
A Case for Multi-Programming�antum Computers
Poulami Das

poulami@gatech.edu
Georgia Tech

Swamit S. Tannu
swamit@gatech.edu

Georgia Tech

Prashant J. Nair
prashantnair@ece.ubc.ca
Univ. of British Columbia

Moinuddin Qureshi
moin@gatech.edu
Georgia Tech

ABSTRACT
Existing and near-term quantum computers face signi�cant reliabil-
ity challenges because of high error rates caused by noise. Such ma-
chines are operated in the Noisy Intermediate Scale Quantum (NISQ)
model of computing. As NISQ machines exhibit high error-rates,
only programs that require a few qubits can be executed reliably.
Therefore, NISQ machines tend to underutilize its resources. In
this paper, we propose to improve the throughput and utilization
of NISQ machines by using multi-programming and enabling the
NISQ machine to concurrently execute multiple workloads.

Multi-programming a NISQ machine is non-trivial. This is be-
cause, a multi-programmed NISQ machine can have an adverse
impact on the reliability of the individual workloads. To enable
multi-programming in a robust manner, we propose three solutions.
First, we develop methods to partition the qubits into multiple re-
liable regions using error information from machine calibration
so that each program can have a fair allocation of reliable qubits.
Second, we observe that when two programs are of unequal lengths,
measurement operations can impact the reliability of the co-running
program. To reduce this interference, we propose a Delayed Instruc-
tion Scheduling (DIS) policy that delays the start of the shorter
program so that all the measurement operations can be performed
at the end. Third, we develop anAdaptive Multi-Programming (AMP)
design that monitors the reliability at runtime and reverts to single
program mode if the reliability impact of multi-programming is
greater than a prede�ned threshold. Our evaluations with IBM-
Q16 show that our proposals can improve resource utilization and
throughput by up to 2x, while limiting the impact on reliability.
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1 INTRODUCTION
Quantum computing can solve classically intractable applications
such as breaking cryptographic codes [37], physics and chem-
istry simulations [7, 20, 32] by using quantum bits (qubits) and
quantum-mechanical properties. Recently, IBM, Intel, and Google
have showcased prototypes comprising of 50, 49, and 72 qubits re-
spectively [13, 14, 16]. The size of quantum computers is expected
to get to hundred(s) of qubits in the near future. Quantum com-
puters require extremely complex control circuitry, sophisticated
microwave devices, cryogenic refrigerators that can maintain tem-
peratures of few milli-kelvins, and shielding from environmental
noise. Therefore, quantum computers are typically accessible to
users via cloud services [2, 9, 34] instead of using a per-user system.

Quantum cloud services provide accessibility, ease of use, and
scalability [2, 9, 23, 34]. Cloud providers try to relieve the users
from resource management tasks by hiding the complexity involved
in operating a quantum computer. The recent advances in quantum
algorithms and hardware have fueled research (and commercial)
interests, and there is an exponential growth in number of users of
quantum computers, far outpacing the growth in number of quan-
tum computers. As the demand for access to quantum computers
grow, this would lead to increasing wait-times, and therefore there
is a need to increase the throughput of quantum computers, so that
the same machine can scale to a larger number of users (or a larger
number of experiments from the same user within a shorter period
of time). In this paper, we study multi-programming as a means to
improve the throughput of near-term quantum computers.

Quantum computers are susceptible to errors. While quantum
computers can be made fault-tolerant using quantum error correc-
tion (QEC) codes, such codes are expensive (20-100 physical qubits
to form a fault-tolerant logical qubit). Therefore, we are unlikely
to see QEC being adopted until quantum computers have several
thousands of qubits. Consequently, near-term quantum computers
are likely to be operated without error correction, in a mode called
Noisy Intermediate-Scale Quantum (NISQ) [31] computing. In the
NISQ model of computing, computations are susceptible to errors
and therefore, an application is executed several times (called trials)
and the �nal answer is determined statistically. The likelihood that
a NISQ machine can execute large programs without encountering
an error is quite small, especially due to high error rates of 2-qubit
gate operations (CNOT) [40].

As CNOT operations dominate most quantum algorithms, we
explain the limitations of CNOT operations on the success rate
of a program using an example. The typical CNOT error-rate of
current machines is in the range of 2% to 4%. Figure 1(a) shows the
probability that a program containing a given number of CNOT
operations can be �nished without the computation encountering
any error. We analyze three di�erent CNOT error-rates, ranging
from 1% (optimistic) to 3% (current). For near-term quantum com-
puters, a program with several tens of CNOT operations will have
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Figure 1: (a) High CNOT error rates on NISQ computers limit the number of operations that can be completed reliably (b)
Intelligent compilers use calibration data to locate reliable qubits but can leave resources underutilized (c) Two programs can
o�er 100% utilization but one will have lower reliability. (d) Two di�erent programs o�er 88% utilization but both are reliable.

an extremely low likelihood of being completed without any error.
Therefore, it is extremely di�cult to run large circuits that use more
qubits and greater circuit-depth. To execute applications reliably,
compilers use gate �delity data obtained from machine calibration
and map programs onto the most reliable qubits [25, 40]. Even then,
only smaller programs with low circuit depths and fewer qubits
execute reliably. The problem continues to persist as the size of
NISQ computers scale because improvements in gate error rates
is extremely slow. Consequently, as shown in Figure 1(b), an ap-
plication tends to utilize only a fraction of the available resources.
The throughput of a NISQ computer can be improved by using the
remaining unused qubits to perform computations. To that end, this
paper advocates multi-programming for quantum computers, such
that multiple independent programs can be executed concurrently
on a NISQ machine to improve the system throughput.

Unlike conventional computers, sharing resources on a NISQ
computer is fundamentally challenging. When multiple programs
execute concurrently on a NISQ machine, the activity of one pro-
gram can negatively a�ect the reliability of a co-executing pro-
gram. So, the interference from resource sharing is not limited to
performance but also dictates the overall �delity of the computa-
tion performed by the NISQ machine. The goal of this paper is to
propose solutions that improve the throughput and utilization of
NISQ machines while limiting the impact on reliability associated
with multi-programming NISQ computers. We study three speci�c
sources of reliability impact and develop policies to mitigate them.

