns. Each
row contains many words, which consist of bits of DRAM cells.
All DRAM chips operate in tandem, and the memory controller
manages the channel.

Figure 2 shows the different components within a DRAM-based
memory system and the types of multi-bit faults that could occur
within a DRAM chip. These faults can occur across bits, words,
rows, columns, and banks.

Figure 2: DRAMmodules and fault modes - these can be Bit,
Word, Row, Column, Bank, and Rank faults.

2.2 Memory Faults in DRAM systems
Memory faults (permanent or transient) harmCNN applications [13,
31, 67]. We consider errors in the CNN’s trained parameters that
remain in the DRAM and are used for multiple inferences, and cause
misclassifications. These faults will continue to affect the accuracy
of inference for ML models until the correct values overwrite these
faulty values. Consider the example of an AV. Under a memory
fault, the system may have a wrong steering angle for an extended
time (until the faulty value is overwritten). Thus memory faults
may cause AVs to drive haphazardly, which can be a safety hazard.

Memory systems encounter both single-bit andmulti-bit faults [29].
While SEC-DED-based ECC memory can correct single-bit faults,
they cannot correct multi-bit faults [14]. The granularity of multi-
bit faults varies – they could be large clusters of faulty bits as

2

https://github.com/DependableSystemsLab/structural-coding

Structural Coding: A Low-Cost Scheme to Protect CNNs from Large-Granularity Memory Faults SC ’23, November 12–17, 2023, Denver, CO, USA

words, rows, or columns of data. Multi-bit faults are as frequent
as single-bit faults and will likely become even more frequent in
future [96, 101]. Recently, Beigi et al. [15] reported that multi-bit
faults have remained of comparable frequency to single-bit faults
across DRAM generations.

Chipkill [27] is a hardware ECC technique that corrects single-
chip errors and is effective on large-granularity faults [102]. Unfor-
tunately, it incurs high memory bandwidth and high costs.

2.3 Syndrome-based Error Correction
One can use traditional Syndrome-based Error Correcting Codes
(ECC) [73] to mitigate errors in the CNN models. To this end,
Syndrome-based ECCs create symbols using a group of bits. To
protect𝑚 symbols across a total of 𝑛 symbols (also called a code
word), we must choose 𝑘 such that 𝑛 − 𝑘 =𝑚, where 𝑛 represents
the number of symbols.

Anfinson et al. [12] proposed weighted checksums-based correc-
tion aka real-number codes. In this technique, similar to traditional
Syndrome-Based ECC, 𝑘 weighted sums of the data word (consist-
ing of real numbers) are calculated and stored in the code word.
This coding scheme detects up to 𝑘 errors and corrects up to 𝑘

2 er-
rors. If we know the location of errors in an erasure scenario, then
this scheme allows us to correct up to 𝑘 errors [21]. Unfortunately,
as memory systems can have different granularities of multi-bit
faults, naively applying real number codes to protect against these
faults would incur high overheads. Therefore, we need to tailor
error correction to the structure of CNNs to achieve low overheads.

2.4 Silent Data Corruption for CNN classifiers
This work focuses on CNN classification rather than other tasks.
This approach aligns with prior work [11, 23, 43, 69, 86]. Memory
errors in the parameters of CNNs can cause wrong classifications
without any detectable side effects. These memory errors will typi-
cally not cause the CNN application to crash because the parameters
are part of the program data. We call these misclassifications as
Silent Data Corruptions (SDC), as done by prior work [23, 69]. We
use SDC as a metric because the exact values do not matter in clas-
sifiers; only the correct classifications define the model’s accuracy.

2.5 Real-time needs of Machine Learning
Because Machine Learning (ML) is actively used in real-time appli-
cations [35, 66, 95, 100], it is essential to protect the memory against
errors in real-time. A trivial protection strategy of reloading pa-
rameters is not viable. This is because it can violate the real-time
constraints of the application. For example, assume the constraint
to be that the reaction time of an AV system to take an emergency
brake should be within 300 ms – comparable to humans [92]. We
use the modelling approach for the fastest reaction, as suggested by
Rydzewski et al. [92], to measure the impact of reloading parame-
ters on the reaction time. Fig. 3 shows the reaction time for different
protection strategies. For Reload, we use the time that it takes to
reload CNN parameters from a Solid State Drive (SSD) storage used
in a real-world AV setup [4] shown in Table 1, averaged among
the vision models. For the three techniques, RADAR, MLIR and
SC, we use the average performance overhead that we obtained in
Section 5. As can be seen, reloading the parameters or using the

Dependency

Time (ms)

Time (ms)Time (ms)

Time (ms)

Ta
sk

s
Ta

sk
s

Ta
sk

s
Ta

sk
s

O
bject D

etection/C
lassify

SC
M

ILR
R

AD
AR

R
eload

31
4

m
s

to
 S

te
er

26
4

m
s

to
 B

ra
ke

27
7

m
s

to
 B

ra
ke

32
7

m
s

to
 S

te
er

29
0

m
s

to
 B

ra
ke

34
0

m
s

to
 S

te
er

27
5

m
s

to
 B

ra
ke

32
5

m
s

to
 S

te
er

SC: +0 ms Reload: +13 ms

MILR: +11 msRADAR: +26 ms

Figure 3: The reaction time to brake or steer for each tech-
nique (i.e., SC, Reloading, RADAR, and MLIR). The blocks
show the time taken for an AV’s operation or the over-
head of the protection strategies. We highlight Object Detec-
tion/classification as the only operations affected by protec-
tion. The task durations are taken from Rydeski et al. [92].

RADAR or MLIR will increase the reaction time to above 300 ms
and violate the constraint in this example.

Table 1: Dominance of weights in the MLmodel parameters,
significance of parameters inResident Set Size (RSS), latency
of reloading them from SSDs, and kernel size range.

Params (%)a RSS size (MB)a SSD Reload Kernel Size
Model Weights Other Params Activations Latency (ms)a Range (KB)a
alexnet 99.98 0.02 245.31 14.04 122.66 0.35 - 9.0

squeezenet 99.68 0.32 5.64 28.50 2.82 0.02 - 0.56
mobilenet 99.33 0.67 11.57 15.56 5.79 0.01 - 1.0
googlenet 99.85 0.15 140.57 8.68 70.29 0.06 - 2.0
resnet50 99.79 0.21 103.65 57.22 51.83 0.06 - 4.5
shufflenet 99.35 0.65 6.79 12.92 3.40 0.01 - 1.0
mozafari 99.89 0.11 568.53 11.69 284.27 0.43 - 29.25
xvectors 99.69 0.31 33.75 13.17 16.88 0.12 - 2.93

aRounded to 2 decimal places.

3 FAULT MODELLING
Fault Injection (FI): We use software-based FI to inject multi-bit
faults into CNN applications. We use data from field studies [14, 34,
62, 79, 102] to inform our injection of multi-bit faults. A very recent
study on DDR4 failures [15] also confirms these trends and finds
that multi-bit faults are as frequent as single-bit faults in real-world
DRAM systems and that they can span multiple words of DRAM.

We study the effect of errors onlywhen they aremanifested in the
model parameters as opposed to activation inputs, or instructions,
similar to what prior work [25, 69, 81] has done. We focus on CNN
parameters due to three reasons:

(1) Parameters repeatedly work on multiple activation inputs.
Thus, even transient faults in them can have long-term ef-
fects [59], and the contribution of model parameters to relia-
bility dominates that of activation inputs.

(2) Parameters occupy a considerable amount of memory (e.g.,
5.64 MB to 568.53 MB according to Table 1) which is much

3

SC ’23, November 12–17, 2023, Denver, CO, USA Ali Asgari Khoshouyeh, Florian Geissler, SyedQutub, Michael Paulitsch, Prashant J. Nair, and Karthik Pattabiraman

larger than the instructions for a CNN model that typically
include only several nested loops and can fit within few
Kilobytes. Therefore, the contribution of model parameters
to the overhead dominates that of instructions. Further, one
can protect instructions by expensive techniques, such as
Triple Data Redundancy (TDR), without prohibitive costs.

(3) Our technique is orthogonal to the protection methods for
protecting other parts of the application memory.

Impact of Address Mapping To determine the distribution of
multi-bit errors, we assume a random logical to physical page map-
ping [85]. Similarly, when deciding the number of corrupted bits
within a memory word, we consider a random number of bits being
corrupted. We assume bank interleaved mapping of pages. Address
mappings tend to remain fixed. Specific address mappings of the
memory controller are typically found in the official documenta-
tion or via reverse engineering [85, 114]. Further, we assume the
memory organization is based on a commodity DRAM [1].

We evaluate our technique in the presence of three different
multi-bit real-world failure modes [102] as follows:

• word failures: Flipped bits arewithin two consecutive bytes,
• column failures: word failure appears at the same 4KB
random word index, on an average of 3% of 4KB pages,

• row failures: word errors with probability 30% occur in two
randomly picked 4KB pages.

We use the numbers from Sridharan et al. [102] as detailed field
studies of DRAMerrors are sparse. However, ourmodel is supported
by a very recent field study [15].

Figure 4: Row fault model, from DRAM to logical pages.
Grey colours in logical pages are kernels of a convolutional
layer.White borders surround logical pages. Errors in black.

For example, consider the row fault model in Fig. 4. Assuming
that there are many erroneous words in a single row and there is
only one rank in the DRAM module, these errors manifest in only
two random pages of the model parameters, affecting two kernels.

Though our primary fault model is large-granularity memory
faults, we also consider Raw Bit Error Rate (BER) to analyze the
sensitivity of our technique to high bit error rates in harsh condi-
tions. We evaluate at BERs observed at high temperatures reported
in Matthew et al. [71], which can be as high as 10−5. Similar to
high temperatures, aging can increase BER by 50% [16, 33]. This
fault model is also in line with prior work [86, 89, 109] and allows
for a fair comparison. The BER fault model also captures larger
granularity multi-bank and multi-rank faults [102], as prior work
has shown that errors spread across a memory bank with a BER of
10−6. Table 2 shows a summary of the fault models used.

Table 2: Fault models used and their justifications

Model Description Justification
Word each bit of 2

consecutive
bytes are
corrupted with
50% probability

Assuming an x16 DRAM (Fig. 3). The number of cor-
rupted bits has a sophisticated distribution across
failure modes [102]. For simplicity, we corrupt each
bit randomly with a 50% probability.

Column ∼3% of 4KB
pages have
same word
corrupted

Sridharan et al. [102] found up to 6% of rows got
affected. Assuming 8KB logical banks (Fig. 3) and
random logical to physical page mapping, each log-
ical page is corrupted with probability 3%.

Row ∼30% of two
4KB pages cor-
rupted

Sridharan et al. [102] found up to 30% of columns
got affected. Assuming 8KB logical banks (Fig. 3)
and random logical to physical page mapping, with
probability 30%, words of two logical pages get
corrupted.

BER Flip bits with
uniform proba-
bility.

To test sensitivity of techniques to harsh condi-
tions [71], aging [16, 33], multi-bank errors [102].

4 STRUCTURAL CODING (SC)
4.1 Challenges
Our goal is to design a technique for (1) protecting all the parame-
ters, (2) catering to multi-bit memory errors, (3) and incurring low
overheads. However, there are three challenges.

1) Keeping the memory overhead low while protecting all the
parameters. We develop a coding technique to provide strong (with
high probability) correction with low redundancy.

2) Recovering large clusters of affected bits, as traditional code
words are affected by more than correction capability errors. We
carefully select the granularity of CNN kernels for symbols, close
to a logical page, to recover from both column and row failures.

3) Performance overhead due to our technique using one de-
tection checksum per each symbol. Tolerating this overhead in
fault-free execution is challenging. To decrease the overhead of
our technique during fault-free execution, we separate the error
detection and correction. We then remove from the execution part,
the calculations that are only required during correction. That said,
the correction is faster than reloading the value from secondary
storage after every inference.

4.2 Overview of SC
We assume that for the naturally occurring errors, based on the
data in Sridharan et al. [102], the portion of affected rows stays
(with high probability) within bounds such as 6%. Depending on
how the memory controller maps addresses, each row might affect
two to eight (or even more if there are more channels and ranks)
physical pages. Even so, there are upper bounds on the number of
affected logical pages – we call this value 𝑙 (Fig. 4 shows an example
of row faults).

Each logical page contains a limited number of CNN kernels
and fully connected layer matrix columns - we call these parameter
groups (=symbols). For example, logical pages in AlexNet contain at
most three parameter groups. Thus, we design the error correction
to recover from errors in a certain number of parameter groups,
each spanning one or a few pages (Addressing Challenge 2).

We propose a syndrome-based error correction similar to Reed
Solomon (RS) codes. However, unlike normal RS coding [73], we
use arithmetic multiplication and addition as in real-number codes

4

Structural Coding: A Low-Cost Scheme to Protect CNNs from Large-Granularity Memory Faults SC ’23, November 12–17, 2023, Denver, CO, USA

[22]. This allows us to recover the values at the software level,
independent of the underlying representation of the real numbers
(e.g., float64 and float32.)

