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Abstract—Graphics Processing Units (GPUs), while offering
exceptional performance for CNN inference tasks, are susceptible
to both transient and permanent hardware faults due to the
integration of numerous processing elements and advancements
in technology scaling. This paper proposes a novel and cost-
effective fault mitigation technique, called Sparsity-aware Fault
Tolerance (SparseFT), to ensure reliable CNN inference on GPUs.
SparseFT leverages inherent sparsity in the activation maps to
detect and correct errors on the processing elements without
hardware redundancy. By exploiting the characteristic of dot-
products, where multiplications with zero operands are ineffec-
tual, SparseFT dynamically duplicates an effectual computation
(i.e., a multiplication with non-zero operands) to the processing
element initially assigned to the ineffectual one. It then compares
the duplicated computation results to detect errors. Experimental
results demonstrate that SparseFT achieves more than 97% error
detection coverage with less than 1% performance overhead for
the state-of-the-art CNN models.

Index Terms—Reliability, CNN, GPU, Sparsity

I. INTRODUCTION

The rapid development of Deep Neural Networks (DNNs)

has made them essential for safety-critical applications, such

as self-driving cars and autonomous drones. These applications

often rely on Graphics Processing Units (GPUs) for executing

DNNs, as GPUs offer high-performance capabilities. In addi-

tion to performance and versatility, safety-critical applications

also require a high degree of hardware resiliency [1]. Unfor-

tunately, ensuring compute resiliency for GPUs is a complex

task, often involving significant area and power overheads

due to redundant computations such as time and hardware

redundancy [2].
To overcome this problem, this paper proposes Sparsity-

aware Fault Tolerance (SparseFT), a novel fault mitigation

technique without duplicating hardware and/or instructions. To

this end, SparseFT exploits the insight that the activation and

weight maps are sparse (i.e., zero valued) in CNN models.

The activation map includes many zero values as the activation

function, such as Rectified Linear Unit (ReLU), converts neg-

ative convolution outputs into zero. The weight maps can also
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be sparse with pruning techniques that remove unimportant

weights.

Due to large populations of zero values in activation and

weight maps, some threads may become ineffectual in the

warp. For example, when performing the dot-product in a

CONV layer, all threads within a warp execute the FMA

(Fused-Multiply and Add) instruction, whose operation is

expressed as C = C + A × B. If operand A or B of some

threads is zero, the result C is not updated, rendering them

ineffectual. A typical GPU architecture does not allow the

operation of a thread within a warp to be skipped, even if

the thread is ineffectual. As a result, a warp with several

ineffectual threads can cause the processing elements to be

underutilized. Motivated by these observations, this paper

improves GPU reliability by repurposing ineffectual threads

as DMR.

Our experimental results show that the error detection

coverage averages 66% across all popular CNN models when

using only activation sparsity. By exploiting the sparsity in

both activation and weight, the error detection coverage of

SparseFT reaches around 99% for all popular CNN models.

II. ERROR DETECTION

SparseFT orchestrates a DMR-like execution dynamically

by duplicating the operands of an effectual thread into one

of the ineffectual threads within a warp. Since threads in a

warp execute the same instruction, they will produce identical
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Fig. 1. Overview of fault detection mechanism of SparseFT. (a) The operation
of processing elements in an SM without fault detection. (b) The operation
of processing elements in an SM with fault detection.
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Streaming Multiprocessor (SM)
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Fig. 2. Error correction and fault isolation. In this example, we assume there
are two voting group in an SM, each containing four cores. (a) An Error is
detected in the computation on cores 3 and 4. (b) An erroneous computation
is broadcasted to all cores of a voting group to determine a faulty core. (c)
A faulty core (core 3) is isolated by re-mapping an effectual thread to a non-
faulty core initially mapped to an ineffectual thread.

computation results as long as they use the same operands. If

an error occurs during the thread execution, the two threads

may produce different results for the same operands, which

enables SparseFT to detect errors.

Figure 1 shows an example of SparseFT applied to an SM

with eight cores. In this example, each thread running on a

core performs the multiplication operation. Among the eight

threads, four of them are ineffectual because of sparsity (Fig-

ure 1-(a)). Figure 1-(b) illustrates a dynamically constructed

DMR execution in which operands of effectual threads are

duplicated to their adjacent ineffectual thread. For example,

a thread running on core 1 uses the non-zero operands of

its adjacent thread running on core 2. Then, the two threads

mapped to the core 1 and 2 execute the same instruction (i.e.,

multiplication) with the same operands. Thus, by comparing

the results of the duplicated computations on two cores,

SparseFT can detect errors at run-time.

III. ERROR CORRECTION AND FAULT ISOLATION

If an error is detected during the error detection phase,

SparseFT re-executes the computation on a DMR core-pair

in a lock-step fashion to correct an error. If the computation

results do not match again, the error may be caused by

a permanent fault. In this case, SparseFT broadcasts the

computation into more than three cores to identify a faulty

core with a voting mechanism. After identifying a faulty core,

SparseFT isolates it by re-mapping the effectual computation

initially mapped to the faulty core into a non-faulty one.

In Figure 2-(a), the core-pairs (1, 2), (3, 4), (5, 6), and (7,

8) perform the multiplication with a DMR-like execution for

error detection. As the computation result of core-pair (3, 4)

does not match, an error may occur in one of those cores.

To diagnose which core is faulty, SparseFT broadcasts the

erroneous computation to all cores of the voting group (Fig 2-

(b)). In the example, cores 1, 2, 3, and 4 are the same voting

group and execute an instruction with the same operands. If

there is no faulty core, all results of the cores are the same.

However, the result of core 3 differs from other cores in the

example. Thus, SparseFT concludes that core 3 is faulty.
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Fig. 3. Error detection coverage for CONV layers of CNN models with
difference weight pruning ratio.

Figure 2-(c) shows an example of fault isolation with

sparsity-aware computation re-mapping of the SparseFT. In

this example, SparseFT re-mapped the faulty core(core 3)

to the adjacent core(core 4) initially assigned to ineffectual

computation and non-faulty to isolate the faulty core.

IV. EVALUATION

To evaluate error detection coverage, we collect informa-

tion about the instruction’s operands using NVBit [3] for

the CUDA core. We define error detection coverage as the

percentage of multiplication instructions that SparseFT can

protect. We compare the error detection coverage for the CNN

models pruned with different target pruning rate.

Figure 3 shows the error detection coverage of SpraseFT for

four different pruning rates, 0/30/50/80%. The error detection

coverage increases proportionally as the target pruning rate

increases. This is because, as the weight pruning rate increases,

ineffectual thread in the warp also increases due to weight

sparsity. Also, error detection coverage is higher in the latter

layers compared to the early layers. This is because the

activation sparsity increases in the later layers. As a result,

the average error detection coverage of SparseFT for the three

CNN models with pruning rates 0/30/50/80% are 66%, 77%,

88%, and 97%, respectively.
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