To enable multi-programming on NISQ computers, we �rst study
the problem of developing Fair and Reliable Partitioning (FRP) al-
gorithms. Existing compiler policies reduce the cost of communi-
cation to overcome the restricted connectivity on NISQ comput-
ers [19, 38, 41] and perform computations on qubits and links with
the lowest error rates [25, 40]. For a NISQ computer that simul-
taneously executes two or more applications, the compiler may
not be able to optimize the reliability of each individual applica-
tion and an application may end up with executing on error-prone
qubits. We observe that not all reliable qubits are co-located in
space. Thus, even an intelligent compiler cannot completely avoid
all the weak links and qubits. Hence, it is likely that some of the
reliable qubits remain unused. However, as shown in Figure 1(c),
the reliability of at least one of the programs could be very low on
a multi-programmed NISQ computer with 100% utilization. On the

contrary, if there exists two separate regions, each with reliable
qubits and links, it is possible to map two programs separately onto
these regions. As shown in Figure 1(d), such a scheme would help
improve qubit utilization without compromising the reliability of
either of the two programs.

The second problem we try to address is to reduce the impact of
scheduling the measurement operations. When two programs of
unequal lengths are executed concurrently, and the shorter program
�nishes, then the measurement operations of the shorter program
can interfere with the longer program. We propose the Delayed
Instruction Scheduling (DIS) policy that delays the scheduling of the
shorter program such that both programs �nish their gate opera-
tions at similar times, and then performs the qubit measurements.

The third problem we try to address is proactively ensure robust-
ness under multi-programming. When multiple programs are run
concurrently, the activity of the NISQ machine is increased, which
can lead to increased cross talk noise and cause the error rate of
the operations to increase. To limit the reliability impact due to
multi-programming, we develop an Adaptive Multi-Programming
(AMP) design, which monitors the reliability impact at runtime,
and reverts the system to isolated execution if the reliability im-
pact due to multi-programming exceeds a certain threshold. AMP
allows the system to use multi-programming when it is bene�cial,
while ensuring that the reliability of programs that are sensitive to
concurrency can still be maintained at conventional levels.

Overall, this paper makes the following contributions:
(1) We advocate the use of multi-programming to improve the
utilization and throughput of NISQ computers, whereby the qubits
are used to concurrently run multiple workloads.
(2) We develop Fair and Reliable Partitioning (FRP) algorithms that
try to split the qubit resources into multiple groups in a fair manner,
while avoiding the qubits/links that have extremely high error rates.
(3) We develop the Delayed Instruction Scheduling (DIS) policy to
mitigate the interference of measurement operations of one pro-
gram on the gate operations of the co-running programs.
(4) We propose an Adaptive Multi-Programming (AMP) design that
monitors the reliability impact at runtime and reverts the system
to isolated execution mode if the reliability impact is high.

Our experiments on the IBM quantum computer IBM-Q16 show
that multi-programming can improve the throughput and qubit
utilization up to 2x with minimal impact on reliability.
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2 BACKGROUND AND MOTIVATION
2.1 Basics of Quantum Computing
Quantum computers can solve problems deemed hard on conven-
tional computers [7, 11, 20, 32, 37]. A qubit is the basic unit of
information on a quantum computer. Qubits can be in a superpo-
sition of multiple states which provides parallelism. For instance,
a system with n qubits can exist in a superposition of 2n possible
states at the same time. Quantum computers use entanglement to
create a correlated state over multiple qubits, where manipulating
one of them directly impacts the other qubits. In most quantum
algorithms, qubits are initialized in a superposition state, manipu-
lated through quantum gate operations, and measured at the end
of the program. Measurements collapse qubits to a classical state.

2.2 Errors in Quantum Computers
Qubits are extremely sensitive to noise and prone to errors. Qubit
errors can be broadly classi�ed into the following categories:
(1) Coherence errors: Qubits retain their quantum state only for
an extremely small duration of time (coherence time), limiting the
circuit depth that can be run on a NISQ machine.
(2) Operational errors: Quantum gate operations are imperfect and
cannot be applied with precise accuracy. Operational errors or gate
errors refer to errors that occur during computations.
(3) Measurement errors: Qubits are measured to retrieve the �nal
result of a quantum program. Measurement errors lead to incorrect
results even if a program does not encounter other errors.
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Figure 2: Publicly available quantum computers (a) IBMQX4
Tenerife architecture (b) IBM Q16 Melbourne architecture

2.3 NISQ Model of Computing
Quantum computers can be protected against errors by leverag-
ing Quantum Error Correction (QEC) codes [8, 10, 17], however,
such codes require an overhead of 20x-100x (physical qubits per
fault-tolerant qubit), so we are unlikely to see systems with such
codes until the system reaches a capacity of several thousands of
qubits. Figure 2 shows the architectures of current generation of
quantum computers from IBM, QX4 Tenerife and Q16 Melbourne.1
Quantum computers are expected to scale up to hundreds of qubits
in near future [31]. Scaling quantum computers to a large number
of qubits is extremely challenging primarily due to two reasons.
Firstly, additional noise channels are introduced as systems grow
in size. Secondly, the complexity of the circuitry used to control
individual qubits increases. Current quantum computers are op-
erated in a mode called Noisy Intermediate Scale Quantum (NISQ)
computing [13, 14, 16]. We are likely to see NISQ machines over
the next decade and such machines are expected to solve important
algorithms such as Quantum Approximate Optimization Algorithm
(QAOA) [6] and Variational Quantum Eigensolver (VQE) [22, 30].
1IBM Q16 Melbourne is a publicly accessible 14-qubit quantum computer from IBM
based on superconducting qubits. For the rest of the paper, we refer it as IBM Q16.

2.4 Application Fidelity Under NISQ
Reliably executing applications on NISQ machines is hard because
of very high error rates and lack of fault-tolerance. Hence, pro-
grams are executed multiple times. Each execution is called a trial.
The application reliability of a NISQ application, measured as the
Probability of a Successful Trial (PST) [40], depends on several fac-
tors, such as the number of quantum gates and circuit depth. It
also depends on the link error rates, coherence times, and mea-
surement errors of the physical qubits on which the program is
mapped [25, 40]. We measure the PST of programs comprising of
two-qubit gate and measurement on IBM QX4 and IBM Q16.

Figure 3: Experimental demonstration of impact of gate er-
rors on program�delity. Both IBMQX4 (left) and Q16 (right)
show an decrease in the program success rate (Probability of
Successful Trial) as the number of operations increase.

We form a synthetic program that performs a speci�ed number
(N) of CNOT operations on a single link and measure the target
qubit. The probability that a random guess will provide a correct
answer is 50%. Figure 3 shows the probability of getting the correct
answer as the number of CNOT operations in the program is varied
for IBM-QX4 and IBM-Q16. We note that once the program has
only few tens of CNOT operations, the output of the machine is no
better than a random guess. A program can use the CNOT budget by
performing few CNOT operations on several qubits (shorter depth)
or several CNOT operation on a few qubits of qubits (longer depth).
However, a program that has a large number of CNOT operations
on a large number of qubits will have intolerable error rates.