4.3 Syndrome-based Error Correction
Similar to Anfinson et al. [12], we extend the RS coding scheme, but
to parameter groups instead of single real numbers. To that end, as
Fig. 5 shows, we add 𝑘 redundant linear combinations of parameter
groups. Given the location of faulty groups, we solve a system of
linear equations to recover the original groups (see Fig. 5).

Note that the number of additional symbols is not as many as the
number of protected symbols, but rather as many as the number of
faulty symbols that we want to tolerate which is often much smaller
than the number of protected symbols. Therefore, the memory
footprint overhead of the proposed technique is sub-linear with regard
to the size of parameters.

Figure 5: SC in the presence of faults, in a single kernel. Here
𝑛 = 4 and 𝑘 = 2. 𝑛 is small for simplicity of the example and
the memory overhead will be lower for larger values of 𝑛.

Wemust select the coefficients used to add the redundant groups
in such a way that any correct subset of them would result in a
system of linear equations with a single solution. There are a va-
riety of ways to do so[18, 19, 21, 22], however, selecting random
coefficients is often sufficient [22]. Therefore, we use a generator
matrix with random values at the non-systematic rows. To avoid
decoding during fault-free execution, we first initialize the genera-
tor matrix with the systematic rows. Then we add 𝑘 random rows.
Another advantage of using random redundant rows is that we can
use a pseudo-random generator, leading to both reduced memory
storage and bandwidth overhead (Addressing Challenge 1).

In the case of a single error, localization of the error can be
done efficiently in logarithmic time [98] based on the 𝑘 redundant
symbols. However, for multi-bit errors, the complexity of locating
correct symbols increases exponentially with 𝑘 . In the next section,
we will address this challenge.

4.4 Adding Erasure Codes
To overcome the complexity of locating faulty parameter groups
discussed in the prior section, we apply group-level checksums, by
simply adding all the parameters in a group together (See Fig. 5 un-
der calculated checksums and stored checksums). These checksums
form an erasure code that detects the faults and eases the task of

locating faulty parameter groups. We further simplify the detection
by using a single checksum per CNN layer. These checksums are
very small (less than 1%) compared to parameters and cause negligi-
ble memory bandwidth and storage overhead. Checksums based on
the addition of values have been shown to be effective for detecting
critical faults [81]. Together with the systematic property of our
coding scheme, they obviate the need to do any decoding when no
fault is detected. This is especially important as we need to protect
each inference for real-time detection and recovery. Therefore, we
move the recovery logic off the critical path and perform only the
detection for each layer (Addressing Challenge 3).

Note that integrating the group level checksums, while needing
to read the redundant values from memory, is typically quicker
than reloading the weights (from secondary storage as shown in
Table 1) as an alternative way of recovery.

4.5 Implementation
We have implemented SC as an automated transformation for Py-
Torch CNNs [83]. The user only needs to specify the ’n’ and ’k’
parameters (or choose the default ones provided in Section 5.1).
Everything else is automated. Thus, there is no developer effort or
retraining needed to deploy our technique. Our implementation trans-
forms Pytorch modules to their protected versions with our pro-
tection activated on each forward pass. A challenge was to use ap-
propriate Pytorch tensor operators so as not to cause unnecessary
overhead. However, our coding scheme does not assume anything
specific to PyTorch and can be ported to other frameworks.

5 EVALUATION
5.1 Experimental Setup
1.Models andData Sets:We choose primarily image classification-
based CNNs for our evaluation. We choose six CNN models for this
task, GoogLeNet[104], ShuffleNet[68], AlexNet[56], SqueezeNet[46],
ResNet50[39], and MobileNetV3[44]. For the FI experiments, we
choose a random subset of 128 images out of more than 50, 000
validation images in ImageNet [28]. We had to limit the number of
images to balance representativeness with time as FI experiments
take a long time, and we performed ∼ 18 million FI experiments.
Our images are diverse as they are from distinct object classes.

We also consider audio classification and text classification CNNs
for evaluating SC’s generality beyond image classification. For text
classification, we use the dataset [26] and model from Mozafari
et al. [74] that includes a transformer. For audio classification, we
use X-Vectors [99] model for classifying Google Speech Commands
[112] dataset.
2. Metrics and Research Questions: We use the following met-
rics for our experiments:
• Silent Data Corruption (SDC) Rate: For classification models, the
SDC rate is the fraction of correct inferences turned into misclas-
sifications by the CNN under a fault occurrence. For example, an
SDC rate of 50% means that an accuracy of 80% in the fault-free
case drops down to 40% due to the fault. For a model without
protection (protection None), it shows how likely an error is to
change the CNN classification outcome.

• Coverage: We define this as (1 - SDC rate). The higher the SDC
rate, the lower the coverage (of the technique).

5

SC ’23, November 12–17, 2023, Denver, CO, USA Ali Asgari Khoshouyeh, Florian Geissler, SyedQutub, Michael Paulitsch, Prashant J. Nair, and Karthik Pattabiraman

• Normalized MSE: Normalized Mean Squared Error (MSE) is the
MSE of a regression model under a fault divided by the MSE of
the fault-free pre-trained model. This ranges between 1 and +∞
with 1 indicating the best protection.

• Performance overhead: Percentage increase in the average time
of inference of the CNN protected with a technique.

• Correction overhead: Percentage increase in Floating Point Op-
erations (FLOPs) as a hardware-independent measure for evalu-
ating a technique’s algorithmic optimizations.

• Memory overhead: Percentage change inmemory footprint, band-
width consumption, and latency for a technique.

• Energy overhead: Percentage change in energy consumption of
CPU and DRAM for a technique.

• Undetected Rate: The fraction of faults on correct inferences that
are not detected by a technique.

• Corrected Rate: Fraction of faults on correct inferences that re-
main correctly classified by a technique’s protection.

• Miscorrected Rate: Fraction of faults turned into misclassifica-
tions after being detected and corrected by a technique

We answer the following research questions (RQs):
RQ1: What is SC’s performance and memory overhead?
RQ2: What is the correction overhead of SC?
RQ3: What is SC’s memory bandwidth and latency overhead?
RQ4: What is the coverage of SC in the presence of multi-bit mem-
ory errors compared to other techniques?
RQ5: How does the coverage of SC vary as Bit Error Rate (BER)
increases compared to other techniques?
RQ6: How effective is SC for other data formats?
RQ7: How effectively does SC detect errors?
RQ8: What is the energy consumption overhead with SC?
3. Baselines: We compare the effectiveness of our technique to
prior work that provides recovery for memory faults.

• MILR [86], which detects parameter errors using layer input and
output checkpoints and recovers parameters by applying the
inverse of the layer. We reimplemented MILR from the paper, as
it was not available for PyTorch. To keep the correction overhead
tractable, we keep a batch of partial checkpoints, and only correct
kernels or columns corresponding to the erroneous outputs de-
tected by the checkpoints. We report the running time overhead
assuming that the detection was run at each inference.

• RADAR [60] as it also performs checksums and provides recovery
by restoring the original values. We extend RADAR to floating
point models. The sign bit and exponent bits are the most signifi-
cant bits for faults [43], therefore, when we calculate the RADAR
checksums, we only use the 8 most significant bits.

• Range restriction approaches: FT-Clip-Act (activation clipping)
[43] and Ranger [23] truncate or reset intermediate layers’ values
if they fall outside a prescribed range, but do not restore the
original values. We implement these for PyTorch.

We do not compare with Triple Modular Redundancy (TMR)
because we assume only a single memory module is available, and
hence we cannot have independent replicas. However, we compared
it with a triple-data-replication (TDR) approach, where three copies
of the data are stored in the same memory module, and voting is
performed on a per-bit basis. We found that while TDR protection

had an SDC rate of nearly 0, it incurred performance overheads of
more than 200%, and hence we did not consider it further.
4. Software andHardware: We use pre-trained model parameters
from TorchVision[70] and SpeechBrain[88] for image and audio
classification. For text classification, we reproduced the trained
model from Mozafari et al [74].

We perform FI and inference using PyTorch [83]. We generate
random error patterns as per our fault model (Section 3) and inject
them into the model parameters during inference (one fault/run).

To measure the performance overhead in FLOPs, we use PAPI to
read performance counters [106]. We use perf [3] to measure the
memory bandwidth and latency following the approach in Helm et
al. [42], and energy consumption following the approach in Khan
et al.[52]. We add the package and DRAM energy consumption for
each technique per inference.

For the run-time and memory overhead measurements, we use
a system running Ubuntu-20 with 32GB DDR3 DRAM and Intel(R)
Core(TM) i7-4930K CPU @ 3.40GHz. For the energy overhead mea-
surements, we used another system running Ubuntu-20 with 8GB
DDR3 DRAM and Intel(R) Core(TM) i7-5500U CPU @ 2.40GHz that
supported memory energy consumption measurement. For calcu-
lating the energy overhead of Chipkill, we use Micron’s publicly
available spreadsheet [9] and initiate it with the parameters of the
latter system. We set the read/write utilization according to the
size of activations and weights in Table 1. Then we change the chip
density and width to get a Chipkill setup with 8GB capacity.
5. Execution Time and Memory Measurements: We calculate
the median of 25 bursts of 5 inferences on random input examples
by the model. We use Wilcoxon-Signed-Rank Test [90] to validate
the statistical significance of the overhead measurement changes
before and after applying a technique. This test does not assume
the normality of measurements. However, it assumes symmetry in
the difference scores for execution time, memory bandwidth and
energy consumption, which is the case for us.
6. FI Experiments: We inject 400 faults per failure mode per model.
These are sufficient for statistical significance in rejecting the null
hypothesis that SC does not reduce the SDC rate more than the
techniques used for comparison. We report 95% confidence intervals
for SDC rates in all experiments. For each fault, we perform inference
for all of the chosen images. If the inferred label of any of the images
deviates from its correct label, we label the inference as an SDC.

When injecting faults, we exclude parameters that are weights
of neither fully connected nor convolution layers of the networks.
The percentage of these parameters with respect to the considered
weights (Table 1) constitute less than 1% of the memory. Hence,
they can be protected using TDR (i.e., keeping three copies of the
data in memory), with low overheads. Table 1 also shows the size of
the memory occupied by the parameters and activations. We find
that model parameters, on average, occupy 58% of the Resident Set
Size (RSS) occupied by the program data, which is quite sizeable.

Note that we did not observe any crashes in our FI experiments,
and hence we do not report crashes. This is because our fault injec-
tions are confined to the model parameters.
7. SC configuration To find the optimal configurations of SC with
regard to memory footprint, we start at 𝑘 = 1 and 𝑛 = 257, and
increase them, until the calculated probability of more than 𝑘 er-
roneous kernels is less than 10%. We used an analytical model for

6

Structural Coding: A Low-Cost Scheme to Protect CNNs from Large-Granularity Memory Faults SC ’23, November 12–17, 2023, Denver, CO, USA

alexne
t
resnet5

0
shufflenetgoogle

net
squeez

enet
mobilene

t
mozafar

i
xvecto

rs geomean
0

50

100

436

238

1005

1721

O
ve
rh
ea
d
(%
)

𝑆𝐶 𝑅𝐴𝐷𝐴𝑅 𝑀𝐼𝐿𝑅

(a)Execution Time Overheads

alexne
t
resnet5

0
shufflenetgoogle

net
squeez

enet
mobilene

t
mozafar

i
xvecto

rs geomean
0

50

100

O
ve
rh
ea
d
(%
)

(b)Bandwidth Overheads

alexne
t
resnet5

0
shufflenetgoogle

net
squeez

enet
mobilene

t
mozafar

i
xvecto

rs geomean
0

50

100

826

475

557

334

O
ve
rh
ea
d
(%
)

(c) Energy Overheads

Figure 6: Execution time overheads, bandwidth overheads,
and energy overheads for each CNN incurred by each tech-
nique. Lower is better. geomean = geometric mean. Error
bars show quartiles. MILR outliers are not used for geomean
as the long running time is due to normalization of grouped
convolution.

this calculation. Based on the optimal values observed across all
layers of all networks, we chose 𝑛 = 288, 𝑘 = 32.

5.2 Results
We organize the results by the RQs.

5.2.1 RQ1 – Performance and Memory Overheads. Fig 6a shows the
detection performance overheads, across the models for SC and the
other techniques. We find that the performance overhead of SC is
2.07% on average, which includes a summation over the parameters.
AlexNet and Mozafari have the highest performance overheads
(15% and 19%) as these have the biggest parameter sizes (Table 1).
One reason for the low overhead is that the kernels of many layers
are small enough to fit on the chip and get reused, and loading them
for the checksum does not hurt performance. However, there are
some cases where the kernels of a layer do not fit on-chip and will
be streamed. In those cases, the overhead percentage is still low
because calculating the checksum is much lighter than performing
the total operations of the layer.

