REDUCING REFRESH POWER IN MOBILE DEVICES WITH MORPHABLE ECC

DSN-45 06/24/2015 Rio de Janeiro, Brazil

Chiachen Chou, Georgia Tech

Prashant Nair, Georgia Tech Moinuddin K. Qureshi, Georgia Tech

Smartphone usability: battery life

Smartphone usability: battery life

30% energy goes to memory system in idle mode

Smartphone usability: battery life

30% energy goes to memory system in idle mode

Samsung Galaxy S2 (2011) **1GB** DRAM

Samsung Galaxy S6 (2015) 3GB DRAM

Smartphone usability: battery life

30% energy goes to memory system in idle mode

Samsung Galaxy S2 (2011) 1GB DRAM Samsung Galaxy S6 (2015) 3GB DRAM

DRAM Refresh accounts for significant energy consumption in idle mode

Current standard refresh rate: 64ms

Use ECC to protect DRAM from refresh errors

ECC-6 INCURS LONG LATENCY FOR READ

Decoder latency is on the critical path

ECC-6 INCURS LONG LATENCY FOR READ

Decoder latency is on the critical path

ECC-6 INCURS LONG LATENCY FOR READ

Decoder latency is on the critical path

We want energy reduction in idle mode, and maintain performance in active mode

AGENDA

- Introduction
- Background
 - DRAM 101
 - Refresh and Errors
 - Error Correction Codes (ECC)
- Morphable ECC
- Results
- Summary

DRAM 101

- Dynamic Random Access Memory (DRAM)
- DRAM stores data as charge on capacitor

DRAM 101

- Dynamic Random Access Memory (DRAM)
- DRAM stores data as charge on capacitor

DRAM 101

- Dynamic Random Access Memory (DRAM)
- DRAM stores data as charge on capacitor

DRAM is a volatile memory \rightarrow charges leak quickly

DRAM maintains data integrity by Refresh operations

JEDEC: 64ms

DRAM maintains data integrity by Refresh operations

JEDEC: 64ms

DRAM maintains data integrity by Refresh operations

JEDEC: $64ms \rightarrow 1s$

DRAM maintains data integrity by Refresh operations

JEDEC: 64ms →1s

Lowering refresh rate reduces power

DRAM maintains data integrity by Refresh operations

Lowering refresh rate increases bit error rate

ECC: tolerate refresh errors

Q: how many errors should the system tolerate?

ECC: tolerate refresh errors

Q: how many errors should the system tolerate?

- ECC: tolerate refresh errors
- Q: how many errors should the system tolerate?
- \rightarrow What should be the strength of the ECC?

ECC: tolerate refresh errors

- Q: how many errors should the system tolerate?
- \rightarrow What should be the strength of the ECC?

ECC Strength	Line Failure	System Failure
ECC-1	1.8 X 10 ⁻²	1.0
ECC-2	9.8 X 10 ⁻⁷	1.0
ECC-4	1.6 X 10 ⁻¹¹	2.7 X 10 ⁻⁴
ECC-5	4.9 X 10 ⁻¹⁴	8.1 X 10 ⁻⁷
ECC-6	1.2 X 10 ⁻¹⁶	1.8 X 10 ⁻⁹

ECC: tolerate refresh errors

- Q: how many errors should the system tolerate?
- \rightarrow What should be the strength of the ECC?

е	System Failure	Line Failure	ECC Strength
	1.0	1.8 X 10 ⁻²	ECC-1
	1.0	9.8 X 10 ⁻⁷	ECC-2
	2.7 X 10 ⁻⁴	1.6 X 10 ⁻¹¹	ECC-4
	8.1 X 10 ⁻⁷	4.9 X 10 ⁻¹⁴	ECC-5
	1.8 X 10 ⁻⁹	1.2 X 10 ⁻¹⁶	ECC-6
(

ECC: tolerate refresh errors

- Q: how many errors should the system tolerate?
- \rightarrow What should be the strength of the ECC?

ECC Strength	Line Failure	System Failure	
ECC-1	1.8 X 10 ⁻²	1.0	
ECC-2	9.8 X 10 ⁻⁷	1.0	
ECC-4	1.6 X 10 ⁻¹¹	2.7 X 10 ⁻⁴	
ECC-5	4.9 X 10 ⁻¹⁴	8.1 X 10 ⁻⁷	/
ECC-6	1.2 X 10 ⁻¹⁶	1.8 X 10 ⁻⁹	/
			Good

Refresh rate of 1s needs ECC-6 for errors

DRAWBACKS OF ECC-6

Single Core, 1MB Cache, 1GB DRAM

DRAWBACKS OF ECC-6

Single Core, 1MB Cache, 1GB DRAM

ECC-6 incurs huge performance degradation

WHAT IS THE IDEAL CASE?