Program Cloud Services

Server

quantum 
object

Data
DistributionAnalyze

Infer 
answer

User

Collect 
Results

Figure 4: Cloud based user-quantum computer interface

2.5 Quantum Cloud Services and Challenges
Users can access quantum computers through cloud services as
shown in Figure 4. Quantum computers have huge deployment,
maintenance, and operating costs. This originates from the fun-
damental resources and infrastructure required to run a quantum
computer such as cryogenic coolers, superconducting wires, mi-
crowave devices, and sophisticated control circuitry. Cloud services
ensure ease of use where users can take their hands o� from ac-
tual resource management tasks. However, quantum cloud services
faces a few key challenges.
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2.5.1 Resource Underutilization: Qubit error rates improve extremely
slowly and currently 2-qubit gate error rates range in the order of
2-4%. Consequently, only a few operations (ranging in tens) can
be executed without encountering errors. The reliability of work-
loads using larger number of qubits, with greater circuit depths
is much lower than smaller workloads. Alternately, smaller work-
loads can signi�cantly leave resources unused on the quantum chip.
The resource underutilization becomes more signi�cant as NISQ
computers grow in size and more qubits are available on a quantum
chip. For example, allocating a 4-qubit program on IBM Q16 can
lead to more than 70% resource underutilization.

Figure 5: Pending tra�c for IBM Q16 on di�erent days

2.5.2 Contention for�antum Computers: Quantum computing
research has accelerated in recent years with demonstrations of
prototypes and investments from the industry to leverage these
machines for commercial advantage. This has led to an increase in
the number of active researchers from a wide spectrum of scienti�c
domains. However, the rate at which quantum computers are being
developed lags the rate of increase in the number of users. The
limited number of systems leads to increasing contention for access
and wait times in the queues can be large as shown in Figure 5.
Increasing the rate at which a quantum computer services the
requests can allow the system to handle a larger number of requests.

2.6 Proposal: Multi-programming NISQ
In this paper, we advocate multi-programming for improving the
utilization of NISQ computers and show that it is practical to con-
currently run multiple applications instead of letting the unused
qubits remain idle. The increased throughput has added bene�ts for
cloud providers as it helps in servicing jobs quicker as the number
of users grow and quantum computers remain limited in number.
However, multi-programming a NISQ computer is non-trivial as
it can directly impact individual application reliability. When a
NISQ computer is multi-programmed, its physical qubits must be
distributed between the applications. But, physical qubits exhibit
variance in error rates and current compilers [25, 40] account for
such variation while performing qubit allocation and movement to
improve the reliability. Partitioning a quantum computer to share re-
sources may eventually allocate weaker qubits to an application and
restrict a compiler’s optimization capabilities for choosing reliable
qubit movement paths. A degradation in reliability may also result
from additional unintended crosstalk channels [35] and on-going
measurement operations. Therefore, multi-programming must be
adaptive with a mechanism to detect degradation in reliability. We
identify three challenges in multi-programming NISQ machines
and provide e�ective solutions. We describe our evaluation method-
ology before discussing our solutions.

3 EVALUATION METHODOLOGY
We perform our evaluations on the IBM Q16 quantum computer. To
ensure fairness, for any two workloads which are used to compare
reliability, all experiments are performed in the same calibration
cycle and by launching experiments one after another.

3.1 Figure-of-merit: Trial Reduction Factor
Multi-programming enables sharing of quantum resources and im-
proves machine throughput. When the throughput increases, the
e�ective number of trials performed on both programs combined
is reduced. We de�ne Trial Reduction Factor (TRF) as the ratio of
the number of trials performed when both programs execute indi-
vidually (baseline) to the total number of trials performed when
the programs share resources. If T independenti is the number of
trials performed when the ith program is executed independently
and T sharedi j is the number of trials performed when ith and jth

programs share resources, their TRF is de�ned by Equation (1).

TRFi j =
T
independent
i +T

independent
j

T sharedi j
(1)

3.2 Quantifying Application Reliability
To evaluate application reliability we use the metric: Probability of
a Successful Trial (PST), de�ned as the ratio of number of success-
ful trials to the total number of trials performed [40]. For greater
reliability, a higher PST is desirable.

PST =
Number of successful trials

Total number of trials
(2)

3.3 NISQ Benchmarks
For our baseline we use NISQ benchmarks derived from prior works
on noise aware compilation policies [25, 40] described in Table 1.
Since out of 14 qubits on IBM Q16, only a few of them o�er low
gate and measurement error rates, we explore small benchmarks.
For the evaluation of our proposed policies for multi-programming,
we use a set of workload mixes derived from the NISQ benchmarks
speci�ed in Table 1.

Table 1: NISQ Benchmarks

Benchmark Description Qubits Number of Number of
Instructions CNOTs

bv_n3 Bernstein-Vazirani [1] 3 8 2
bv_n4 Bernstein-Vazirani [1] 4 11 3

To�oli_n3 To�oli gate 3 15 6
Fredkin_n3 Fredkin gate 3 16 8
Peres_n3 Peres gate 3 16 7

3.4 Baseline Setup
For the baseline, we estimate the PST of each NISQ benchmark by
executing it independently on IBM Q16 for 8192 trials using the
best qubit allocation derived from calibration data.
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3.5 Overview of the Proposed Framework
Our evaluation framework is shown in Figure 6. It accepts two
workloads W1 and W2 (equivalent to two independent jobs) and
the most recent calibration data. Depending upon the number of
qubits required for each workload, the partitioning algorithm de-
cides if they can both be executed reliably on the given quantum
computer. If there exists two regions where W1 and W2 can be
mapped and executed reliably, they are compiled together using
the qubit allocations received from the partitioning algorithm and
executed. The PST of each individual workload is calculated. The
impact on reliability of each program is computed by comparing
with the PST obtained by individually executing the same program
using the best qubit allocation (baseline).

Part i t ion ing A lgor i thm: 
Locate two reliable partitions 
with X and Y qubits each

Calibration DataW1 W2

Partitions 
exist?

Yes Compile 
W1, W2 
together

Compile 
W1, W2 
separate

No

IBM Q16
Melbourne

Perform N trials

Compute 
PST

Two partitions

W1: Workload #1
X qubits

W2: Workload #2
Y qubits

W1 PST

W2 PST

Figure 6: Overview of the proposed multi-programming
framework. The partitioning algorithm locates two reliable
regions on theNISQ computer, with X and Y qubits each. If it
can �nd two such regions, both workloads execute together.
If it is unable to locate the requested regions, it defaults to
the baseline and each benchmark is run individually

4 FAIR AND RELIABLE PARTITIONING
We advocate multi-programming NISQ computers to improve the
throughput by executing multiple programs concurrently. Since
the reliability of a NISQ application depends on the physical qubits
allocated to the program, it is important to ensure fairness while
allocating qubits to multiple programs in a shared environment.