When comparing SC’s overhead with other techniques, the range
restriction [23, 43] techniques have a lower average overhead of
0.53%. However, as we show later, range restriction techniques have

very low error coverage for most memory fault types (RQ4). There-
fore, we exclude these techniques for further overhead comparison.

Fig. 6a shows the overheads of the remaining two techniques,
MILR and RADAR. RADAR incurs very high performance over-
heads, with an average of 72.69%. This is because software imple-
mented RADAR iterates over the parameters as well as the check-
sums, and performs many byte comparisons. Likewise, MILR incurs
an average performance overhead of 42.78%, which is still high.
This is because it duplicates almost every operation by checking
the checkpoints at each layer for real-time detection. SC has neither
of these sources of overhead and therefore, the performance overhead
of SC is much lower than RADAR and MILR.

Table 3 shows the memory footprint and latency overheads,
across the evaluated models for SC and the other techniques. The
memory footprint overhead of SC is less than 27% across models,
and is 15.71% on average. In comparison, the memory footprint
overhead of RADAR is 25% (uniformly), while the memory footprint
overhead of MILR depends on the relative size of layer outputs and
parameters. On average, the additional memory used by our imple-
mentation of MILR is 71.81%. Thus, the average memory footprint
overhead of SC is lower than that of both RADAR and MLIR.

Memory footprint (%) Memory latency (%)
Model SC MILR RADAR SC MILR RADAR
alexnet 12.51 5.26 25 -14.94 -31.63 73.27

squeezenet 18.18 165.32 25 - -6.02 -0.62
mobilenet 18.19 342.95 25 - -16.41 3.81
googlenet 13.48 43.91 25 -0.68 -0.11 -0.66
resnet50 12.63 30.57 25 -0.37 10.39 1.65
shufflenet 26.26 122.47 25 - 2.45 6.86
mozafari 12.5 11.18 25 -19.45 0.66 38.53
xvectors 12.61 32.07 25 - 14.35 24.81
Avga 15.71% 71.81 25 -9.26 -4.39 16.25

aWe did not include the dashes and use geometric mean.
Table 3: Detection and Memory Overhead. The dashes mean
there are no statistically significant changes in the measure-
ments (p value < 0.05). Negative values indicate a reduction
from the baseline.

5.2.2 RQ2 – Error correction overhead. Fig. 7 shows the worst-case
FLOPs overhead of SC with regard to the number of parameter
groups with faults across different models at the middle. On the
right, it shows the FLOPs overhead of MILR for the same number
of faults in the same parameter groups. We compare the correction
overhead only to MILR, which requires compute for correction
(others only set default values). We perform correction only in the
(rare) case of an error, so the overhead is off the normal execution
path. Up to eight erroneous symbols, we find that the overhead
of SC is within 80%. If we exclude the two lightweight models
(MobileNet and ShuffleNet), the overhead is within 6%. We did not
show AlexNet for MILR as it has a correction overhead of about
400% for Alexnet. This is because AlexNet has larger, more complex
kernels to calculate the inverse of convolution. Otherwise, the error
correction overhead of MILR is comparable to SC.

7

SC ’23, November 12–17, 2023, Denver, CO, USA Ali Asgari Khoshouyeh, Florian Geissler, SyedQutub, Michael Paulitsch, Prashant J. Nair, and Karthik Pattabiraman

0 2 4 6 8
Faults (SC)

FL
O
Ps

O
ve
rh
ea
d
(%
)

alexnet squeezenet mobilenet
googlenet resnet50 shufflenet

0 2 4 6 8
Faults (MILR)

Figure 7: Worst-case correction overhead of SC (left) in
FLOPs for the different CNNs per number of corrections,
compared to MILR (right).

5.2.3 RQ3 – Memory Bandwidth and Latency. The bandwidth over-
heads are shown in Fig. 6b. The bandwidth overhead of SC is 7.46%
on average. This overhead is dominated by the duplicate reads of
the parameters for the purpose of calculating the checksums. Read-
ing the (very small) detection checksums from the memory incurs
negligible bandwidth overhead. Therefore, the highest overheads
are incurred by the models with the biggest parameters (AlexNet
and Mozafari). Comparing the bandwidth overhead with the other
techniques, MILR and RADAR incur more overhead because of the
additional need to read their checkpoints and checksums respec-
tively. MILR incurs 60.66% and RADAR 29.44% average memory
bandwidth overhead. Thus the memory bandwidth overhead of SC
is lower than that of both MILR and RADAR.

The changes in average memory latency are shown in Table
3. SC leads to low latency across the different models, but the
latencies of MILR and RADAR vary considerably and are neither
homogeneously increased nor decreased. This is because the change
in the memory latency is due to the interplay of many factors
including (1) the number of memory requests and latency of the
network itself, (2) the number of buffers accessed simultaneously
for protection, (3) the relative size of activations and parameters,
and (4) the size of the working set of the network compared to
the size of the cache. SC has low latency as its detection is mostly
sequentially accessing a single memory buffer and bank conflicts
are rare.

5.2.4 RQ4 – Coverage for different Fault Types. Fig. 8 shows the
SDC rate of SC compared with the other techniques, with regard to
different models and under different fault types in our fault model
(Section 3). As mentioned, we inject a single fault in each FI run for
each technique and fault type.

We make two observations. First, as the granularity of errors
grows larger (from word to column and then to row), the SDC rate
increases (as expected). For example, ResNet50 has an SDC of 14%
under word failure, 28% for column failure, and 100% under row
failure. Second, the SDC rate of the model protected with SC is
three orders of magnitude lower than the SDC rate of the unprotected
model. For example, the SDC for AlexNet in word failures is 3.62 ×
10−5 when it is protected with SC, while it is 5.69 × 10−2 with no
protection at all.

alexnet resnet50 shufflenet googlenet squeezenet mobilenet
10−5

10−3

10−1

SD
C

𝑆𝐶 𝑅𝐴𝐷𝐴𝑅 𝑀𝐼𝐿𝑅 𝐹𝑇 -𝐶𝑙𝑖𝑝𝐴𝑐𝑡 𝑅𝑎𝑛𝑔𝑒𝑟 𝑁𝑜𝑛𝑒

(a)Word failure

alexnet resnet50 shufflenet googlenet squeezenet mobilenet
10−5

10−3

10−1

SD
C

(b)Column failure

alexnet resnet50 shufflenet googlenet squeezenet mobilenet
10−5

10−3

10−1

SD
C

(c)Row failure

Figure 8: SDCs for different fault types (word, column, and
row) for each CNN under different protections. Y-axis is in
log scale. Lower is better.

Moreover, on average, SC’s SDC rate is lower than MILR’s SDC
rate by 236× and lower than RADAR’s SDC rate by 273×. Further, in
all cases except for AlexNet for word and column failures, MILR
and RADAR show higher SDCs than SC This is because RADAR’s
correction is similar to weight pruning [110] and AlexNet tolerates
weight pruning [46]. MILR checkpoints use linear equations to
recover the parameters. As erroneous parameters increase, the
equations cannot determine the original values, as not all layers
are invertible, and hence MILR cannot correct the error.

Finally, the techniques that have low performance and memory
overhead (i.e., Ranger, FT-ClipAct). neither provide protection for
all failure modes, nor for all models, e.g., FT-ClipAct’s SDC rate is
19.37% under row failure for ResNet50.

5.2.5 RQ5 – Coverage under different Bit Error Rates (BER). Fig.
9 shows the SDC rate for different protection techniques under
different BERs for different models. We consider three BER values,
high (10−5), medium (10−6), and low (10−8), to explore the range of
behaviors. At each FI run, we choose a bit to flip with probability
equal to BER, e.g., with 105 bits and BER = 10−4 around 10 bit-flips
is expected on average.

We make two observations from the figure. First, we see that
as the BER increases from 10−8 to 10−5, in all cases the SDC rate
increases (as expected). For example, the SDC for GoogLeNet in-
creases from 5.24% to 61% and then to 100% as the BER increases.
Second, SC provides the lowest SDC rate among all the techniques
across all networks, and at all three BERs. On average, the SDC rate
of SC is two orders of magnitude lower than all the other techniques.

In fact, RADAR in some cases, increases the SDC rate, such as for
MobileNet at BER = 10−8 (SDC = 5.6%) compared to the case of no
protection (SDC = 1.2%). This is because when RADAR encounters
a bit-flip in the most significant bits of a parameter, it will erase
the weight, which is sometimes worse than letting the error go
undetected. For example, if the error leads to a smaller parameter

8

Structural Coding: A Low-Cost Scheme to Protect CNNs from Large-Granularity Memory Faults SC ’23, November 12–17, 2023, Denver, CO, USA

alexnet resnet50 shufflenet googlenet squeezenet mobilenet
10−5

10−3

10−1

SD
C

𝑆𝐶 𝑅𝐴𝐷𝐴𝑅 𝑀𝐼𝐿𝑅 𝐹𝑇 -𝐶𝑙𝑖𝑝𝐴𝑐𝑡 𝑅𝑎𝑛𝑔𝑒𝑟 𝑁𝑜𝑛𝑒

(a)High BER (BER = 10−5)

alexnet resnet50 shufflenet googlenet squeezenet mobilenet
10−5

10−3

10−1

SD
C

(b)Medium BER (BER = 10−6)

alexnet resnet50 shufflenet googlenet squeezenet mobilenet
10−5

10−3

10−1

SD
C

(c) Low BER (BER = 10−8)

Figure 9: SDCs Vs. Bit Error Rate (BER) for each CNN under
different protectionsa. Y-axis is in log scale. Lower is better.
a AlexNet data point is missing for MILR in which our implementation ran

out of resources while running the FI experiments.

moza
farixvect

ors

10−4

10−2

100

SD
C

(a) Word

moza
farixvect

ors

10−4

10−2

100
𝑆𝐶 𝑁𝑜𝑛𝑒

(b) Column

moza
farixvect

ors

10−4

10−2

100

(c) Row

moza
farixvect

ors

10−4

10−2

100

SD
C

(d) Low BER (BER = 10−8)

moza
farixvect

ors

10−4

10−2

100

(e) Medium BER (BER = 10−6)

moza
farixvect

ors

10−4

10−2

100

(f) High BER (BER = 10−5)

Figure 10: SDC of SC with other data formats. SDC of multi-
bit and Bit Error Rate failure modes for each CNN with and
without protection. Y-axis is in log scale. Lower is better.

value with the same sign, RADAR will likely make the error worse
by erasing that parameter.

In summary, none of the other techniques provides as strong
protection as SC. This is because, at high BER, they perform inac-
curate corrections in many places of the network causing a large
deviation of output values. The inaccuracy of MILR comes from
non-invertible layers, and for the other techniques, it comes from
correcting to default values.

Moreover, SC provides strong protection (SDC<1%) even at the
highest BERs, BER = 10−5, stronger than all of the other techniques
- except for the case of RADAR with SDC 0.3% for AlexNet at BER
= 10−5 where SC’s SDC rate is 0.7%.

res
ne
t50

ale
xn
et

squ
eez
en
et

mo
bil
en
et

go
og
len
et

sh
uffl
en
et

0

20

40

60

80

100

38
.5

53
.5 40
.0

38
.721
.7

28
.7

0.
00
3

0.
00
4

0.
00
3

0.
00
3

0.
00
3

0.
00
3Fa
ul
ts
(%
)

(a) Word
res
ne
t50

ale
xn
et

squ
eez
en
et

mo
bil
en
et

go
og
len
et

sh
uffl
en
et

0

20

40

60

80

100

0.
00
3

0.
00
4

0.
00
3

0.
00
3

0.
00
3

0.
00
3Fa
ul
ts
(%
)

miscorrected corrected
undetected

(b) Column
res
ne
t50

ale
xn
et

squ
eez
en
et

mo
bil
en
et

go
og
len
et

sh
uffl
en
et

0

20

40

60

80

100

1.
0

1.
7

3.
0 1.
7

1.
2

3.
2

0.
00
3

0.
00
4

0.
00
3

0.
00
3

0.
00
3

0.
00
3Fa
ul
ts
(%
)

(c) Row

res
ne
t50

ale
xn
et

squ
eez
en
et

mo
bil
en
et

go
og
len
et

sh
uffl
en
et

0

20

40

60

80

100

65
.7 40

.27.
7

61
.0

0.
00
3

0.
00
4

0.
00
3

0.
00
3

0.
00
3

0.
00
3Fa
ul
ts
(%
)

(d) BER = 10−8
res
ne
t50

ale
xn
et

squ
eez
en
et

mo
bil
en
et

go
og
len
et

sh
uffl
en
et

0

20

40

60

80

100

0.
00
3

0.
00
4

0.
00
7

0.
00
3

0.
00
3

0.
01Fa

ul
ts
(%
)

(e) BER = 10−6
res
ne
t50

ale
xn
et

squ
eez
en
et

mo
bil
en
et

go
og
len
et

sh
uffl
en
et

0

20

40

60

80

100

0.
00
3

0.
69
9

0.
03

0.
25
3

0.
00
3

0.
07
8Fa
ul
ts
(%
)

(f) BER = 10−5

Figure 11: Breakdown of injections on the correctly classi-
fied inputs permodel per fault type. Labels for corrected are
not shown (= 100% − 𝑢𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 −𝑚𝑖𝑠𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑).

