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NISQ computers will be operated in the presence of noise and reliability is
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Programs may not use all the qubits leaving unused resources
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With current scaling of error rates, it is difficult to use all the qubits
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Limited NISQ resources must scale to a large number of users
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ti-pr ming can improve throughput and utilization

Current Approach

time = T1
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 Fairness in resource allocation

« Reduce interference

Our goal is to enable multi-programming to improve the throughput and

utilization of guantum computers while minimizing the impact on reliabilit
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O Hig O Medium@ Low

4 qubit program 3 qubit program
Y Link error rates

Algorithm ensures each program is allocated reliable qubits

o Number of links
Utility =
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Algorithm ensures fairness while sharing resources between programs
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Instruction Scheduling

How to schedule parallel programs?
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P2 M

Programmers’ View
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Existing approach

P2

IBM’'s Compiler schedules measurements after all

Two irregular sized programs can suffer from interference and decoherence
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Delayed Instruction Scheduling (DIS) Policy

« Measurements at the end
 Reduces interference
P ™M
* Delay shorter program
P2 m  Reduces decoherence

Barriers e Barriers

Our proposed DIS policy reduces interference and decoherence and is scalable
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Evaluation Methodology
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Multi-programming must adapt to minimize significant impact on reliability
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Using statistical tests degradation in program reliability can be captured
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Conclusion

* We proposed multi-programming to improve NISQ machine
throughput and utilization

« We designed scalable policies for fair resource allocation, minimizing
interference, and adaptive multi-programming

* Qur solutions can be implemented by both user and service provider

* Machine throughput can be improved up to 2x with minimal loss in
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