4.1 Challenges in Fair Resource Allocation
The challenges in fair resource allocation arises from the uniqueness
of each physical qubit that is exhibited in the non-uniformity in
coherence times, gate and measurement error rates. Furthermore,
these error rates vary in time. Thus, the physical qubits allocated
to a program directly impacts its reliability [25, 40]. Compilers
account for this variation to perform qubit allocation and select
qubit movement paths to enable SWAP operations.

4.1.1 Restrictions on �bit Allocation: Multi-programming con-
strains the compiler to use a restricted set of physical qubits, limiting
its capability to optimize for greater reliability. In order to under-
stand the restrictions imposed on qubit allocation, we look at the
allocations of a 4-qubit program P1 and a 5-qubit program P2 on
a hypothetical NISQ architecture. As shown in Figure 7(a), when
mapped independently, P1 is allocated physical qubits A, B, I, and J
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2 2 2
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Figure 7: (a) Qubit allocation of a 4-qubit program P1 and a
5-qubit program P2. (b) Qubit allocations of P1 and P2 on a
multi-programmed NISQ computer. Each node represents a
qubit and label on each edge represents the link error rate.

whereas, P2 is allocated physical qubits A, B, C, I, and J. Figure 7(b)
shows a qubit allocation for both programs together. The average
link error rate of the regions allocated to P2 for independent exe-
cution and in the shared environment are 2.2 and 2.6 respectively.
The allocation in the shared environment is 18% weaker.

A B C

D E

B

A C

D E

Example Program
1.  cnot    q0,  q4
2.  cnot    q1,  q4
3.  cnot    q2,  q4 
4.  cnot    q3,  q4

q0 q4 q1

q2 q3

q0 q1

q2 q3

q4

Number of SWAPs : 1 Number of SWAPs : 0
(b) (c)(a)

Figure 8: (a) An example NISQ program (b) this topology re-
quires 1 SWAP to perform Instruction 4 (c) this topology does
not require any extra SWAP to execute the program

4.1.2 Restrictions on �bit Movement: Application reliability not
only depends on qubit allocation, but also depends on program
characteristics and network topology of the allocated region. A
well-connected region can minimize the total cost of SWAPs in-
serted to bring two non-adjacent qubits physically next to each
other so that a CNOT gate can be executed. For instance, Figure 8
shows a program that executes 4 CNOT instructions and two possi-
ble network topologies. In the partition shown in Figure 8(b), the
compiler needs to insert a SWAP operation in order to perform the
4th CNOT instruction. However, a better connected region as shown
in Figure 8(c) requires lesser number of SWAPs (in this case 0). When
a quantum computer is partitioned for multi-programming, applica-
tion reliability can vary based upon the number of SWAPs inserted.
This depends on the network topology of the assigned partition.

4.2 Qubit Allocation for Multi-programs
We study the average 2-qubit gate error rate on each physical link
and measurement error rates for each qubit of IBM Q16 as shown
in Figure 9.2 We make two key observations:
• Not all good links are spatially co-located. A region with good
links has weak links as well. For example, qubits Q2 and Q12 have
two links each with error rates of 4%, but the link that connects
them physically has an error rate of 17%.

2Error rates in this Figure are based on calibration data collected on 03.14.2018
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• Qubits with good connectivity and reliable links can still su�er
from high measurement error rates (for example: Q3, Q11).

• Qubits connected to link(s) with low gate error rate(s) do not
necessarily have a large degree of freedom (number of links) and
may also su�er from high measurement errors (for example: Q7 ).

We observe similar trends on IBMQ20 based on previously reported
numbers [40] since recent data is unavailable.
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3
34

5
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4
44

1721

Q0 Q1 Q2 Q3 Q4 Q5 Q6

Q7Q8Q9Q10Q11Q12Q13

Figure 9: Error rates on IBM Q16 architecture. A node rep-
resents a qubit and the label on each edge represents the
2-qubit gate error rate for that link. Links marked in bold
have above mean 2-qubit gate error rate whereas qubits cir-
cled bold have greater than mean measurement error rate

Reliable qubits are thus usually distributed across the entire
architecture, rather than being situated next to each other. Current
noise aware compilers try to �nd a sweet spot by locating reliable
qubits as well as allocating program qubits to physically close and
well-connected qubits. The latter policy is crucial to minimize the
total number of SWAPs inserted. Thus, the compiler is compelled to
use some of the qubits and links that may not have the lowest error
rates. As a result, some of the reliable links and qubits with lower
measurement error rates may remain unused. Therefore, we draw
a key insight that as long as there exists more than one reasonably
good cluster of qubits on a quantum substrate with similar error
rates, it may be possible to run two independent programs on each
cluster without signi�cantly a�ecting their reliability. Using this
insight we design a qubit allocation algorithm that partitions the
quantum computer for enabling multi-programming.

4.2.1 Fairness in�bit Allocation: The qubit allocation algorithm
described in Algorithm 1 analyzes the underlying architecture and
ranks links and qubits depending upon their utility, and classi�es
the physical qubits into 3 groups of high, medium and low utility.
Utility of a physical qubit is de�ned as the ratio of the number
of links (degree of freedom) to the sum of link error rates. The
algorithm chooses a high utility qubit with good neighboring qubits
as the root and grows a graph by adding nodes along the boundary.
Compiler parameters � and � assists in choosing a high quality
root node as described in the Algorithm 1.

Accounting for CNOT error rates: The algorithm locates qubit
clusters such that most of the bad links are avoided by the programs
together. For example, Figure 10 represents two potential partitions
while allocating qubits for two programs with 4 and 5 qubits each.
The partition in Figure 10(b) is considered better than Figure 10(a)
since it avoids 75% of the weak links. The algorithm achieves this
by choosing a di�erent starting rank for generating sub graphs and
observing the total number of weak links in both regions.

Accounting formeasurement errors: The qubit allocation in Al-
gorithm 1 minimizes the use of qubits with high measurement error
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Figure 10: Two possible partitions (a) and (b) for a 4-qubit
program and a 5-qubit program that are scheduled to be run
concurrently on the NISQ machine. Partition (b) is more re-
liable compared to partition (a).

rates using the parameter � while allocating qubits. We observe
that there is an inherent trade-o� involved between gate error rates
and measurement error rates in certain regions on the architecture.
The algorithm optimizes for gate error rates over measurement
errors if a program has large number of 2-qubit gate operations
using the compute to measurement ratio (CMR).