5.2.6 RQ6 – Other data formats. In this RQ, we consider data for-
mats other than images. Fig. 10, shows the SDC rate of the audio
classifier (XVectors) and the text classifier (Mozafari) under differ-
ent failure modes and BERs both with and without SC. We find that
the worst SDC rate after protection is for XVectors under the High
BER, which is 700x smaller than the SDC rate with no protection.
Further, SC decreases the SDC rate by 9000× on average. Thus, SC’s
effectiveness also extends to audio and text inference.

5.2.7 RQ7 – Detection. Fig. 11 shows the breakdown of injections
on the correctly classified inputs per model per fault type. All of
the undetected faults were benign, and led to successful classi-
fication. This is because SC’s detection, by using floating point
summation instead of bit-wise operations, is sensitive to the er-
rors in more significant bits and in bigger (more important [115])
weights. The checksum does not grow very large and remains sen-
sitive to changes because the weights are distributed around zero.
SC optimistically corrects the symbols with the most deviating
checksums, leading to miscorrections when there are more than k
erroneous symbols. However, the highest miscorrection percentage
is for AlexNet under the high BER (10−5) fault type occurring in
only 0.699% of the injections. Thus, SC’s detection is effective.

5.3 RQ8 – Energy consumption
Fig 6c shows the energy consumption overheads, across the eval-
uated models for SC and the other techniques. We find that the
average energy overhead of SC is 4.38%. AlexNet and Mozafari
have the highest energy overheads (15% and 12%) as they have the
biggest parameter sizes in memory (Table 1).

When comparing SC’s overhead with other techniques, we ex-
clude range restriction [23, 43] techniques as they have negligible
energy overheads (<2%) and as these techniques have very low error
coverage for most fault types. This leaves only MILR and RADAR,
and they are shown in Fig. 6c. RADAR incurs very high energy
overheads, with an average of 123.77%. MILR also incurs an average
energy overhead of 48.57%, which is still high. This is because the
energy overhead is dominated by the run-time overhead.

9

SC ’23, November 12–17, 2023, Denver, CO, USA Ali Asgari Khoshouyeh, Florian Geissler, SyedQutub, Michael Paulitsch, Prashant J. Nair, and Karthik Pattabiraman

Overheads (%)

Chipkill Channel Storage Energy
Energy

normalized
by storage

x4
Commercial dual-channel [77] 144-bit 12.5 33.71 32.37
Commercial single-channel [77] 72-bit 12.5 11.08 10.41

Virtual ECC [116] 128-bit 9.38 8.65 7.52
Bamboo [53] 72-bit 12.5 11.08 10.41

FrugalECC+Multi [54] 64-bit 7.25 8.65 7.16
FrugalECC+QPC [54] 64-bit 13.5 8.65 8.21

x8
Virtual ECC [116] 144-bit 18.75 15.28 15.87
Virtual ECC [116] 128-bit 18.75 12.38 12.91

FrugalECC+OPC [54] 72-bit 26 2.22 3.32
FrugalECC+Multi [54] 64-bit 13.5 0.76 0.49
Structural Coding any 15.71 4.38 4.38

Table 4: Chipkill ECC energy and storage overheads

When comparing the energy overhead of SC to Chipkill, we use
Micron’s energy spreadsheet[9] (Section 5.1) to extrapolate the en-
ergy consumption for our setup. We compare the energy overheads
normalized to the storage overhead for a fair comparison. Table 4
shows the memory and energy overheads for the well-known Chip-
kill proposals. Most of the Chipkill proposals have a higher energy
consumption than SC, because they activate at least twice the num-
ber of chips as SC. Non-commercial Chipkill proposals have higher
energy consumption than SC; except for FrugalECC+OPC and Fru-
galECC+Multi for x8 DRAM. However, FrugalECC+OPC has higher
storage overhead than SC and both x8 configurations of FrugalECC
require hardware modification unlike SC. Commercial Chipkill’s
energy overhead on average is 10.4% and 32.4% for single-channel
and dual-channel [77] respectively. Therefore, the energy overhead
of SC is lower than those of RADAR, MILR, commercial Chipkill and
most non-commercial Chipkill proposals.

6 DISCUSSION
Use cases: SC can be used in two classes of systems:
(1) Without Hardware ECC: SC can reduce the failure rate of CNNs

by three orders of magnitude. Though many HPC systems have
ECC, hardware ECC is not always available on commodity sys-
tems as the chips, DIMMs, and motherboards may not support
it. For example, 40% of Intel chips do not support ECC [8].

(2) SEC-DED: As we found in Section 5.2.4, SC can correct multi-bit
memory errors that SEC-DED cannot correct.

Furthermore, with hardware ECC one has to pay the cost even if er-
rors are rare, while SC can be turned on/off as it is a software-based
technique. That makes SC usable in a broad set of deployments, in-
dependent of the hardware platform. However, SC protects only the
CNN parameters, while hardware ECC protects the whole memory.
Chipkill: Chipkill requires 18-36 DRAM devices [108]. Typically,
this is ensured by using DRAM modules with 18-36 devices per
channel or across multiple channels [50]. In contrast, a typical
SECDED-based ECC uses traditional modules with 9 DRAM de-
vices [75]. This has two key consequences: (1) As most systems use
64Byte cachelines, we can obtain 64Bytes of data and 8 bytes of ECC
over modules that use only 9 DRAM devices. Thus, such a design

efficiently uses memory bandwidth. However, if we use a module
with 18-36 devices, each memory access is 128 or 256 Bytes of data
and 8 or 16 Bytes of ECC respectively. This increases bandwidth
overheads by 2×-4×, thereby reducing performance, and incurring
power overheads[51]. (2) To reduce these bandwidth overheads,
Chipkill-based systems use x4 devices. While this decreases the data
that can be obtained from each device and tries to better utilize the
bandwidth across a larger number of devices, it is typically preva-
lent in older DDR2-based systems. Modern DDR5-based memory
systems [2], for instance, use x8 and x16 devices only – essentially
increasing the data supplied by each DRAM device, thus making
it even more inefficient to employ traditional Chipkill using these
devices. Furthermore, Chipkill is more expensive than SEC-DED
[77], and the current High Bandwidth Memory (HBM2) standard
makes implementing Chipkill inefficient as every cache line comes
from a single device [37].
Extension to GPUs: We chose CPUs for SC as they are commonly
used for inference, which is our focus. To port SC to GPUs, we need
to ensure a deterministic order of summation for robust detection
(which is easily achievable in PyTorch [83]).
Optimizing correction overhead:While SC has low performance
overheads, its overhead can be further reduced by optimizing its
error correction at the cost of a slight increase in memory. Cor-
recting 𝑘 erroneous symbols among 𝑛 symbols is equivalent to a
matrix inversion and its known complexity is𝑂 (𝑛2 (𝑛−𝑘))[63]. The
Woodbury formula [113], by storing the pre-computed inverse of a
square matrix of size 𝑂 (𝑛2), reduces the complexity of inverting
any of its square sub-matrices of size (𝑛−𝑘)× (𝑛−𝑘) to𝑂 (𝑘3+𝑘𝑛2).
Correcting 𝑘 errors can be formulated as finding the inverse of such
a sub-matrix. This is to the benefit of the performance overhead of
the correction in our case because 𝑘 ≪ 𝑛. The additional memory
footprint overhead will also be low as the size of the parameters is
usually much larger than the size of the pre-computed inverse.

Unfortunately, the Woodbury formula [113], cannot be trivially
applied, because our generator matrix is not a square matrix. In-
spired by the effectiveness of random generator matrices [22], we
pad the generator matrix with random numbers to obtain a square
matrix while preserving its invertibility. This technique asymp-
totically reduces the overhead of error correction. We observed a
similar error-correction coverage with and without this optimiza-
tion, and a 2.7x reduction of the average correction overhead in Fig. 7.
Limitations: Like most coding techniques, SC does not support
targeted changes in values that result in the checksums not being
violated. However, the probability of this occurring due to natural
faults is very low. Also, very large-granularity memory failures
of a bank, chip, rank or channel are not protected. However, such
failures are more likely to arise due to permanent faults rather than
transient faults [15]. We have also implemented this technique for
quantized networks, but in those cases because of the smaller field
of values, random generator matrices do not give full 𝑘 error cor-
rection capability. An alternative is to use standard RS codes[105]
or choose a higher value for 𝑘 . Depending on the system setup,
the correction due to SC may take more time than reloading safely
stored parameters, in which case the correction part of SC does not
help. Moreover, in applications where latency is not a constraint,
reloading the values from storage, or scrubbing may suffice.

10

Structural Coding: A Low-Cost Scheme to Protect CNNs from Large-Granularity Memory Faults SC ’23, November 12–17, 2023, Denver, CO, USA

Finally, while there may be differences between the fault patterns
we have used and those of newer technologies, the differences are
likely to be small as SC relies on the locality of errors in a limited
number ofmemory pages. The correspondence ofmemory rows and
pages will likely remain in newer DRAM generations, and hence
the fault patterns will be similar. We have also evaluated against a
Bit Error Rate (BER) model without specific failure assumptions.

7 RELATEDWORK
In this section, we classify the fault-tolerance techniques proposed
for CNNs, into four categories as follows. (1) High overhead tech-
niques despite their strong correction capability incur high latency,
memory or performance overhead making them unsuitable in set-
tings where the net cost matters. (2) limited multi-bit protection
techniques do not address the large-granularity memory errors
discussed in Section 2. (3) Training or retraining required techniques
incur high costs, and (4) Hardware-/Model-Dependent ones are diffi-
cult to adapt for existing systems.
1. High overhead: TMR is used for error detection and recov-
ery, but incurs high costs[111]. Ali et al. [11] use redundancy for
convolutions, but they incur high execution overheads.

Zhao et al. [117] adapt ABFT for CNNs with multiple levels of
checksums. Their technique relies on reloading model parameters
for multiple parameter errors. However, this would incur high la-
tency overheads, and would not be desirable for real-time operation.
MILR[86] exploits the invertibility of DNN operations to recover
the weights using the stored checkpoints of inference values. Con-
sequently, the detection is not performed in real time. but only
when the checkpoint inputs are run.
2. Limited Multi-bit protection: Mahmoud et al. [69] selectively
protect only some of the kernels from computational faults. Other
work selectively protects only parts of the network [10, 24, 65]. Un-
fortunately, selective protection does not provide strong protection
against multi-bit faults. Qin et al. [87] propose a similar approach
to RADAR as well as a slightly more robust weight representation.
The robustness benefits of their representation are orthogonal to
our approach. In range restriction techniques [23, 43, 80] the range
of activation values is checked. When a fault is detected, the suspi-
cious activation values are set to either zero [43, 80] or the profiled
bound [23, 80]. However, these approaches scale only up to a few
bits of multi-bit errors (Section 5.2.4).

Researchers have used algorithm-based checksums for detec-
tion [38, 55, 81]. However, they do not consider recovery. Recent
work [55] focuses on optimizing the overhead of Algorithm Based
Error Detection (ABED) by considering the memory and compute-
bound operations. However, they do not address error correction,
and limit the scope of errors to computation errors. Dos et al. [30]
analyze the efficiency of ABFT for GPUs, but DRAM errors are out
of their studied scope. Other work has addressed the problem of
multi-bit faults in the stored parameters of the deep neural net-
works in memory, but they target the detection of these faults and
do not provide any error correction [32, 41, 64, 66, 69, 72, 81].
3. Training or Retraining required: Training/Retraining the net-
work has several disadvantages, such as (1) the training dataset
might not be available, (2) it requires significant computational
resources, and (3) the outcome is not guaranteed to provide the

same accuracy. There are many approaches for protecting DNNs
that require training/retraining [17, 36, 40, 78, 82, 93, 94], and hence
share these disadvantages. Lee and Yang [57] fixed the limitation of
Guan et al. [36], which is the need for retraining, but their approach
can still cause an accuracy degradation and does not recover from
more than two bits of error in a codeword.
4. Hardware-/Model-Dependent: Many researchers have pro-
posed hardware modifications for fault detection and correction,
which typically incur high development costs. For example, Gold-
stein et al. [35] proposed a new hardware design for multiplication
and addition units for tolerating computation faults. However, they
do not target memory faults.

For emerging memories used in CNN applications, Nguyen et
al. [76] propose intra-block remapping for the parameters to prevent
large accuracy degradation due to stuck-at faults. Similarly, Rios et
al. [91] proposed a resilient in-memory computing architecture for
CNNs. Unlike our technique, these techniques require hardware
modification, thereby leading to high system costs.

