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Noisy Intermediate Scale Quantum (NISQ) 
Computing
• Noise leads to high error rates on existing and near-term quantum 

computers• Near term Quantum Computers too small for Quantum Error 
Correction• Referred to as NISQ computers- John Preskill

NISQ computers will be operated in the presence of noise and reliability is 
measured using the PST from multiple trials
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Challenges in Multi-Programming NISQ 
Computers

• Fairness in resource allocation
• Reduce interference

2 3 2
2 10

3 3 3
3 2 Bad 

Link

P1 P2

Our goal is to enable multi-programming to improve the throughput and 
utilization of quantum computers while minimizing the impact on reliability

Correctness and Reliability Issue!
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Is a program’s resource allocation in shared environment fair?
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Instruction Scheduling

Programmers’ View
P1
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Interference
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Decoherence

Existing approach

IBM’s Compiler schedules measurements after all 
gatesTwo irregular sized programs can suffer from interference and decoherence

How to schedule parallel programs?
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• Measurements at the end
• Reduces interference 

• Delay shorter program
• Reduces decoherence

• Barriers

Our proposed DIS policy reduces interference and decoherence and is scalable
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Evaluation Methodology
• IBM Q16
• 14 qubit public machine
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• Benchmarks
• From prior works

Benchmar
k

Description #Insts #CNO
T

bv_n3 Bernstein 
Vazirani

8 2

bv_n4 Bernstein 
Vazirani

11 3

Toffoli_n3 Toffoli gate 15 6

Fredkin_n3 Fredkin gate 16 8

Peres_n3 Peres gate 16 7• Baseline: Isolated execution using best qubit 
mapping

15



Results of Multi-Programming

0

0.2

0.4

0.6

0.8

1

1.2

bv3-pere3 bv3-toff3 bv3-fredkin3 bv3-bv3 bv4-bv3 Mean

Re
la

tiv
e 

Pr
ob

ab
ili

ty
 o

f 
Su

cc
es

sf
ul

 T
ria

l (
PS

T)

Workload Mix

16



Results of Multi-Programming
Throughput 

improved by 2x
10% loss in PST 
on an average

0

0.2

0.4

0.6

0.8

1

1.2

bv3-pere3 bv3-toff3 bv3-fredkin3 bv3-bv3 bv4-bv3 Mean

Re
la

tiv
e 

Pr
ob

ab
ili

ty
 o

f 
Su

cc
es

sf
ul

 T
ria

l (
PS

T)

Workload Mix

16



Results of Multi-Programming
Throughput 

improved by 2x
10% loss in PST 
on an average

0

0.2

0.4

0.6

0.8

1

1.2

bv3-pere3 bv3-toff3 bv3-fredkin3 bv3-bv3 bv4-bv3 Mean

Re
la

tiv
e 

Pr
ob

ab
ili

ty
 o

f 
Su

cc
es

sf
ul

 T
ria

l (
PS

T)

Workload Mix

Multi-programming can improve throughput with slight impact on PST
16



Limiting the Reliability Impact of Multi-Prog
Throughput 

improved by 2x
10% loss in PST 
on an average

0

0.2

0.4

0.6

0.8

1

1.2

bv3-pere3 bv3-toff3 bv3-fredkin3 bv3-bv3 bv4-bv3 Mean

Re
la

tiv
e 

Pr
ob

ab
ili

ty
 o

f 
Su

cc
es

sf
ul

 T
ria

l (
PS

T)

Workload Mix

17



Limiting the Reliability Impact of Multi-Prog
Throughput 

improved by 2x
10% loss in PST 
on an average

0

0.2

0.4

0.6

0.8

1

1.2

bv3-pere3 bv3-toff3 bv3-fredkin3 bv3-bv3 bv4-bv3 Mean

Re
la

tiv
e 

Pr
ob

ab
ili

ty
 o

f 
Su

cc
es

sf
ul

 T
ria

l (
PS

T)

Workload Mix

17

Significant 
impact ~22%



Limiting the Reliability Impact of Multi-Prog
Throughput 

improved by 2x
10% loss in PST 
on an average

0

0.2

0.4

0.6

0.8

1

1.2

bv3-pere3 bv3-toff3 bv3-fredkin3 bv3-bv3 bv4-bv3 Mean

Re
la

tiv
e 

Pr
ob

ab
ili

ty
 o

f 
Su

cc
es

sf
ul

 T
ria

l (
PS

T)

Workload Mix

Multi-programming must adapt to minimize significant impact on reliability
17

Significant 
impact ~22%



Outline
v Introduction

v Background and Motivation

v Policies for Multi-Programming

v Evaluation Methodology

v Adaptive Multi-Programming Design

v Results and Conclusion
18



Runtime Reliability Monitoring
Can we detect impact on reliability at runtime?