Accounting for program characteristics: Each quantum pro-
gram has its own characteristics and uses individual program qubits
di�erently. Our proposed partitioning algorithm accounts for these
characteristics while allocating qubits by pro�ling the usage and
interaction graph of each program qubit. Usage of a program qubit
is de�ned as the number of operations performed on it and its in-
teraction graph is the set of other program qubits it interacts with.
Few quantum algorithms use ancilla qubits in the program that are
not measured (for example, the target qubit in Bernstein-Vazirani
algorithm). These ancilla qubits are mapped to physical qubits with
higher measurement error rates. Program qubits with high usage
are mapped to physical qubits with higher utility followed by map-
ping its neighbors to program qubits from its interaction graph.
The process is repeated until all program qubits are allocated.

The qubit allocation obtained from Algorithm 1 is used as the ini-
tial mapping by SABRE [19]. SABRE is a recently proposed compiler
that maps program qubits to physical qubits and o�ers low time
complexity. We enhance SABRE (called Variation Aware SABRE) to
use error data instead of Djikstra’s distance that is used in SABRE
originally to perform qubit movement operations. We also use the
reverse circuit of the program to aid mapping ancillae qubits on
qubits with high measurement errors. It also assists in scheduling
two or more programs under the delayed instruction scheduling
described later in Section 5.

4.2.2 To partition or not to partition? Post qubit selection, the com-
piler analyzes the reliability of each partition and �ags a warning if
at least one of the programs is allocated qubits with lower reliability
as compared to its qubit allocation in an isolated environment. The
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compiler uses the tolerance factor to decide the di�erence in relia-
bility it can tolerate. The ability to partition a quantum computer
not only depends on the size of the quantum computer, size of the
programs in context, and distribution of error rates but also on the
daily variation in error rates. Certain regions on a quantum com-
puter exhibiting completely di�erent characteristics on di�erent
days thereby limiting the opportunities for multi-programming.

Algorithm 1 Fair and Reliable Partitioning
1: // Locate a reliable cluster on the chip
2: function ������_���_�����(Program, utility, CMR)
3: rank  starting rank ; root  node[rank];
4: while root node not found do
5: if �% of root’s neighbors have high utility and
6: �% nodes including root have measurement
7: errors < mean measurement error then
8: root node found
9: else
10: rank  rank + 1
11: end if
12: end while
13: Grow graph from root by adding neighbors along
14: the boundary until program can �t and If CMR is
15: low, exclude nodes with large measurement errors.
16: return sub graph
17: end function
18: // Perform qubit allocation for Fair and Reliable Partitioning
19: function ����_���_��������_���������(graph,usage, inter-

action)
20: if ancillae in program then
21: while all ancillae not mapped do
22: Allocate ancilla (AnQ) to qubit (Ph�Q) in SG
23: with high measurement errors. Allocate
24: non-allocated neighbors of Ph�Q to program
25: qubits that interact with AnQ .
26: end while
27: end if
28: while all program qubits not mapped do
29: Allocate program qubit Pr�Q in order of usage
30: to high utility qubit Ph�Q in SG. Allocate non-
31: allocated neighbors of Ph�Q to unmapped
32: program qubits that interact with Pr�Q .
33: end while
34: return qubit allocation
35: end function

4.2.3 Scalability: We implement our proposed algorithm and run
a mix of workloads on IBM Q16 with error rates shown in Figure 11.
For developing the mapping for a system with larger number of
qubits, information on reliable regions can be saved once they are
located and reused by other programs. As detection of reliable
regions only depend on calibration data; it can be done o�ine.
Furthermore, instruction scheduling can be performed in parallel
and merged together with appropriate barriers. Similarly, as we
are analyzing a cloud environment, the compilation latency can be
pipelined with execution of other jobs.
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Figure 11: Error rates on IBM Q16 during experiment
4.3 Impact on Throughput and Reliability
With multi-programming for certain workload sizes on IBM Q16,
the resource utilization and throughput can be improved by 2x with
slight loss of program reliability. The Trial Reduction Factor (TRF)
is 0.5, indicating that the throughput of the machine is doubled
and the overall number of trials is reduced by 50%. Table 2 shows
the PST of each individual workload for the baseline and under
multi-programming.

Table 2: Probability of Successful Trial (PST) under isolated
execution and under multi-programming

Mix Number of Baseline Multi-Program

CNOTs PST in %age PST in %age

W1 �W2 W1 W2 W1 �W2 W1 W2 W1 W2

bv3-peres3 2 8 10 78.4 39.7 69.5 32.7

bv3-to�3 2 9 11 77.0 39.8 73.9 30.6

bv3-fredkin3 2 11 13 77.9 38.8 60.1 41.8

bv3-bv3 2 2 4 78.6 78.2 71.9 73.4

bv4-bv3 3 2 5 23.9 78.0 19.8 73.2

Average PST (%) 61.0 54.7

Both Figure 12 and Table 2 show that PST decreases by 11%
on an average and by 22% in the worst case even when the error
rates are very high and there exists a large variance in the error
rates as shown in Figure 11. The worst case degradation in PST

motivates us to design policies that can minimize the impact of
multi-programming on reliability. Our proposed techniques are
discussed in Sections 5 and 6.

Figure 12: Probability of Successful Trial (PST) relative to
baseline for multi-programming model
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5 DELAYED INSTRUCTION SCHEDULING
In this section, we discuss interference from measurement as one
of the potential challenges in multi-programming a NISQ computer.
Qubits are extremely fragile and signals applied to one qubit can
leak on to the other qubits causing unwarranted �uctuations in
their quantum states. Interference may occur due to the crosstalk
introduced by additional operations and qubit measurement op-
erations. We discuss how qubit measurements are performed on
current NISQ computers and propose an instruction scheduling
policy that minimizes the interference caused by them.

5.1 When Should Qubits be Measured?
Superconducting qubits [4, 18] at 15-20 milli-Kelvins are controlled
and measured using microwave signals generated at room temper-
ature. The measurement setup also consists of signal attenuators,
ampli�ers, and circulators designed to operate at 4 Kelvin. This ther-
mal gradient introduces noise channels into the system. When two
programs execute in parallel, conventional wisdom suggests that
they be launched as decoupled independent threads as shown in
Figure 13(a). In this scheduling, qubits of a program are measured as
soon as all its gate operations complete. Unfortunately, on a NISQ
computer, two programs cannot be completely decoupled since
measurements corresponding to the shorter program can inject
noise channels into the operating environment of the co-running
program, lowering its reliability. Another possible approach is to
schedule measurements after all gate operations are executed as
shown in Figure 13(b). This approach is currently used by the IBM
Qiskit compiler as the default. However, for two programs of di�er-
ent lengths, if the qubit measurements of the shorter program are
delayed to protect the program in progress, they may decohere by
the time they are measured. To overcome this problem, we propose
that two parallelizable programs be context aware.