Sullivan et al. [103] propose a hardware ECC technique to mit-
igate multi-bit DRAM errors in GPUs. Similarly, Kim et al. [53]
propose Bamboo, a technique to inform ECC design by the DRAM
errors observed. However, these approaches are not customized on
a per-application basis, and hence incur high memory overhead.

Many papers have proposed to use coding to protect parameters
of DNNs [45, 89, 109]. For binary neural networks, parity can be
used for making classifications robust [89], however it is not com-
patible with other neural networks at software-level. Upadhyaya et
al. [109] use analog codes to protect analog weights of hardware-
implemented neural networks. Huang et al. [45] propose coding
for hardware CNNs with their parameters stored in non-volatile
memories. However, these are specific to the target hardware.

8 CONCLUSION
Multi-bit DRAM memory soft errors spanning multiple words
(i.e., large-granularity faults) can have significant reliability conse-
quences for Convolutional Neural Networks (CNNs). We propose
SC, an automated software scheme to protect CNNs from large-
granularity memory faults. SC is implemented as an automated
transformation for PyTorch. We evaluate SC on six CNN classifiers,
and find that it (1) incurs low performance and memory overheads,
(2) reduces the Silent Data Corruption (SDC) rate by over three or-
ders of magnitude compared to unprotected CNNs, (3) outperforms
existing state-of-the-art software-based techniques in performance,
energy and memory overheads, and coverage, and (4) incurs a lower
energy overhead than most hardware-based Chipkill schemes.

ACKNOWLEDGMENT
This research was enabled in part by support provided by the Natu-
ral Sciences and Engineering Research Council of Canada (NSERC),
BC DRI Group, the Digital Research Alliance of Canada (alliance-
can.ca) and a research gift from Intel Corporation. We would like
to acknowledge Sriram Sankar, Harish Dixit and Release To Pro-
duction (RTP) team within Meta Infrastructure for their continued
support in our resilience efforts. This project has received funding
from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 956123.

11

SC ’23, November 12–17, 2023, Denver, CO, USA Ali Asgari Khoshouyeh, Florian Geissler, SyedQutub, Michael Paulitsch, Prashant J. Nair, and Karthik Pattabiraman

REFERENCES
[1] [n. d.]. DDR4 SDRAM EDY4016A - 256Mb x16. https://www.micron.com/-

/media/client/global/documents/products/data-sheet/dram/ddr4/4gb_ddr4_
dram_2e0d.pdf. Accessed: 2021-11-16.

[2] [n. d.]. Ddr5 Sdram. https://www.micron.com/products/dram/ddr5-sdram.
Accessed: 2021-11-16.

[3] [n. d.]. Linux. Perf. https://perf.wiki.kernel.org/index.php/Main_Page. Accessed:
2022-07-15.

[4] 2004. Uprating Semiconductors for High-Temperature Applications.
https://www.micron.com/about/blog/2022/february/mobileye-advances-
automotive-autonomy. Accessed: 2022-11-22.

[5] 2004. Uprating Semiconductors for High-Temperature Applications. https:
//www.micron.com/-/media/client/global/documents/products/technical-
note/dram/tn0018.pdf. Accessed: 2022-11-22.

[6] 2018. ISO 26262: Road vehicles — Functional safety. https://www.iso.org/
standard/68383.html. Accessed: 2022-11-22.

[7] 2022. EyeQ®: The System-on-Chip for Automotive Applications. https://www.
mobileye.com/technology/eyeq-chip/. Accessed: 2022-11-22.

[8] 2022. Intel Products Home. https://ark.intel.com/content/www/us/en/ark/
search/featurefilter.html?productType=873&0_StatusCodeText1=3,4. Accessed:
2022-06-22.

[9] 2022. System Power Calculators. https://www.micron.com/support/tools-and-
utilities/power-calc. Accessed: 2022-11-22.

[10] Khalid Adam, Izzeldin Ibrahim Mohamed, and Younis Ibrahim. 2021. A Selec-
tive Mitigation Technique of Soft Errors for DNN Models Used in Healthcare
Applications: DenseNet201 Case Study. In IEEE Access, Vol. 9. 65803–65823.
https://doi.org/10.1109/access.2021.3076716

[11] Muhammad Salman Ali, Md Tauhid Bin Iqbal, Kang Ho Lee, Abdul Muqeet,
Seunghyun Lee, Lokwon Kim, and Sung Ho Bae. 2020. ErDNN: Error-resilient
deep neural networks with a new error correction layer and piece-wise rectified
linear unit. In IEEE Access, Vol. 8. https://doi.org/10.1109/access.2020.3017211

[12] Cynthia J. Anfinson and Franklin T. Luk. 1988. A linear algebraic model of
algorithm-based fault tolerance. In IEEE Transactions on Computers, Vol. 37. Ieee,
1599–1604.

[13] Sanghyeon Baeg, Mirza Qasim, Junhyeong Kwon, Tan Li, Nilay Gupta, Shi-Jie
Wen, and Satyadev Kolli. 2019. Correctable and uncorrectable errors using
large scale DRAM DIMMs in replacement network servers. In Microelectronics
Reliability, Vol. 99. 104–112. https://doi.org/10.1016/j.microrel.2019.05.008

[14] GeunYong Bak, Soonyoung Lee, Hosung Lee, KyungBae Park, Sanghyeon Baeg,
ShiJie Wen, Richard Wong, and Charlie Slayman. 2015. Logic soft error study
with 800-MHz DDR3 SDRAMs in 3x nm using proton and neutron beams. In
2015 IEEE International Reliability Physics Symposium. Ieee, Se–3.

[15] Majed Valad Beigi, Yi Cao, Sudhanva Gurumurthi, Charles Recchia, Andrew
Walton, and Vilas Sridharan. 2023. A Systematic Study of DDR4 DRAM Faults in
the Field. In 2023 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 991–1002.

[16] Md Kawser Bepary, Bashir Mohammad Sabquat Bahar Talukder, and
Md Tauhidur Rahman. 2022. DRAM retention behavior with accelerated aging
in commercial chips. Applied Sciences 12, 9 (2022), 4332.

[17] Michael Beyer, Christoph Schorn, Tagir Fabarisov, Andrey Morozov, and Klaus
Janschek. 2021. Automated Hardening of Deep Neural Network Architectures. In
ASME International Mechanical Engineering Congress and Exposition, Vol. 85697.
American Society of Mechanical Engineers, V013t14a046.

[18] Daniel L Boley and Franklin T Luk. 1991. A well conditioned checksum scheme
for algorithmic fault tolerance. Integration 12, 1 (1991), 21–32.

[19] Richard P Brent, Franklin T Luk, and Cynthia J Anfinson. 1989. Choosing
small weights for multiple error detection. In High speed computing II, Vol. 1058.
International Society for Optics and Photonics, 130–137.

[20] Hsing-Min Chen, Akhil Arunkumar, Carole-Jean Wu, Trevor Mudge, and
Chaitali Chakrabarti. 2015. E-ecc: Low power erasure and error correction
schemes for increasing reliability of commodity dram systems. In Proceedings of
the 2015 International Symposium on Memory Systems. 60–70.

[21] Zizhong Chen. 2009. Optimal Real Number Codes for Fault Tolerant Matrix
Operations. In Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis (Portland, Oregon) (Sc ’09). Association for
Computing Machinery, New York, NY, USA, Article 29, 10 pages. https://doi.
org/10.1145/1654059.1654089

[22] Zizhong Chen and Jack Dongarra. 2005. Numerically stable real number codes
based on random matrices. In International Conference on Computational Science.
Springer, 115–122.

[23] Zitao Chen, Guanpeng Li, and Karthik Pattabiraman. 2021. A low-cost fault
corrector for deep neural networks through range restriction. In 2021 51st Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).
IEEE, 1–13.

[24] Wonseok Choi, Dongyeob Shin, Jongsun Park, and Swaroop Ghosh. 2019. Sen-
sitivity based Error Resilient Techniques for Energy Efficient Deep Neural
Network Accelerators. In 2019 56th ACM/IEEE Design Automation Conference

(DAC). 1–6.
[25] Charng da Lu and D.A. Reed. 2004. Assessing Fault Sensitivity in MPI Applica-

tions. In SC ’04: Proceedings of the 2004 ACM/IEEE Conference on Supercomputing.
37–37. https://doi.org/10.1109/sc.2004.12

[26] Thomas Davidson, Dana Warmsley, Michael Macy, and Ingmar Weber. 2017.
Automated Hate Speech Detection and the Problem of Offensive Language. In
Proceedings of the 11th International AAAI Conference on Web and Social Media
(Montreal, Canada) (Icwsm ’17). 512–515.

[27] Timothy J Dell. 1997. A white paper on the benefits of chipkill-correct ECC for
PC server main memory. In IBM Microelectronics division, Vol. 11. 1–23.

[28] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009.
Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 248–255.

[29] Catello Di Martino, Zbigniew Kalbarczyk, Ravishankar K Iyer, Fabio Baccanico,
Joseph Fullop, and William Kramer. 2014. Lessons learned from the analysis
of system failures at petascale: The case of blue waters. In 2014 44th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks. Ieee,
610–621.

[30] Fernando Fernandes dos Santos, Pedro Foletto Pimenta, Caio Lunardi, Lucas
Draghetti, Luigi Carro, David Kaeli, and Paolo Rech. 2018. Analyzing and
increasing the reliability of convolutional neural networks on GPUs. In IEEE
Transactions on Reliability, Vol. 68. Ieee, 663–677.

[31] Xiaoming Du, Cong Li, Shen Zhou, Mao Ye, and Jing Li. 2020. Predicting
UncorrectableMemory Errors for Proactive Replacement: An Empirical Study on
Large-Scale Field Data. In 2020 16th European Dependable Computing Conference
(EDCC). 41–46. https://doi.org/10.1109/edcc51268.2020.00016

[32] Xianglong Feng, Mengmei Ye, Ke Xia, and Sheng Wei. 2021. Runtime Fault Injec-
tion Detection for FPGA-based DNN Execution Using Siamese Path Verification.
In 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 786–789.

[33] Moritz Fieback. 2017. Dram reliability: Aging analysis and reliability prediction
model. http://resolver.tudelft.nl/uuid:e36c2de7-a8d3-4dfa-9da1-ac5b7e18614b.
Accessed: 2023-02-28.

[34] Pietro Frigo, Emanuele Vannacc, Hasan Hassan, Victor Van Der Veen, Onur
Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. 2020. TRRespass:
Exploiting the many sides of target row refresh. In 2020 IEEE Symposium on
Security and Privacy (SP). Ieee, 747–762.

[35] Brunno F Goldstein, Victor C Ferreira, Sudarshan Srinivasan, Dipankar Das,
Alexandre S Nery, Sandip Kundu, and Felipe MG França. 2021. A lightweight
error-resiliency mechanism for deep neural networks. In 2021 22nd International
Symposium on Quality Electronic Design (ISQED). IEEE, 311–316.

[36] Hui Guan, Lin Ning, Zhen Lin, Xipeng Shen, Huiyang Zhou, and Seung Hwan
Lim. 2019. In-place zero-space memory protection for CNN. In Advances in
Neural Information Processing Systems, Vol. 32.

[37] SudhanvaGurumurthi, Kijun Lee,Munseon Jang, Vilas Sridharan, AaronNygren,
Yesin Ryu, Kyomin Sohn, Taekyun Kim, and Hoeju Chung. 2021. HBM3 RAS:
Enhancing Resilience at Scale. In IEEE Computer Architecture Letters, Vol. 20.
Ieee, 158–161.

[38] Siva Kumar Sastry Hari, Michael Sullivan, Timothy Tsai, and StephenW Keckler.
2021. Making Convolutions Resilient via Algorithm-Based Error Detection
Techniques. In IEEE Transactions on Dependable and Secure Computing. 1–1.
https://doi.org/10.1109/tdsc.2021.3063083

[39] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[40] Zhezhi He, Adnan Siraj Rakin, Jingtao Li, Chaitali Chakrabarti, and Deliang Fan.
2020. Defending and harnessing the bit-Flip based adversarial weight attack.
In Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition. https://doi.org/10.1109/cvpr42600.2020.01410

[41] Zecheng He, Tianwei Zhang, and Ruby Lee. 2019. Sensitive-sample finger-
printing of deep neural networks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 4729–4737.

[42] Christian Helm and Kenjiro Taura. 2020. On the Correct Measurement of
Application Memory Bandwidth and Memory Access Latency. In Proceedings
of the International Conference on High Performance Computing in Asia-Pacific
Region. 131–141.

[43] Le-Ha Hoang, Muhammad Abdullah Hanif, and Muhammad Shafique. 2020.
Ft-clipact: Resilience analysis of deep neural networks and improving their fault
tolerance using clipped activation. In 2020 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 1241–1246.