19



Runtime Reliability Monitoring

Program
Independent Trials

Shared Trials

Progra
m

Can we detect impact on reliability at runtime?

19



Runtime Reliability Monitoring

Program
Independent Trials

Shared Trials

Possible Outcomes

Possible Outcomes
00 01 10 11

Pr
ob

ab
ili

ty

0.1
0.2

0.4
0.3

00 01 10 11

Pr
ob

ab
ili

ty
0.2

0.1
0.3

0.4

Progra
m

Can we detect impact on reliability at runtime?

19



Runtime Reliability Monitoring

Program
Independent Trials

Shared Trials

Possible Outcomes

Possible Outcomes
00 01 10 11

Pr
ob

ab
ili

ty

0.1
0.2

0.4
0.3

00 01 10 11

Pr
ob

ab
ili

ty
0.2

0.1
0.3

0.4

Progra
m Statistical 

Tests

Impact 
Detected

Can we detect impact on reliability at runtime?

19



Runtime Reliability Monitoring

Program
Independent Trials

Shared Trials

Possible Outcomes

Possible Outcomes
00 01 10 11

Pr
ob

ab
ili

ty

0.1
0.2

0.4
0.3

00 01 10 11

Pr
ob

ab
ili

ty
0.2

0.1
0.3

0.4

Progra
m Statistical 

Tests

Impact 
Detected

Using statistical tests degradation in program reliability can be captured

Can we detect impact on reliability at runtime?

19



Description of the statistical tests
Entropy: measures randomness

20



Description of the statistical tests
Entropy: measures randomness

Outcomes
a b

Pr
ob

.

0.1

0.7

c d
0.1 0.1

Outcomes
a b

Pr
ob

.
0.2

0.5

c d

0.2 0.1

20

Dist 1 Dist 2



Description of the statistical tests
Entropy: measures randomness

Low 
Entropy

High 
Entropy

Outcomes
a b

Pr
ob

.

0.1

0.7

c d
0.1 0.1

Outcomes
a b

Pr
ob

.
0.2

0.5

c d

0.2 0.1

20

Dist 1 Dist 2



Description of the statistical tests
Entropy: measures randomness

Low 
Entropy

High 
EntropyNoise

Outcomes
a b

Pr
ob

.

0.1

0.7

c d
0.1 0.1

Outcomes
a b

Pr
ob

.
0.2

0.5

c d

0.2 0.1

20

Dist 1 Dist 2



Description of the statistical tests
Entropy: measures randomness

Low 
Entropy

High 
EntropyNoise

Compare 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆ℎ𝑎𝑟𝑒𝑑 𝑇𝑟𝑖𝑎𝑙𝑠)
and 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑇𝑟𝑖𝑎𝑙𝑠)

Outcomes
a b

Pr
ob

.

0.1

0.7

c d
0.1 0.1

Outcomes
a b

Pr
ob

.
0.2

0.5

c d

0.2 0.1

20

Dist 1 Dist 2



Description of the statistical tests
Entropy: measures randomness

Low 
Entropy

High 
Entropy

Hellinger Distance: measures 
correlation between distributions

Noise
Compare 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆ℎ𝑎𝑟𝑒𝑑 𝑇𝑟𝑖𝑎𝑙𝑠)
and 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑇𝑟𝑖𝑎𝑙𝑠)

Outcomes
a b

Pr
ob

.

0.1

0.7

c d
0.1 0.1

Outcomes
a b

Pr
ob

.
0.2

0.5

c d

0.2 0.1

20

Dist 1 Dist 2



Description of the statistical tests
Entropy: measures randomness

Low 
Entropy

High 
Entropy

Hellinger Distance: measures 
correlation between distributions

Noise

Outcomes
a b

Pr
ob

. 0 1

D1

Compare 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆ℎ𝑎𝑟𝑒𝑑 𝑇𝑟𝑖𝑎𝑙𝑠)
and 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑇𝑟𝑖𝑎𝑙𝑠)

Outcomes
a b

Pr
ob

.

0.1

0.7

c d
0.1 0.1

Outcomes
a b

Pr
ob

.
0.2

0.5

c d

0.2 0.1

20

Dist 1 Dist 2



Description of the statistical tests
Entropy: measures randomness

Low 
Entropy

High 
Entropy

Hellinger Distance: measures 
correlation between distributions

Noise

Outcomes
a b

Pr
ob

. 0 1

Outcomes
a b

Pr
ob

. 0 1

D1 D2

Compare 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆ℎ𝑎𝑟𝑒𝑑 𝑇𝑟𝑖𝑎𝑙𝑠)
and 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑇𝑟𝑖𝑎𝑙𝑠)

Outcomes
a b

Pr
ob

.