	Goal
Active Mode	Performance (Refresh Power Negligible)
Idle Mode	Energy (Performance Not Critical)

WHAT IS THE IDEAL CASE?

	Goal	Strong ECC
Active Mode	Performance (Refresh Power Negligible)	Bad
Idle Mode	Energy (Performance Not Critical)	Good

WHAT IS THE IDEAL CASE?

	Goal	Strong ECC	Weak ECC
Active Mode	Performance (Refresh Power Negligible)	X Bad	Good
Idle Mode	Energy (Performance Not Critical)	Good	× Bad
WHAT IS THE IDEAL CASE?

	Goal	Strong ECC	Weak ECC
Active Mode	Performance (Refresh Power Negligible)	Bad	Good
Idle Mode	Energy (Performance Not Critical)	Good	X Bad

Ideally, we want ECC-1 in active mode, and ECC-6 in idle mode

WHAT IS THE IDEAL CASE?

	Goal	Strong ECC	Weak ECC
Active Mode	Performance (Refresh Power Negligible)	?	Good
Idle Mode	Energy (Performance Not Critical)	Good	?

Ideally, we want ECC-1 in active mode, and ECC-6 in idle mode

AGENDA

- Introduction
- Background

• Morphable ECC (MECC)

- Overview
- Design
- ECC Support and Storage
- Results
- Summary

Active

Memory Controller

MECC ECC-6

60 bits

AGENDA

- Introduction
- Background
- Morphable ECC
- Results
- Summary

METHODOLOGY

- USIMM for DRAM model and power
- Baseline: No Error Correction Code
- SPEC2006 (exclude mcf): low, medium, high MPKI workloads

POWER AND ENERGY CONSUMPTION

Parameters	Values	Description
VDD	1.7 V	Operating Voltage
IDD0	95 mA	1 bank active precharge current
IDD2P	0.6 mA	Precharge power-down standby current
IDD3P	3 mA	Active power-down standby current
IDD4	135 mA	Burst read/write: 1 bank active
IDD5	100 mA	Auto refresh
IDD8	1.3 mA	Self refresh

Power in Idle Mode = ($P_{refresh original} * T_{original} / T_{MECC}$) + P_{other}

Med MPKI

MECC limits the degradation within 2%

POWER SAVING IN IDLE MODE

MECC saves idle power by 50%

TOTAL ENERGY SAVINGS

MECC saves total energy by 15%

ECC-UPGRADE

ECC-UPGRADE

ECC-UPGRADE

Can we enhance the ECC-Upgrade?

MEMORY DOWNGRADE TRACKING (MDT)

Need ECC-Upgrade

Don't Need ECC-Upgrade

MEMORY DOWNGRADE TRACKING (MDT)

Need ECC-Upgrade

Don't Need ECC-Upgrade

MDT avoids unnecessary ECC-Upgrades

FREQUENT TRANSITION OF ECC STATES

courtesy: Samsung, Bluetooth, Facebook, Twitter
FREQUENT TRANSITION OF ECC STATES

FREQUENT TRANSITION OF ECC STATES

FREQUENT TRANSITION OF ECC STATES

Can we enhance the ECC-Downgrade?

SELECTIVE MEMORY DOWNGRADE (SMD)

SELECTIVE MEMORY DOWNGRADE (SMD)

SELECTIVE MEMORY DOWNGRADE (SMD)

SMD avoids frequent transition of ECCs

EXECUTIVE SUMMARY

- Energy consumption determines the usability of emerging mobile computing devices
- DRAM refresh operations accounts for significant fraction of memory system's energy

	Strong ECC	Weak ECC
Active Mode	Bad	Good
(refresh power negligible)	Performance	Performance
Idle Mode	Huge Energy	No Energy
(performance not critical)	Savings	Saving

 Results: -50% idle power, -15% overall energy, with only 2% performance degradation

EXECUTIVE SUMMARY

- Energy consumption determines the usability of emerging mobile computing devices
- DRAM refresh operations accounts for significant fraction of memory system's energy

	Strong ECC	Weak ECC
Active Mode	Bad	Good
(refresh power negligible)	Performance	Performance
Idle Mode	Huge Energy	No Energy
(performance not critical)	Savings	Saving
	Morphable ECC	

 Results: -50% idle power, -15% overall energy, with only 2% performance degradation

REDUCING REFRESH POWER IN MOBILE DEVICES WITH MORPHABLE ECC

DSN-45 06/24/2015 Rio de Janeiro, Brazil

Chiachen Chou, Georgia Tech

Prashant Nair, Georgia Tech Moinuddin K. Qureshi, Georgia Tech