Program 2 (P2)

Program 1 (P1)

Measurements 

Barrier

(a) (b) (c)

Delay

Delay

P1 P2P1 P1P2 P2

Figure 13: (a) Programmer expects two programs to be de-
coupled completely (b) Default instruction scheduling from
IBMCompilerwhere allmeasurements are performed at the
end (c) Our proposed delayed instruction scheduling policy
where the shorter program thread starts late

5.2 Scheduling Algorithm for Multi-programs
In order to minimize the impact of qubit measurement operations
on on-going gate operations and to maximize the reliability of both
the applications, we propose a Delayed Instruction Scheduling (DIS)
policy such that both the applications complete around the same
time and all qubit measurements are performed only after gate
operations for both programs conclude. The same two programs

shown in Figure 13(a) will be scheduled as shown in Figure 13(c)
as per the delayed scheduling policy. The scheduling policy moves
all the measurements to the end by inserting appropriate barriers
as shown in Algorithm 2 and statically schedules instructions by
analyzing the data �ow graph of both the applications. The overall
schedule of the multi-programs is generated by Algorithm 3.

Algorithm 2 Instruction Scheduling
1: // Generate schedule for multi-programming
2: function ��������_��������(N program schedules)
3: if Delayed Instruction Scheduling then
4: Add all measurement instructions for
5: N programs in order of decoherence times
6: Add global barrier
7: end if
8: for Each program (Pi ) in N programs do
9: Add instruction of Pi to global schedule.
10: if all instructions of Pi are scheduled then
11: if Delayed Instruction Scheduling then
12: Insert barrier
13: end if
14: Decrement N
15: end if
16: end for
17: return global schedule
18: end function

5.3 Impact of Measurement Scheduling
We evaluate our partitioning scheme along with the proposed DIS
policy. We execute the compiled code on IBM Q16 and determine
the PST for the same mix of workloads used in Section 4.2. The
results are shown in Figure 14. Our partitioning scheme when
combinedwith the proposed instruction scheduling policy improves
the reliability. Overall, the TRF is still 0.5 and the reliability drops
by 10% on an average. However, we see an improvement in the
reliability of the longer program (3% average improvement in PST)
and the worst-case degradation in PST is about 22%. We expect the
impact of our policy will be higher when measurements can be
done in parallel and takes lower latency than current technologies.

Figure 14: Probability of Successful Trial (PST) of proposed
delayed instruction scheduling policy relative to baseline
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Algorithm 3 Multi-program Compilation

1: function (Chip coupling graph, N programs, calibration data)

2: for Each physical qubit (ph�i ) on chip do
3: Compute utilit�[i] = Number of links of ph�iÕ

Error rates of links of ph�i
4: Create 3 utility groups in order of number
5: of links and utility
6: end for

7: if Delayed Instruction Scheduling then
8: Program Pi  Reverse Pi
9: end if

10: for Each program Pi in N programs do
11: for Each program qubit (Pr�Q j ) in Pi do
12: Usa�e[i][j] Instructions using Pr�Q j in Pi

Total instructions in Pi
13: Interaction[i][j] Set of program qubits
14: that interacts with Pr�Q j
15: Calculate compute to measurement ratio:
16: CMRi  Number of Operations
17: end for
18: Rank Program qubits in order of their usage
19: end for

20: // Independent qubit allocation and scheduling
21: for each program (Pi ) in N programs do
22: Graphi  create_sub_�raph(Pi ,utilit�,CMRi )
23: qalloci  f air_and_reliable_partition(Graphi ,usa�e[i],
24: interaction[i])
25: indp_schedi  �ariation_aware_SABRE(Graphi , Pi )
26: end for

27: // Shared qubit allocation and scheduling
28: for each program (Pi ) in N programs do
29: Sharedi  create_sub_�raph(Pi ,utilit�,CMRi )
30: Re rank unmapped physical qubits
31: qalloci  f air_and_reliable_partition(Sharedi ,usa�e[i],
32: interaction[i])
33: schedi  Variation_aware_SABRE(Graph_sharedi , Pi )
34: end for

35: for each program (Pi ) in N programs do
36: Glob_Sched  �enerate_schedule(all schedi )
37: if mean error rate of all links in
38: (Graphi x tolerance < Sharedi ) then
39: GenerateWarning
40: end if
41: end for

42: return Glob_Sched, indp_sched for N programs
43: (schedi ), Warning

44: end function

6 ADAPTIVE MULTI-PROGRAMMING
NISQ computers are sensitive to noise and sharing resources to
execute multiple programs concurrently can increase crosstalk and
interference between programs. Although our proposed FRP algo-
rithm andDIS policy attempts tominimize the impact on application
reliability through optimized resource allocation and instruction
scheduling, it may still be possible that the reliability of one of the
applications is low. Therefore, it is important that there is a mecha-
nism to detect such occurrences and disable multi-programming for
those instances. We develop a design that can dynamically monitor
a program’s reliability at execution time and mitigate the impact
on reliability caused by multi-programming by reverting back the
program to isolated execution.

PROCESS

SCHEDULERQUEUE 
MANAGER

Incoming 
Job Queue

Shared Queue

Independent Queue Quantum
Computer

Output 
Results

Enable isolated 
execution

Figure 15: Design of Adaptive Multi-Programming

6.1 Adaptive Multi-Programming Design
We describe a light-weight Adaptive Multi-Programming (AMP)
design as shown in Figure 15, that resides at the user-quantum
computer interface, manages the multi-programming environment,
monitors program reliability at execution time, and reverts back a
program to isolated execution when the impact on its reliability is
beyond an acceptable threshold. TheAMP design uses the following
mechanism to perform the aforesaid tasks:
(1) Multiple programs sharing resources are run together for S
trials (called shared trials)
(2) Each program is individually run for I independent trials with
the best possible qubit allocation (called independent trials)

Our proposed approach can be either implemented by the pro-
grammer by writing a parallel program; or by the cloud provider
by locating two independent jobs in the requests queue. The AMP
design accepts jobs from di�erent users in the incoming job queue.
The�eue Manager (QM) maintains two queues: a) shared queue
and b) independent queue. Besides accepting incoming jobs from
the cloud and managing the additional outgoing queues to the Job
Scheduler, it also hosts the compiler. The QM monitors incoming
jobs and performs either of the following actions:
(1) Compiles a program and puts its object code in the independent
queue under any of the four conditions: 1) if it requires access to
the entire quantum computer, 2) a user requests exclusive access to
entire machine, 3) the program cannot share resources with other
programs, or 4) a user has already provided or requested a speci�c
qubit allocation. This gives users an opportunity to control which
region their program gets mapped to. Users can still choose to not
share resources or request exclusive access to the machine. Rigetti
Computing for instance already allows users to reserve speci�c
regions on their quantum computer at a speci�c time [33].
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(2) Monitors the resource requirements of the jobs in the incoming
queue and if it �nds two independent jobs that can share resources,
the QM allocates them qubits as per the algorithm described in
Section 4 and compiles them. Post compilation, it puts the object
code on the shared queue. It also compiles the individual jobs using
the best available resources and puts the compiled job object in to
the independent queue. The size of reliable partitions where pro-
grams can be mapped may be predetermined using the calibration
data. For larger machines, we expect the number of such available
partitions to be higher and therefore more than two jobs can be
compiled and executed together.