0.1

0.7

c d
0.1 0.1

Outcomes
a b

Pr
ob

.
0.2

0.5

c d

0.2 0.1

20

Dist 1 Dist 2



Description of the statistical tests
Entropy: measures randomness

Low 
Entropy

High 
Entropy

Hellinger Distance: measures 
correlation between distributions

Noise

Outcomes
a b

Pr
ob

. 0 1

Outcomes
a b

Pr
ob

. 0 1

D1 D2
HD=0

Compare 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆ℎ𝑎𝑟𝑒𝑑 𝑇𝑟𝑖𝑎𝑙𝑠)
and 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑇𝑟𝑖𝑎𝑙𝑠)

Outcomes
a b

Pr
ob

.

0.1

0.7

c d
0.1 0.1

Outcomes
a b

Pr
ob

.
0.2

0.5

c d

0.2 0.1

20

Dist 1 Dist 2



Description of the statistical tests
Entropy: measures randomness

Low 
Entropy

High 
Entropy

Hellinger Distance: measures 
correlation between distributions

Noise

Outcomes
a b

Pr
ob

. 0 1

Outcomes
a b

Pr
ob

. 0 1

Outcomes
a b

Pr
ob

. 01

D1 D2 D3
HD=0

Compare 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆ℎ𝑎𝑟𝑒𝑑 𝑇𝑟𝑖𝑎𝑙𝑠)
and 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑇𝑟𝑖𝑎𝑙𝑠)

Outcomes
a b

Pr
ob

.

0.1

0.7

c d
0.1 0.1

Outcomes
a b

Pr
ob

.
0.2

0.5

c d

0.2 0.1

20

Dist 1 Dist 2



Description of the statistical tests
Entropy: measures randomness

Low 
Entropy

High 
Entropy

Hellinger Distance: measures 
correlation between distributions

Noise

Outcomes
a b

Pr
ob

. 0 1

Outcomes
a b

Pr
ob

. 0 1

Outcomes
a b

Pr
ob

. 01

D1 D2 D3
HD=0 HD=1

Compare 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆ℎ𝑎𝑟𝑒𝑑 𝑇𝑟𝑖𝑎𝑙𝑠)
and 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑇𝑟𝑖𝑎𝑙𝑠)

Outcomes
a b

Pr
ob

.

0.1

0.7

c d
0.1 0.1

Outcomes
a b

Pr
ob

.
0.2

0.5

c d

0.2 0.1

20

Dist 1 Dist 2



Description of the statistical tests
Entropy: measures randomness

Low 
Entropy

High 
Entropy

Hellinger Distance: measures 
correlation between distributions

Noise

Outcomes
a b

Pr
ob

. 0 1

Outcomes
a b

Pr
ob

. 0 1

Outcomes
a b

Pr
ob

. 01

D1 D2 D3
HD=0 HD=1

How similar or dissimilar are the 
shared and independent trials?

Compare 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆ℎ𝑎𝑟𝑒𝑑 𝑇𝑟𝑖𝑎𝑙𝑠)
and 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑇𝑟𝑖𝑎𝑙𝑠)

Outcomes
a b

Pr
ob

.