[44] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingx-
ing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. 2019.
Searching for mobilenetv3. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision. 1314–1324.

[45] Kunping Huang, Netanel Raviv, Siddharth Jain, Pulakesh Upadhyaya, Jehoshua
Bruck, Paul H. Siegel, and Anxiao Andrew Jiang. 2020. Improve Robustness of
Deep Neural Networks by Coding. In 2020 Information Theory and Applications
Workshop, ITA 2020. https://doi.org/10.1109/ita50056.2020.9244998

12

https://www.micron.com/-/media/client/global/ documents/products/data-sheet/dram/ ddr4/4gb_ddr4_dram_2e0d.pdf
https://www.micron.com/-/media/client/global/ documents/products/data-sheet/dram/ ddr4/4gb_ddr4_dram_2e0d.pdf
https://www.micron.com/-/media/client/global/ documents/products/data-sheet/dram/ ddr4/4gb_ddr4_dram_2e0d.pdf
https://www.micron.com/products/dram/ddr5-sdram
https://perf.wiki.kernel.org/index.php/Main_Page
https://www.micron.com/about/blog/2022/february/ mobileye-advances-automotive-autonomy
https://www.micron.com/about/blog/2022/february/ mobileye-advances-automotive-autonomy
https://www.micron.com/-/media/client/global/ documents/products/technical-note/dram/tn0018.pdf
https://www.micron.com/-/media/client/global/ documents/products/technical-note/dram/tn0018.pdf
https://www.micron.com/-/media/client/global/ documents/products/technical-note/dram/tn0018.pdf
https://www.iso.org/standard/68383.html
https://www.iso.org/standard/68383.html
https://www.mobileye.com/technology/eyeq-chip/
https://www.mobileye.com/technology/eyeq-chip/
https://ark.intel.com/content/www/us/en/ark/search/featurefilter.html?productType=873&0_StatusCodeText1=3,4
https://ark.intel.com/content/www/us/en/ark/search/featurefilter.html?productType=873&0_StatusCodeText1=3,4
https://www.micron.com/support/tools-and-utilities/power-calc
https://www.micron.com/support/tools-and-utilities/power-calc
https://doi.org/10.1109/access.2021.3076716
https://doi.org/10.1109/access.2020.3017211
https://doi.org/10.1016/j.microrel.2019.05.008
https://doi.org/10.1145/1654059.1654089
https://doi.org/10.1145/1654059.1654089
https://doi.org/10.1109/sc.2004.12
https://doi.org/10.1109/edcc51268.2020.00016
https://doi.org/10.1109/tdsc.2021.3063083
https://doi.org/10.1109/cvpr42600.2020.01410
https://doi.org/10.1109/ita50056.2020.9244998

Structural Coding: A Low-Cost Scheme to Protect CNNs from Large-Granularity Memory Faults SC ’23, November 12–17, 2023, Denver, CO, USA

[46] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J
Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level accuracy with 50x
fewer parameters and< 0.5 MB model size. In arXiv preprint arXiv:1602.07360.

[47] JEDEC Standard. 2015. DDR3 Standard. In Jesd79-3e.
[48] JEDEC Standard. 2015. DDR4 Standard. In Jesd79-4.
[49] Xun Jian, Henry Duwe, John Sartori, Vilas Sridharan, and Rakesh Kumar. 2013.

Low-power, low-storage-overhead chipkill correct via multi-line error correc-
tion. In Proceedings of the International Conference on High Performance Com-
puting, Networking, Storage and Analysis. 1–12.

[50] Xun Jian, Henry Duwe, John Sartori, Vilas Sridharan, and Rakesh Kumar. 2013.
Low-power, low-storage-overhead chipkill correct via multi-line error correc-
tion. In Proceedings of the International Conference on High Performance Com-
puting, Networking, Storage and Analysis. 1–12.

[51] Xun Jian and Rakesh Kumar. 2013. Adaptive reliability chipkill correct (arcc). In
2013 IEEE 19th International Symposium on High Performance Computer Archi-
tecture (HPCA). Ieee, 270–281.

[52] Kashif Nizam Khan, Mikael Hirki, Tapio Niemi, Jukka K Nurminen, and
Zhonghong Ou. 2018. RAPL in Action: Experiences in Using RAPL for Power
measurements. ACM Transactions on Modeling and Performance Evaluation of
Computing Systems (TOMPECS) 3, 2 (2018), 1–26.

[53] Jungrae Kim,Michael Sullivan, andMattan Erez. 2015. Bamboo ECC: Strong, safe,
and flexible codes for reliable computer memory. In 2015 IEEE 21st International
Symposium on High Performance Computer Architecture (HPCA). Ieee, 101–112.

[54] Jungrae Kim, Michael Sullivan, Seong-Lyong Gong, and Mattan Erez. 2015.
Frugal ECC: efficient and versatile memory error protection through fine-
grained compression. In SC ’15: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis. 1–12. https:
//doi.org/10.1145/2807591.2807659

[55] Jack Kosaian and KV Rashmi. 2021. Arithmetic-intensity-guided fault tolerance
for neural network inference on gpus. In Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and Analysis (St.
Louis, Missouri) (Sc ’21). Association for Computing Machinery, New York, NY,
USA, Article 79, 15 pages. https://doi.org/10.1145/3458817.3476184

[56] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet Clas-
sification with Deep Convolutional Neural Networks. In Advances in Neural
Information Processing Systems, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger (Eds.), Vol. 25. Curran Associates, Inc. https://proceedings.neurips.
cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

[57] Seo-Seok Lee and Joon-Sung Yang. 2022. Value-aware parity insertion ECC for
fault-tolerant deep neural network. In 2022 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 724–729.

[58] Scott Levy, Kurt B Ferreira, Nathan DeBardeleben, Taniya Siddiqua, Vilas Srid-
haran, and Elisabeth Baseman. 2018. Lessons learned from memory errors
observed over the lifetime of Cielo. In SC18: International Conference for High
Performance Computing, Networking, Storage and Analysis. Ieee, 554–565.

[59] Guanpeng Li, Siva Kumar Sastry Hari, Michael Sullivan, Timothy Tsai, Karthik
Pattabiraman, Joel Emer, and Stephen W Keckler. 2017. Understanding error
propagation in deep learning neural network (DNN) accelerators and appli-
cations. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. 1–12.

[60] Jingtao Li, Adnan Siraj Rakin, Zhezhi He, Deliang Fan, and Chaitali Chakrabarti.
2021. Radar: Run-time adversarial weight attack detection and accuracy recovery.
In 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 790–795.

[61] Jingtao Li, Adnan Siraj Rakin, Yan Xiong, Liangliang Chang, Zhezhi He, Deliang
Fan, and Chaitali Chakrabarti. 2020. Defending bit-flip attack through DNN
weight reconstruction. In Proceedings - Design Automation Conference, Vol. 2020-
July. https://doi.org/10.1109/dac18072.2020.9218665

[62] Xin Li, Kai Shen, Michael CHuang, and Lingkun Chu. 2007. AMemory Soft Error
Measurement on Production Systems.. In USENIX Annual Technical Conference.
275–280.

[63] Xiaocan Li, Shuo Wang, and Yinghao Cai. 2019. Tutorial: Complexity analysis of
singular value decomposition and its variants. In arXiv preprint arXiv:1906.12085.

[64] Yu Li, Yannan Liu, Min Li, Ye Tian, Bo Luo, and Qiang Xu. 2019. D2nn: a
fine-grained dual modular redundancy framework for deep neural networks.
In Proceedings of the 35th Annual Computer Security Applications Conference.
138–147.

[65] Fabiano Libano, Brittany Wilson, J Anderson, Michael J Wirthlin, Carlo Caz-
zaniga, Christopher Frost, and Paolo Rech. 2018. Selective hardening for neural
networks in FPGAs. In IEEE Transactions on Nuclear Science, Vol. 66. Ieee, 216–
222.

[66] Qi Liu, Wujie Wen, and Yanzhi Wang. 2020. Concurrent weight encoding-
based detection for bit-flip attack on neural network accelerators. In IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2020.

[67] Xingxing Liu, Yongzhan He, Hongmei Liu, Jiajun Zhang, Bin Liu, Xiangyu
Peng, Jialiang Xu, Jun Zhang, Alex Zhou, Paul Sun, Kunye Zhu, Ahuja Nishi,
Dayi Zhu, and Ken Zhang. 2020. Smart Server Crash Prediction in Cloud
Service Data Center. In 2020 19th IEEE Intersociety Conference on Thermal and

Thermomechanical Phenomena in Electronic Systems (ITherm). 1350–1355. https:
//doi.org/10.1109/ITherm45881.2020.9190321

[68] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. 2018. Shufflenet
v2: Practical guidelines for efficient cnn architecture design. In Proceedings of
the European conference on computer vision (ECCV). 116–131.

[69] Abdulrahman Mahmoud, Siva Kumar Sastry Hari, Christopher W Fletcher,
Sarita V Adve, Charbel Sakr, Naresh R Shanbhag, Pavlo Molchanov, Michael B
Sullivan, Timothy Tsai, and Stephen W Keckler. 2021. Optimizing Selective
Protection for CNN Resilience.. In ISSRE. 127–138.

[70] Sébastien Marcel and Yann Rodriguez. 2010. Torchvision the machine-vision
package of torch. In Proceedings of the 18th ACM international conference on
Multimedia. 1485–1488.

[71] Deepak M. Mathew, Martin Schultheis, Carl C. Rheinländer, Chirag Sudarshan,
ChristianWeis, NorbertWehn, andMatthias Jung. 2018. An analysis on retention
error behavior and power consumption of recent DDR4 DRAMs. In 2018 Design,
Automation Test in Europe Conference Exhibition (DATE). 293–296. https://doi.
org/10.23919/date.2018.8342023

[72] Fanruo Meng, Fateme S Hosseini, and Chengmo Yang. 2021. A self-test frame-
work for detecting fault-induced accuracy drop in neural network accelerators.
In Proceedings of the 26th Asia and South Pacific Design Automation Conference.
722–727.

[73] Jorge Castiñeira Moreira and Patrick Guy Farrell. 2006. Essentials of error-control
coding. John Wiley & Sons.

[74] Marzieh Mozafari, Reza Farahbakhsh, and Noel Crespi. 2019. A BERT-based
transfer learning approach for hate speech detection in online social media. In
International Conference on Complex Networks and Their Applications. Springer,
928–940.

[75] Prashant J Nair, Vilas Sridharan, and Moinuddin K Qureshi. 2016. XED: Ex-
posing on-die error detection information for strong memory reliability. In
2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture
(ISCA). Ieee, 341–353.

[76] Thai-Hoang Nguyen, Muhammad Imran, Jaehyuk Choi, and Joon-Sung Yang.
2021. Low-Cost and Effective Fault-Tolerance Enhancement Techniques for
Emerging Memories-Based Deep Neural Networks. In 2021 58th ACM/IEEE De-
sign Automation Conference (DAC). 1075–1080. https://doi.org/10.1109/dac18074.
2021.9586112

[77] Panagiota Nikolaou, Yiannakis Sazeides, Lorena Ndreu, and Marios Kleanthous.
2015. Modeling the implications of DRAM failures and protection techniques
on datacenter TCO. In Proceedings of the 48th International Symposium on Mi-
croarchitecture. 572–584.

[78] Xuefei Ning, Guangjun Ge, Wenshuo Li, Zhenhua Zhu, Yin Zheng, Xiaoming
Chen, Zhen Gao, Yu Wang, and Huazhong Yang. 2021. FTT-NAS: Discovering
fault-tolerant convolutional neural architecture. ACM Transactions on Design
Automation of Electronic Systems (TODAES) 26, 6 (2021), 1–24.

[79] Lois Orosa, Abdullah Giray Yaglikci, Haocong Luo, Ataberk Olgun, Jisung Park,
Hasan Hassan, Minesh Patel, Jeremie S. Kim, and Onur Mutlu. 2021. A Deeper
Look into RowHammer’s Sensitivities:Experimental Analysis of Real DRAM
Chipsand Implications on Future Attacks and Defenses. In MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microarchitecture (Virtual Event,
Greece) (Micro ’21). Association for Computing Machinery, New York, NY, USA,
1182–1197. https://doi.org/10.1145/3466752.3480069

[80] Elbruz Ozen and Alex Orailoglu. 2020. Just Say Zero: Containing Critical
Bit-Error Propagation in Deep Neural Networks With Anomalous Feature Sup-
pression. In 2020 IEEE/ACM International Conference On Computer Aided Design
(ICCAD). 1–9.

[81] Elbruz Ozen and Alex Orailoglu. 2020. Low-Cost Error Detection in Deep
Neural Network Accelerators with Linear Algorithmic Checksums. In Journal
of Electronic Testing: Theory and Applications (JETTA), Vol. 36. Issue 6. https:
//doi.org/10.1007/s10836-020-05920-2

[82] Elbruz Ozen and Alex Orailoglu. 2021. SNR: S queezing N umerical R ange
Defuses Bit Error Vulnerability Surface in Deep Neural Networks. ACM Trans-
actions on Embedded Computing Systems (TECS) 20, 5s (2021), 1–25.