The scheduler receives job objects from the shared and inde-
pendent queues and uses arbitration or other advanced scheduling
policies to run them on the NISQ computer. Job scheduling is a well-
studied problem for current data centers and the adopted policy
depends on the agreement between the user and service provider,
the pay model, and priority advocated by the service provider. For
instance, users requesting exclusive access to the entire machine or
a speci�c region may be required to pay more as opposed to users
willing to share resources. Jobs sharing resources can be scheduled
earlier than those requiring exclusive access to the machine as long
as fairness is guaranteed. Even a simple round robin policy and
�rst-come-�rst-served approach may be su�cient.

Each job in the shared queue is run S times, corresponding to the
shared trials. On the other hand, each job object in the independent
queue is run I times, corresponding to the independent trials. Once
a program is executed, the Process block analyzes the outputs. The
outputs are directly returned to the user for programs that did not
share the quantum computer, whereas, the outputs from the shared
trials are split into two output distributions because it corresponds
to programs that shared resources. Then, these distributions are
merged with their corresponding distributions from the independent
trials and the impact on reliability is analyzed before returning the
results to the users. The PST of certain workload mixes for di�erent
multi-programming modes is shown in Figure 17.

6.2 Dynamic Reliability Monitoring Scheme
The design of our proposed reliability monitor is shown in Figure 16.
It resides in the Process block shown in Figure 15. Programs that
execute in parallel execute two types of trials: independent trials
and shared trials. The reliability monitor leverages these two types
of trials to dynamically detect any signi�cant impact on reliability
at execution time. It accepts the distributions from the two types of
trials per application and decides to re-execute trials in an isolated
environment for an a�ected programwhen it detects a deterioration
in its reliability. For detection, it uses two statistical metrics: Entropy
and Hellinger Distance.

Entropy [36] describes the amount of disorganization or random-
ness in a system quantitatively. Entropy in a system is higher in the
presence of noise. In quantum systems, reliability or the probability
to get the correct answer is highest when the noise is minimum.
Depending upon the amount of noise, the system entropy changes.
Thus, by computing the di�erence in the entropy between the two
types of trials conducted on a program, the reliability monitor can
detect any impact on reliability. If X = {x1,x2,x3, ...,xN } is a set
of random phenomena, and p(xi ) is the probability of occurrence of

1) Compute Entropy Ratio (EnR)

2) Compute Correlation (CORR)

Distribution from 
shared trials

Distribution from 
independent trials

Is EnR < 
threshold ?

Enable isolated 
execution

Accept 
results

Yes

No

Is CORR > 
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Figure 16: Reliability monitor and controller
xi , entropy can be computed using Equation (3). In quantum com-
puting context, X is the state space of the N qubits. If Entrop�(I ) is
the entropy of the independent trials and Entrop�(S) is the entropy
of the shared trials, the entropy ratio, EnR, can be computed using
Equation (4). A higher EnR indicates that the trials conducted while
sharing are noisier.

Entrop�(x) = �
N’
i=1

p(xi ) log10 p(xi ) (3)

Entropy Ratio (EnR) =| Entrop�(S)
Entrop�(I ) | (4)

Entropy only estimates the amount of noise in the system and
cannot capture the similarity between the distributions obtained
from both types of trials. For example, two probability distributions
d1 = {0.2, 0.2, 0.2, 0.4} and d2 = {0.4, 0.2, 0.2, 0.2} corresponding
to the state space of 2 qubits can lead to an EnR of 1, even though
the merged distribution will have low reliability.

Hence, we also compute the correlation (CORR) between these
two output distributions, using a metric derived from Hellinger dis-
tance. Hellinger distance (H-Dist) [12] is used to quantify the similar-
ity between two probability distributions. If X = {x1,x2,x3, ...,xk }
andY = {�1,�2,�3, ...,�k }, are two discrete probability distribution
functions, the Hellinger distance is computed by Equation (5). It is
bounded between 0 and 1. Two identical probability distributions
have a H-Dist of 0, whereas, the maximum distance of 1 is obtained
when there is most dissimilarity. We de�ne correlation (CORR) using
Equation (6). This means, two identical probability distributions
have a CORR of 1 whereas completely non-identical distributions
have a CORR of 0. If S and I corresponds to probability distribution
functions obtained from shared trials and independent trials, for
higher reliability, higher correlation (CORR(S, I)) is desirable.

H -Dist(X ,Y ) = 1p
2

vut k’
i=1

(ppi �
p
qi )2 (5)

CORR(X ,Y ) = 1 � H -Dist(X ,Y ) (6)

As shown in Figure 16, depending upon the computed EnR and
CORR(S, I), the monitor performs one of the following:
(1) If EnR is lower than a preset threshold and CORR(S, I) is greater
than a preset threshold, the trials are deemed reliable. The distribu-
tions are merged and returned to the user.
(2) If EnR is greater than and CORR(S, I) is lower than correspond-
ing preset thresholds, the trials are deemed unreliable. In that case,
the monitor enables isolated execution for the a�ected program as
shown in Figure 15.
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Figure 17: Probability of Successful Trial PST relative to base-
line for di�erent multi-programming modes

Figure 18: Entropy Ratio (EnR) between shared trials and in-
dependent trials for di�erent multi-programming modes

Figure 19: Correlation between shared and independent
trails (CORR(S, I)) for di�erent multi-programming modes

The threshold for EnR depends upon acceptable range of relia-
bility, whereas the threshold for CORR(S, I) can be predetermined
conservatively for a given program size by pro�ling typical ker-
nels and benchmarks. For the workload mixes we studied whose
PST is shown in Figure 17, the entropy ratio (EnR) and correlation
(CORR(S, I)) are shown in Figures 18 and 19 respectively. We set a
threshold for EnR to be lower than 1.2 (accepting 20% more noisy
trials). For the thresholds we set, the impact on reliability for BV3 in
mix BV3-Fredkin3 is detected and can be corrected by retrying. We

also observe that in certain cases such as in mix BV3-BV3, the ENR
is extremely close to the threshold, but since CORR(S, I) is above
the acceptable threshold, the programs are not re-executed. At its
heart, the AMP design incurs the overhead of minimal changes to
existing job schedulers, additional queues, and logic to merge two
distributions making it scalable. The statistical tests in the run-time
system involve arithmetic operations on classical machines which
are available at data centers. The operations are not on the critical
path and can be performed in conjunction with other jobs.