0.1

0.7

c d
0.1 0.1

Outcomes
a b

Pr
ob

.
0.2

0.5

c d

0.2 0.1

20

Dist 1 Dist 2



AMP Design Implementation

Incoming Job 
Queue

21



AMP Design Implementation

Incoming Job 
Queue

Queue 
Manager

21



AMP Design Implementation

Incoming Job 
Queue

Shared Queue

Independent Queue

Queue 
Manager

21



AMP Design Implementation

Incoming Job 
Queue

Shared Queue

Independent Queue

Queue 
Manager

21



AMP Design Implementation

Incoming Job 
Queue

Shared Queue

Independent Queue

Queue 
Manager

21



AMP Design Implementation

Incoming Job 
Queue

Shared Queue

Independent Queue

Queue 
Manager

21



AMP Design Implementation

Incoming Job 
Queue

Shared Queue

Independent Queue

Queue 
Manager

I Independent Trials

S Shared Trials
S >> I

21



AMP Design Implementation

Incoming Job 
Queue

Shared Queue

Independent Queue

ScheduleQueue 
Manager

I Independent Trials

S Shared Trials
S >> I

21



AMP Design Implementation

Incoming Job 
Queue

Shared Queue

Independent Queue

Schedule Process
Queue 

Manager

Analyses 
Reliability

I Independent Trials

S Shared Trials
S >> I

21



AMP Design Implementation

Incoming Job 
Queue

Shared Queue

Independent Queue

Schedule Process OutputQueue 
Manager

Analyses 
Reliability

I Independent Trials

S Shared Trials
S >> I

21



AMP Design Implementation

Incoming Job 
Queue

Shared Queue

Independent Queue

Schedule Process Output

Disable Multi-Programming

Queue 
Manager

Analyses 
Reliability

I Independent Trials

S Shared Trials
S >> I

21



AMP Design Implementation

Incoming Job 
Queue

Shared Queue

Independent Queue

Schedule Process Output

Disable Multi-Programming

Queue 
Manager

Analyses 
Reliability

I Independent Trials

S Shared Trials

Multi-programming is adaptive to mitigate severe impact on reliability
S >> I

21



Outline
v Introduction

v Background and Motivation

v Policies for Multi-Programming

v Evaluation Methodology

v Adaptive Multi-Programming Design 

v Results and Conclusion
22



Final Results

0
0.2
0.4
0.6
0.8
1

1.2

bv3
-p

ere
3

bv3
-to

ff3

bv3
-fr

ed
kin

3

bv3
-b

v3

bv4
-b

v3

Mea
n

Re
la

tiv
e 

Pr
ob

ab
ili

ty
 

of
 

Su
cc

es
sf

ul
 T

ria
l (

PS
T)

Workload Mix

Mode: S=6K, I=2K
23



Final Results

0
0.2
0.4
0.6
0.8
1

1.2

bv3
-p

ere
3

bv3
-to

ff3

bv3
-fr

ed
kin

3

bv3
-b

v3

bv4
-b

v3

Mea
n

Re
la

tiv
e 

Pr
ob

ab
ili

ty
 

of
 

Su
cc

es
sf

ul
 T

ria
l (

PS
T)

Workload Mix

Mean loss 
in PST 7.7%

Mode: S=6K, I=2K
23



Final Results

0
0.2
0.4
0.6
0.8
1

1.2

bv3
-p

ere
3

bv3
-to

ff3

bv3
-fr

ed
kin

3

bv3
-b

v3

bv4
-b

v3

Mea
n

Re
la

tiv
e 

Pr
ob

ab
ili

ty
 

of
 

Su
cc

es
sf

ul
 T

ria
l (

PS
T)

Workload Mix

Mean loss 
in PST 7.7%

Maximum loss 
in PST = 12%

Mode: S=6K, I=2K
23



Final Results

0
0.2
0.4
0.6
0.8
1

1.2

bv3
-p

ere
3

bv3
-to

ff3

bv3
-fr

ed
kin

3

bv3
-b

v3

bv4
-b

v3

Mea
n

Re
la

tiv
e 

Pr
ob

ab
ili

ty
 

of
 

Su
cc

es
sf

ul
 T

ria
l (

PS
T)

Workload Mix

Mean loss 
in PST 7.7%

Maximum loss 
in PST = 12%

Shared trials have 
1.4x entropy

Mode: S=6K, I=2K
23



Final Results

0
0.2
0.4
0.6
0.8
1

1.2

bv3
-p

ere
3

bv3
-to

ff3

bv3
-fr

ed
kin

3

bv3
-b

v3

bv4
-b

v3

Mea
n

Re
la

tiv
e 

Pr
ob

ab
ili

ty
 

of
 

Su
cc

es
sf

ul
 T

ria
l (

PS
T)

Workload Mix

Mean loss 
in PST 7.7%

Mode: S=6K, I=2K
23



Final Results

0
0.2
0.4
0.6
0.8
1

1.2

bv3
-p

ere
3

bv3
-to

ff3

bv3
-fr

ed
kin

3

bv3
-b

v3

bv4
-b

v3

Mea
n

Re
la

tiv
e 

Pr
ob

ab
ili

ty
 

of
 

Su
cc

es
sf

ul
 T

ria
l (

PS
T)

Workload Mix

Mean loss 
in PST 7.7%

Mode: S=6K, I=2K Throughput 
improved by 1.6x23



Conclusion
• We proposed multi-programming to improve NISQ machine 

throughput and utilization

24



Conclusion
• We proposed multi-programming to improve NISQ machine 

throughput and utilization

• We designed scalable policies for fair resource allocation, minimizing 
interference, and adaptive multi-programming

24



Conclusion
• We proposed multi-programming to improve NISQ machine 

throughput and utilization

• We designed scalable policies for fair resource allocation, minimizing 
interference, and adaptive multi-programming

• Our solutions can be implemented by both user and service provider

24



Conclusion
• We proposed multi-programming to improve NISQ machine 

throughput and utilization
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