[83] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. In Advances in Neural Information Processing Systems 32,
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett
(Eds.). Curran Associates, Inc., 8024–8035. http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

[84] Arnab K Paul, Ahmad Maroof Karimi, and Feiyi Wang. 2021. Characterizing
machine learning i/o workloads on leadership scale hpc systems. In 2021 29th
International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS). IEEE, 1–8.

[85] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan
Mangard. 2016. DRAMA: Exploiting DRAM addressing for cross-cpu attacks.
In 25th {USENIX$}$ security symposium (${$USENIX$}$ security 16). 565–581.

13

https://doi.org/10.1145/2807591.2807659
https://doi.org/10.1145/2807591.2807659
https://doi.org/10.1145/3458817.3476184
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.1109/dac18072.2020.9218665
https://doi.org/10.1109/ITherm45881.2020.9190321
https://doi.org/10.1109/ITherm45881.2020.9190321
https://doi.org/10.23919/date.2018.8342023
https://doi.org/10.23919/date.2018.8342023
https://doi.org/10.1109/dac18074.2021.9586112
https://doi.org/10.1109/dac18074.2021.9586112
https://doi.org/10.1145/3466752.3480069
https://doi.org/10.1007/s10836-020-05920-2
https://doi.org/10.1007/s10836-020-05920-2
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

SC ’23, November 12–17, 2023, Denver, CO, USA Ali Asgari Khoshouyeh, Florian Geissler, SyedQutub, Michael Paulitsch, Prashant J. Nair, and Karthik Pattabiraman

[86] Jonathan Ponader, Kyle Thomas, Sandip Kundu, and Yan Solihin. 2021. MILR:
Mathematically induced layer recovery for plaintext space error correction of
CNNs. In 2021 51st Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). IEEE, 75–87.

[87] Minghai Qin, Chao Sun, and Dejan Vucinic. 2017. Robustness of neural networks
against storage media errors. arXiv preprint arXiv:1709.06173 (2017).

[88] Mirco Ravanelli, Titouan Parcollet, Peter Plantinga, Aku Rouhe, Samuele Cor-
nell, Loren Lugosch, Cem Subakan, Nauman Dawalatabad, Abdelwahab Heba,
Jianyuan Zhong, Ju-Chieh Chou, Sung-Lin Yeh, Szu-Wei Fu, Chien-Feng Liao,
Elena Rastorgueva, François Grondin, William Aris, Hwidong Na, Yan Gao,
Renato De Mori, and Yoshua Bengio. 2021. SpeechBrain: A General-Purpose
Speech Toolkit. arXiv:2106.04624 [eess.AS] arXiv:2106.04624.

[89] Netanel Raviv, Siddharth Jain, Pulakesh Upadhyaya, Jehoshua Bruck, and Anx-
iao Andrew Jiang. 2020. Codnn - robust neural networks from coded classifica-
tion. In 2020 IEEE International Symposium on Information Theory (ISIT). IEEE,
2688–2693.

[90] Denise Rey and Markus Neuhäuser. 2011. Wilcoxon-Signed-Rank Test. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1658–1659. https://doi.org/10.1007/978-
3-642-04898-2_616

[91] Marco Rios, Flavio Ponzina, Giovanni Ansaloni, Alexandre Levisse, and David
Atienza. 2022. Error Resilient In-Memory Computing Architecture for CNN
Inference on the Edge. In Proceedings of the Great Lakes Symposium on VLSI
2022. 249–254.

[92] Aleksander Rydzewski and Pawel Czarnul. 2021. Human awareness versus
Autonomous Vehicles view: comparison of reaction times during emergencies.
In 2021 IEEE Intelligent Vehicles Symposium (IV). Ieee, 732–739.

[93] Christoph Schorn, Thomas Elsken, Sebastian Vogel, Armin Runge, Andre Gun-
toro, and Gerd Ascheid. 2020. Automated design of error-resilient and hardware-
efficient deep neural networks. Neural Computing and Applications 32, 24 (2020),
18327–18345.

[94] Christoph Schorn, Andre Guntoro, and Gerd Ascheid. 2019. An Efficient Bit-Flip
Resilience Optimization Method for Deep Neural Networks. In 2019 Design,
Automation Test in Europe Conference Exhibition (DATE). 1507–1512. https:
//doi.org/10.23919/date.2019.8714885

[95] Art Sedighi and Milton Smith. 2019. Financial Market Risk. In Fair Scheduling
in High Performance Computing Environments. Springer, 7–15.

[96] Taniya Siddiqua, Vilas Sridharan, Steven E. Raasch, Nathan DeBardeleben,
Kurt B. Ferreira, Scott Levy, Elisabeth Baseman, and Qiang Guan. 2017. Lifetime
memory reliability data from the field. In 2017 IEEE International Symposium
on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT). 1–6.
https://doi.org/10.1109/dft.2017.8244428

[97] Kevin Siu, Dylan Malone Stuart, Mostafa Mahmoud, and Andreas Moshovos.
2018. Memory Requirements for Convolutional Neural Network Hardware
Accelerators. In 2018 IEEE International Symposium onWorkload Characterization
(IISWC). 111–121. https://doi.org/10.1109/iiswc.2018.8573527

[98] Joseph Sloan, Rakesh Kumar, and Greg Bronevetsky. 2013. An algorithmic
approach to error localization and partial recomputation for low-overhead fault
tolerance. In 2013 43rd Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). 1–12. https://doi.org/10.1109/dsn.2013.6575309

[99] David Snyder, Daniel Garcia-Romero, Alan McCree, Gregory Sell, Daniel Povey,
and Sanjeev Khudanpur. 2018. Spoken Language Recognition using X-vectors.
In Odyssey 2018. 105–111.

[100] Chenchen Song. 2022. Design and Application of Financial Market Op-
tion Pricing System Based on High-Performance Computing and Deep Re-
inforcement Learning. Scientific Programming 2022 (03 Mar 2022), 8525361.
https://doi.org/10.1155/2022/8525361

[101] Vilas Sridharan, Nathan DeBardeleben, Sean Blanchard, Kurt B. Ferreira, Jon
Stearley, John Shalf, and Sudhanva Gurumurthi. 2015. Memory Errors inModern
Systems: The Good, The Bad, and The Ugly. In Proceedings of the Twentieth
International Conference onArchitectural Support for Programming Languages and
Operating Systems (Istanbul, Turkey) (Asplos ’15). Association for Computing
Machinery, New York, NY, USA, 297–310. https://doi.org/10.1145/2694344.
2694348

[102] Vilas Sridharan and Dean Liberty. 2012. A study of DRAM failures in the
field. In SC’12: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. Ieee, 1–11.

[103] Michael B Sullivan, Nirmal Saxena, Mike O’Connor, Donghyuk Lee, Paul Racu-
nas, Saurabh Hukerikar, Timothy Tsai, Siva Kumar Sastry Hari, and Stephen W
Keckler. 2021. Characterizing and Mitigating Soft Errors in GPU DRAM. In
MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture.
641–653.

[104] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
Going deeper with convolutions. In 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 1–9. https://doi.org/10.1109/cvpr.2015.7298594

[105] Dahong Tang and Weimin Zhang. 2007. A Sub-matrix Method For Multiple
Reed-solomon Erasure Coding.

[106] Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. 2010. Collecting
Performance Data with PAPI-C. In Tools for High Performance Computing 2009,
Matthias S. Müller, Michael M. Resch, Alexander Schulz, and Wolfgang E. Nagel
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 157–173.

[107] Aniruddha N Udipi, Naveen Muralimanohar, Rajeev Balsubramonian, Al Davis,
and Norman P Jouppi. 2012. LOT-ECC: Localized and tiered reliability mech-
anisms for commodity memory systems. In 2012 39th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 285–296.

[108] Aniruddha N. Udipi, Naveen Muralimanohar, Rajeev Balsubramonian, Al Davis,
and Norman P. Jouppi. 2012. LOT-ECC: Localized and tiered reliability mech-
anisms for commodity memory systems. In 2012 39th Annual International
Symposium on Computer Architecture (ISCA). 285–296. https://doi.org/10.1109/
isca.2012.6237025

[109] Pulakesh Upadhyaya, Xiaojing Yu, Jacob Mink, Jeffrey Cordero, Palash Parmar,
and A Jiang. 2019. Error correction for hardware-implemented deep neural
networks. In Proc. Non-Volatile Memories Workshop.

[110] Sunil Vadera and Salem Ameen. 2022. Methods for pruning deep neural net-
works. IEEE Access 10 (2022), 63280–63300.

[111] Jonathan Walker. 2016. Peak Car Ownership: The Market Opportunity Of
Electric Automated Mobility Servicesthe Market Opportunity Of Electric Auto-
mated Mobility Services. https://rmi.org/insight/peak-car-ownership-report/.
Accessed: 2021-11-01.

[112] P. Warden. 2018. Speech Commands: A Dataset for Limited-Vocabulary Speech
Recognition. In ArXiv e-prints. arXiv:1804.03209 [cs.CL] https://arxiv.org/abs/
1804.03209

[113] Max AWoodbury. 1950. Inverting modified matrices. Statistical Research Group.
[114] Fan Yao, Adnan Siraj Rakin, and Deliang Fan. 2020. Deephammer: Depleting

the intelligence of deep neural networks through targeted chain of bit flips. In
29th USENIX Security Symposium (USENIX Security 20). 1463–1480.

[115] Jianbo Ye, Xin Lu, Zhe Lin, and James Z Wang. 2018. Rethinking the smaller-
norm-less-informative assumption in channel pruning of convolution layers. In
arXiv preprint arXiv:1802.00124.

[116] Doe Hyun Yoon and Mattan Erez. 2010. Virtualized and flexible ECC for main
memory. In Proceedings of the fifteenth International Conference on Architectural
support for programming languages and operating systems. 397–408.

[117] Kai Zhao, Sheng Di, Sihuan Li, Xin Liang, Yujia Zhai, Jieyang Chen, Kaiming
Ouyang, Franck Cappello, and Zizhong Chen. 2021. FT-CNN: Algorithm-Based
Fault Tolerance for Convolutional Neural Networks. In IEEE Transactions on
Parallel and Distributed Systems, Vol. 32. 1677–1689. https://doi.org/10.1109/
tpds.2020.3043449

14

https://arxiv.org/abs/2106.04624
https://doi.org/10.1007/978-3-642-04898-2_616
https://doi.org/10.1007/978-3-642-04898-2_616
https://doi.org/10.23919/date.2019.8714885
https://doi.org/10.23919/date.2019.8714885
https://doi.org/10.1109/dft.2017.8244428
https://doi.org/10.1109/iiswc.2018.8573527
https://doi.org/10.1109/dsn.2013.6575309
https://doi.org/10.1155/2022/8525361
https://doi.org/10.1145/2694344.2694348
https://doi.org/10.1145/2694344.2694348
https://doi.org/10.1109/cvpr.2015.7298594
https://doi.org/10.1109/isca.2012.6237025
https://doi.org/10.1109/isca.2012.6237025
https://rmi.org/insight/peak-car-ownership-report/
https://arxiv.org/abs/1804.03209
https://arxiv.org/abs/1804.03209
https://arxiv.org/abs/1804.03209
https://doi.org/10.1109/tpds.2020.3043449
https://doi.org/10.1109/tpds.2020.3043449

Appendix: Artifact Description/Artifact Evaluation

ARTIFACT DOI
https://doi.org/10.5281/zenodo.6463989

ARTIFACT IDENTIFICATION
Hereby, we present the software artifacts associated with the sub-
mission to Supercomputing 2023, Structural Coding: A Low-Cost
Scheme to Protect CNNs from Large-Granularity Memory Faults. That
includes the open source implementation of the method as well as
its evaluation.

These artifacts help the reader to reproduce the functional results
accurately. However, the performance results may vary in their
scales depending on the deployment platform without changing
the big picture of the comparison between the different techniques.

REPRODUCIBILITY OF EXPERIMENTS
1 DESCRIPTION
1.1 Check-list (artifact meta information)

• Algorithm: Structural Coding.
• Program: Python code.
• Binary: Docker/singularity image.
• Data set: ImageNet, Google Speech Commands, Mozafari et al., and
our fault injection runs.

• Run-time environment: Slurm, Ubuntu.
• Hardware:Cedar cluster on Compute Canada (now called Alliance),
PC.

• Run-time state: Run-time overhead controlled variables
• Output: Memory footprint overhead, run-time overhead, Silent
Data Corruption (SDC) rates.

• Experiment workflow: Git clone, configure directory, run a script.
• Experiment customization: Yes, can be applied to convolutional
neural networks.

• Publicly available?: Yes.