6.3 Impact on Throughput and Reliability
The TRF and reliability varies depending upon the selected multi-
programming mode as shown in Figure 20 and Table 3 respectively.
The average impact on reliability is within 8% across all the multi-
programming modes. We observe that the multi-programming
mode S=4K, I=4K o�ers minimal impact on reliability, and the
average and maximum loss in PST are 6% and 12% respectively.
We must highlight that extreme PST degradation such as 12% are
detected by our dynamic reliability monitor. We must also highlight
that the IBM Q16 machine has a huge variance in error rates with
7 out of 18 links and 5 out of 14 qubits having error rates higher
than the mean as shown in Figure 11.

Table 3: Probability of Successful Trial (PST) (in percentage)
for various modes of multi-programming

Mix Baseline Mode 1 PST Mode 2 PST Mode 3 PST
PST S= 6K, I= 2K S= 4K, I= 4K S= 6K, I= 4K

W1 �W2 W1 W2 W1 W2 W1 W2 W1 W2

bv3-peres3 78.4 39.7 72.4 32.5 69.8 35.2 73.5 35.0
bv3-to�3 77.0 39.8 71.7 37.2 74.4 38.5 73.2 38.2

bv3-fredkin3 77.9 38.8 63.7 41.6 67.8 39.5 65.9 41.1
bv3-bv3 78.6 78.2 74.3 74.8 74.9 76.1 74.7 75.5
bv4-bv3 23.9 78.0 20.1 74.2 22.1 74.0 20.7 73.9

Average PST 61.0 56.3 57.2 57.2

Figure 20: E�ective reduction in the number of trials en-
abled through multi-programming
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7 DISCUSSION
7.1 Scalability
Near-term quantum computers are expected to scale up to a few
hundreds of noisy qubits in the next few years [31]. The error rates
improve very slowly (based on past trends) and non-uniformity
in qubit characteristics are expected to be present in the future
generations of quantum computers [15, 27] because these variations
emerge from material defects introduced into the system during
the fabrication of qubits. More importantly, the origin of some of
these defects are not yet fully understood and the lithographic
processes used to fabricate qubits are still not mature enough to get
rid of these imperfections. Consequently, as systems grow in size,
resource underutilization scales too. Under such circumstances,
our proposed approach can improve the utilization of these larger
systems by running more than two programs in parallel.

7.2 Who is Responsible: User or Server?
Our multi-programming solution is scalable and can be imple-
mented by both the programmer and service provider. If cloud
providers opt for a utility computing model, programmers can opti-
mize for both reliability and resource utilization by writing parallel
programs themselves and requesting a speci�c qubit allocation. On
the other hand, the APM design proposed in Section 6.1 enables
cloud providers to improve the throughput of near-term quantum
computers by scheduling programs from two independent users.

7.3 Limitations of Our Proposal
The fundamental properties of qubits limit how quantum systems
must operate. Our proposed multi-programming policies launch
parallel applications in a tightly coupled manner. Thus, the overall
time to run them together depends on the length of the longer
program. We expect this to be less concerning since cloud providers
receive a large number of requests with varying demands.

The ability to locate more than one region for qubit allocation is
based on the insight that good qubits are spread across the entire
architecture and not always spatial neighbors. Therefore, the capa-
bility to improve the utilization and throughput of a NISQ computer
depends on the architecture of the quantum substrate and how the
error characteristics are distributed in the architecture. However,
our proposed solution is adaptive and multi-programming may be
turned o� when required. The ability to partition a quantum com-
puter also depends on the daily variations in error rates and on cer-
tain days the errors may be too large to enable multi-programming.

8 RELATEDWORK
Progress in NISQ algorithms and hardware has provided impetus
towards building practical applications and rapid commercialization
of quantum technologies [2, 24]. It is expected that this growth will
bring an interdisciplinary community of researchers together to
solve computational problems in the wide range of areas, from high
energy physics to �nancial analysis [5, 26, 29]. To cater to such a
diverse set of end users, we will require system abstractions and
solutions that can enable seamless access to quantum computers [3,
21]. For example, cloud services are currently being used to hide
the complexities involved in operating and maintaining a quantum

computer and provide an e�ective interface that allows users to
access these machines. In the absence of fault-tolerance, quantum
compilers play a seminal role in the success of near-term quantum
computers and several prior works [25, 28, 39–41] have focused on
developing compiler algorithms and optimizations that can improve
program reliability on these noisy quantum computers. However,
there exists a gap between the growth in the number of users of
quantum resources and the resources themselves, and designing
architectural solutions to close this gap remains an open problem.
In this paper, we focused on understanding some of the challenges
in sharing quantum resources to improve utilization and reliability
of near-term quantum computers. A prior work [39] explores the
feasibility of partitioning a quantum computer to run two copies of
the same quantum program, whereas, in this paper, we study the
ability to run two programs of same or di�erent sizes with minimal
impact on reliability.

9 CONCLUSION
Near term quantum computers are operated in the NISQ model of
computing. Such machines are characterized by large error rates
and can only perform a limited number of gate operations before
the �delity of the computation degrades to unacceptable levels.
Consequently, many programs only use a fraction of the avail-
able qubits, leaving unused resources on a quantum computer. We
propose that these idle qubits be used to run other independent
applications, thereby enabling multi-programming and increasing
the throughput of NISQ machines. However, NISQ machines are
extremely sensitive to noise and multi-programming can impact
program reliability. We discuss the challenges in sharing a NISQ
machine and propose a Fair and Reliable Partitioning (FRP) algo-
rithm to allocate resources to multiple programs. We also propose
a Delayed Instruction Scheduling (DIS) policy to reduce the impact
of qubit measurement operations on the on-going gate operations
of concurrent programs, when they are of unequal lengths. Lastly,
we present an Adaptive Multi-Programming (AMP) design that is
embedded with a reliability monitor. This reliability monitor de-
tects instances of severe degradation in program reliability using
statistical tests and reverts the program’s execution to an isolated
mode. Overall, for the workloads we evaluated on the IBM Q16
quantum computer, the throughput can be improved by up to 2x
with a maximum loss in reliability of 12%.
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