1.2 How software can be obtained
The source code is available at github:

https://github.com/DependableSystemsLab/structural-coding
The main components of the source code are described in Table 1.

2 EXPERIMENT WORKFLOW
The results are obtained through two steps. In the first step, we
run the experiments and log the measurements. We expect that
to take 240 CPU days. If this become problematic on Chameleon,
they can skip to the latter step and the authors are able to provide
a dataset containing the fault injection experiment raw data. In the
second step we aggregate those logs and write the digested results.
The rest of the instructions here assume that you are working on
an Ubuntu 20.04 machine with SSH access to a slurm cluster and
with docker and singularity installed.

Create a directory on the cluster and specify its SCP address in
the following script (addresses to files are relative to the repository
root):
/build_singularity.sh

Source[:Line] Description
sc.py Coding technique implementation
linearcode/fault.py Memory fault model
injection.py:712 Protected convolution layer
injection.py:810 Protected linear layer
linearcode/map.py Top-level fault injection script
linearcode/analyze.py Result aggregation
linearcode/*_overhead.py Overhead measurements
DDR3/*.xlsx DRAM energy models

Table 1: Source code components

Run the script. This script will create a singularity image from
the docker image and copies it to the cluster. It will also copy the
batch job submission script. Then you need to go to the specified
directory in the cluster and run the following command to spawn
the fault injection experiments:
sbatch script.sh

It will take 2̃40 CPU days to run the experiments. Once the
experiments are done bring the results from the results folder back
to your local machine. Create two directories named home and data
along the results and run the following command to aggregate the
results:
docker run -v home/:/root/ \
-v results/:/code/linearcode/results/ \
-v data/:/code/thesis/data/ \
--env SHARD=ad dsn2022paper165/sc \
./pseudo_slurm_reduce.sh 12

The digest results will be written to the data directory. To run
and aggregate the overhead results on your local machine run the
following command:
./ad_overhead.sh

Again, the digest results will be written to the data directory.
The SDC rate files have two columns, first one showing the SDC
rate and the second showing confidence intervals. The name of the
files are indicative of the model and fault model.

3 EVALUATION AND EXPECTED RESULT
The randomness in the SDC rate results is controlled via a fixed
seed. So you will observer the same SDC rates as in the graphs. The
results for each combination of fault model and protection will be
in the data folder.

The memory footprint overhead results are deterministic and
you will observe the same results as in the paper. However, the time
overhead results may vary based on the configuration of your local
machine. You will be able to confirm the overall order between
the average of results for RADAR, MILR, and SC regarding the
run-time.

4 EXPERIMENT CUSTOMIZATION
Applying structural coding on a typical CNN with near zero effort:
linearcode/autonomy.py
from torchvision.models import resnet50

https://github.com/DependableSystemsLab/structural-coding

Asgari Khoshouyeh, et al.

from linearcode.protection import apply_sc_automatically

model = resnet50(pretrained=True)
print(model)

model = apply_sc_automatically(model, n=256, k=32)
print(model)

5 NOTES
5.1 Run-time overhead controlled variables
We try to minimize the variability of the time measurements by
doing the following:

• Closing all other applications.
• Flushing the disk cache.
• Running the inference 10 times.

5.2 Energy overhead models
The DRAM energy consumption values in linearcode/analyze.py
come from Micron energy models that can be found under the
DDR3 for each neural network.

AUTHOR-CREATED OR MODIFIED
ARTIFACTS:
Artifact 1
Persistent ID: https://github.com/DependableSystemsLab/

structural-coding
Artifact name: Source Code
Citation of artifact: Ali Asgari. (2023).

DependableSystemsLab/structural-coding: Arti-
facts Functional (Version sc2023functional). Zenodo.
https://doi.org/10.5281/zenodo.6463989

Artifact 2
Persistent ID: https://github.com/DependableSystemsLab/

structural-coding/releases/download/
sc2022functional/datasets.zip

Artifact name: Datasets
Citation of artifact: Ali Asgari. (2023).

DependableSystemsLab/structural-coding: Arti-
facts Functional (Version sc2023functional). Zenodo.
https://doi.org/10.5281/zenodo.6463989

Reproduction of the artifact with container: The
artifact is also available as a docker container at
https://hub.docker.com/repository/docker/dsn2022paper165/sc.
The usage is explained in the artifact description.

ARTIFACT DEPENDENCIES REQUIREMENTS
5.3 Experiment Hardware
For the fault injection experiments we used Cedar high perfor-
mance computing cluster. We submit fault injections as batch jobs
allocating a single core and 16GB of memory.We limit the execution
time of the jobs to 18 hours. The cluster uses slurm to orchestrate
the jobs. More details about Cedar can be found in the following
link: https://docs.alliancecan.ca/wiki/Cedar

For the overhead measurements we used a Desktop PC. The
relevant details of this machine is reported in Table 2.

Aspect Specification
CPU Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz

Memory size 16 GB
Memory bandwidth 6400 MiB/s (128 MiB array benchmark)
Disk bandwidth 167.33 MiB/s (502 MB benchmark)
Disk read latency 5.41 milliseconds (iostat -x)
Operating system Ubuntu 20.04.3 LTS

Table 2: Desktop PC hardware details

Python Dependency Version
torchvision 0.10.1
matplotlib 3.5.1
python-papi 5.5.1.5
galois 0.0.24
Table 3: Python dependencies

5.4 Required Hardware
Fault injection experiment code requires a single core of CPU and
16 GB of memory. Performance measurements require a CPU with
performance counters for floating point and DRAM operations.

5.5 Software Requirements
The experiments need Ubuntu 20.04.3 LTS or a similar operating
system. If you choose to run the our docker image, you will not
need to set up the software dependencies and Docker itself will be
a requirement. Otherwise, the experiments require Python version
3 and the packages as listed in Table 3.

The workflow of the experiments as described, require a Slurm
cluster. For the purpose of Artifact Evaluation, the reviewer should
reserve and spawn 64 (recommended) single core machines from
Chameleon cloud (240 CPU days in total are required) with 16 GB
memory and a shared file system. Then, they should set up a Slurm
cluster on the spawned nodes. From there, their workflow will be
the same as what we did to conduct our experiments as described
earlier.

5.6 Datasets
We have chosen the datasets so as they cover multiple media for-
mats, are widely used in the research community, and are easily
accessible.

All the dataset inputs used for evaluation are con-
tained in the docker image. They are also avail-
able at https://github.com/DependableSystemsLab/structural-
coding/releases/download/sc2023functional/datasets.zip . All the
datasets are from public sources available for download.

ARTIFACT INSTALLATION DEPLOYMENT
PROCESS
6 INSTALLATION AND SMALL SCALE DEMO
Please note that lines that are starting with a $ are showing the
commands to enter. Those that did not fit within one line are ex-
tended to the next line with backslash. The rest show the expected

https://docs.alliancecan.ca/wiki/Cedar
https://github.com/DependableSystemsLab/structural-coding/releases/download/sc2023functional/datasets.zip
https://github.com/DependableSystemsLab/structural-coding/releases/download/sc2023functional/datasets.zip

Structural Coding: A Low-Cost Scheme to Protect CNNs from Large-Granularity Memory Faults

output that you need to compare the accuracy or correct with the
ones reported here.

6.1 Running Demo via Docker
Running the resnet50 network without protection with no fault:

$ docker run \
--env CONSTRAINTS="{'dataset': 'imagenet', 'model': 'resnet50', \

'sampler': 'tiny', 'flips': 0, 'protection': 'none'}" \
--env PRINT_STAT=1 dsn2022paper165/sc python map.py

Downloading: "https://download.pytorch.org/models/resnet50-19c8e357.pth"
to /root/.cache/torch/hub/checkpoints/resnet50-19c8e357.pth

100.0%
Done with batch 0 after injection
{'injection': 0, 'model': 'resnet50',
'quantization': False, 'sampler': 'tiny', 'dataset': 'imagenet',
'flips': 0, 'protection': 'none'}
accuracy 0.75 correct 12 all 16
loss 0.060732901096343994

Running the resnet50 network without protection with ‘row‘
fault model:

$ docker run \
--env CONSTRAINTS="{'dataset': 'imagenet', 'model': 'resnet50', \

'sampler': 'tiny', 'flips': 'row', 'protection': 'none'}" \
--env PRINT_STAT=1 dsn2022paper165/sc python map.py

Downloading: "https://download.pytorch.org/models/resnet50-19c8e357.pth"
to /root/.cache/torch/hub/checkpoints/resnet50-19c8e357.pth

100.0%
Done with batch 0 after injection
{'injection': 0, 'model': 'resnet50',
'quantization': False, 'sampler': 'tiny', 'dataset': 'imagenet',
'flips': 'row', 'protection': 'none'}
Injecting 1193 faults at granularity 16
accuracy 0.0 correct 0 all 16
loss 4708924.5

Running the resnet50 network with ‘sc‘ (Structural Coding) protec-
tion with ‘row‘ fault model:

$ docker run \
--env CONSTRAINTS="{'dataset': 'imagenet', 'model': 'resnet50', \

'sampler': 'tiny', 'flips': 'row', 'protection': 'sc'}" \
--env PRINT_STAT=1 dsn2022paper165/sc python map.py

Downloading: "https://download.pytorch.org/models/resnet50-19c8e357.pth"
to /root/.cache/torch/hub/checkpoints/resnet50-19c8e357.pth

100.0%
Done with batch 0 after injection
{'injection': 0, 'model': 'resnet50',
'quantization': False, 'sampler': 'tiny', 'dataset': 'imagenet',
'flips': 'row', 'protection': 'sc'}
Injecting 1193 faults at granularity 16
accuracy 0.75 correct 12 all 16
loss 0.061373598873615265

Running the resnet50 network with ‘milr‘ (MILR) protection with
‘row‘ fault model:

$ docker run \
--env CONSTRAINTS="{'dataset': 'imagenet', 'model': 'resnet50', \

'sampler': 'tiny', 'flips': 'row', 'protection': 'milr'}" \
--env PRINT_STAT=1 dsn2022paper165/sc python map.py

Downloading: "https://download.pytorch.org/models/resnet50-19c8e357.pth"
to /root/.cache/torch/hub/checkpoints/resnet50-19c8e357.pth

100.0%

Done with batch 0 after injection
{'injection': 0, 'model': 'resnet50',
'quantization': False, 'sampler': 'tiny', 'dataset': 'imagenet',
'flips': 'row', 'protection': 'milr'}
Injecting 1193 faults at granularity 16
accuracy 0.75 correct 12 all 16
loss 0.06021653115749359

6.2 Run using Python virtual environment
Assuming ubuntu linux, create a virtual environment and activate
it:
python3.8 -m venv venv
source venv/bin/activate
pip install --upgrade pip

Within the root directory of the code, install the project require-
ments:
pip install -r requirements.txt

Set the PYTHONPATH environment variable:
export PYTHONPATH=`pwd`

Navigate to the experiment subdirectory:
cd linearcode

You can run the example experiment commands:
$ export CONSTRAINTS="{'dataset': 'imagenet', 'model': 'resnet50', \
'sampler': 'tiny', 'flips': 'row', 'protection': 'milr'}"
$ export PRINT_STAT=1; python map.py
{'injection': 0, 'model': 'resnet50',
'quantization': False, 'sampler': 'tiny', 'dataset': 'imagenet',
'flips': 'row', 'protection': 'milr'}

Injecting 1193 faults at granularity 16
Done with batch 0 after injection
accuracy 0.75 correct 12 all 16
loss 0.06021653115749359

OTHER NOTES
The authors are still trying to validate the described experiment
workflow on Chameleon cloud and the described commands may
need minor changes. If the fault injection experiments turn out to
take a lot of time due to low availability of resources, the authors
are able to publish a dataset containing the fault injection raw data
and the reviewers can reproduce the results from that dataset.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 DRAM-based Memory Systems
	2.2 Memory Faults in DRAM systems
	2.3 Syndrome-based Error Correction
	2.4 Silent Data Corruption for CNN classifiers
	2.5 Real-time needs of Machine Learning

	3 Fault Modelling
	4 Structural Coding (SC)
	4.1 Challenges
	4.2 Overview of SC
	4.3 Syndrome-based Error Correction
	4.4 Adding Erasure Codes
	4.5 Implementation

	5 Evaluation
	5.1 Experimental Setup
	5.2 Results
	5.3 RQ8 – Energy consumption

	6 Discussion
	7 Related Work
	8 Conclusion
	References
	1 Description
	1.1 Check-list (artifact meta information)
	1.2 How software can be obtained

	2 Experiment workflow
	3 Evaluation and expected result
	4 Experiment customization
	5 Notes
	5.1 Run-time overhead controlled variables
	5.2 Energy overhead models
	5.3 Experiment Hardware
	5.4 Required Hardware
	5.5 Software Requirements
	5.6 Datasets

	6 Installation and small scale demo
	6.1 Running Demo via Docker
	6.2 Run using Python virtual environment

