
2DCC: Cache Compression in Two Dimensions

Amin Ghasemazar
University of British Columbia

aming@ece.ubc.ca

Mohammad Ewais∗

University of Toronto

mewais@ece.utoronto.ca

Prashant Nair
University of British Columbia

prashantnair@ece.ubc.ca

Mieszko Lis
University of British Columbia

mieszko@ece.ubc.ca

Abstract—The importance of caches for performance, and their
high silicon area cost, have motivated hardware solutions that
transparently compress the cached data to increase effective
capacity without sacrificing silicon area. To this end, prior
work has taken one of two approaches: either (a) deduplicating
identical cache blocks across the cache to take advantage of inter-

block redundancy or (b) compressing common patterns within
each cache block to take advantage of intra-block redundancy.

In this paper, we demonstrate that leveraging only one of
these redundancy types leads to a significant loss in compression
opportunities for several applications: some workloads exhibit
either inter-block or intra-block redundancy, while others exhibit
both. We propose 2DCC (Two Dimensional Cache Compression),
a simple technique that takes advantage of both types of redun-
dancy. Across the SPEC and Parsec benchmark suites, 2DCC
results in a 2.12× compression factor (geomean) compared to
1.44–1.49× for best prior techniques on an iso-silicon basis. For
the cache-sensitive subset of these benchmarks run in isolation,
2DCC also achieves a 11.7% speedup (geomean).

I. Introduction

Large caches are critical to the performance of many appli-
cations: today, top-tier server-class processors from leading
manufacturers advertise last-level cache (LLC) capacities in
the range of 32MB–64MB. However, caches of these sizes
incur significant costs in silicon area, leakage power, and
cache access latency. This has resulted in substantial research
interest in compressing cache contents to increase the effective
cache capacity without paying additional area and performance
costs [1–8]. In general, these proposals take advantage of either

of two different dimensions of redundancy in cached data:

1) Inter-block redundancy exists when multiple cache indices
store the same blocks of data. This can result from sym-
metry of some kind (e.g., fluid flow around a symmetric
object), when sizable parts of the working set have the
same value (e.g., the background of an image), etc.

2) Intra-block redundancy exists when a single cache block
contains compressible patterns within itself. For example,
integers are usually allocated at 32-bit or 64-bit sizes but
their values often fit in the least significant byte; similarly,
pointers used in a data structure may have been allocated
close by and so may have identical most significant bits.

Real workloads, however, exhibit a wide variety of redundancy
patterns. To demonstrate this, we estimated intra-block and
inter-block entropy in 100 last-level cache images from a range
of SPEC and PARSEC benchmarks (see section IV for details)
by using Huffman compression [9]. To estimate inter-block
entropy, we compressed the entire cache using 64-byte symbols

∗Research performed while a student at the University of British Columbia

 0% 20% 40% 60% 80% 100%

intra-block storage savings

 0%

 20%

 40%

 60%

 80%

100%

in
te

r-
b

lo
ck

 s
to

ra
g

e
 s

a
vi

n
g

s

GemsFDTD

nab_r

canneal

bodytrack

roms_r

bwaves_r

blackscholes

libquantum

calculix

swaptions

lbm

x264_r

Fig. 1. Space reduction in last-level cache images (100 per benchmark) using
entropy encoding (Huffman compression). The x-axis shows encoding within
each cache block (symbol size of 1 byte); the y-axis shows encoding across
cache blocks (symbol size 64 bytes). 0% indicates that no compression was
possible while 100% would indicate that the entire cache was completely
compressible. These results provide a motivation for 2D cache compression.

(i.e., one cache block); to estimate intra-block entropy, we
compressed each block independently using one-byte symbols.

Figure 1 shows how much space can be recovered for each
benchmark by taking advantage of inter-block entropy (y-
axis) and intra-block entropy (x-axis). Some benchmarks show
significant savings by using only one type of redundancy: for
example, lbm has many identical blocks which are generally
not amenable to intra-block compression, while the blocks
cached by canneal have intra-block value redundancy but most
cache blocks are different. Others, such as bwaves and roms,
contain a mixture of identical blocks and some compressible
blocks. (The outlier, GemsFDTD, has nearly all of its working
set filled with zeros and is therefore trivially compressible.)

This paper describes 2DCC, a practical cache compression
scheme that works in two dimensions: it allows working sets
that contain either type of redundancy to be compressed while
also enabling compressing working sets that contain both

types of redundancy. Because this requires decoupling cache
structures, replacement policies become a challenge. 2DCC
uses separate replacement policies for the tag array and the
data array, which optimizes for both reuse and space savings.

Taking advantage of both types of redundancy allows 2DCC
to outperform prior state-of-the-art solutions. When applied to
the LLC in a server-class CPU, 2DCC achieves 2.12× geomean
compression factor across cache sensitive subset of SPEC
CPU2017 [10], SPEC CPU2006 [11], and PARSEC [12] —
compared to 1.43×–1.49× with best prior methods given the
same silicon budget — resulting in a geomean 11.7% speedup.

II. The opportunity for 2D compression

As shown in Figure 1, redundancy in workloads varies widely.
Some benchmarks have only intra-block redundancy, some only

756978-3-9819263-4-7/DATE20/ c©2020 EDAA

In the proceedings of the 23rd Conference on Design, Automation and Test in Europe (DATE)

���������		�
������
����
�����
���������������������������
���
��

���������������	�����������

�������
�����������������
	����������������
�����
�������
�����
��	��������������	������������

������	����
�������������

����	��������	�	��	���
��������
����
�
��������������������	������

�������
��

��

���	��
���������������������������

�	
����������	����	�����
�����	
����			�	�������������	��������

���������	����������������������

�������
�����
�����������
�����������������
�����������������
�	������������������
�	
������������

�����
��
��������������
��
�������������
��
�������������
��
�����������������
��
������������

��� ���
��

�
��

���
���

��
��

�
���

���
 �

�
�� !�

!�

!�

!�

!�

!�

!�

!�

!�

��"

��"

��"

Fig. 2. (a) Redundancy in LLC snapshots of three benchmarks: lbm_r shows
inter-block redundancy: the three cache lines shown appear twice, 6 times, and
4 times; canneal shows different blocks each of which has a compressible 0
prefix; in roms_r, blocks appear in multiple copies but words also have similar
prefixes. (b) Cache space saved using inter-block compression (y-axis) as well
intra-block compression (x-axis) for these LLC samples.

inter-block redundancy, and there are several workloads that
showcase both types of redundancy.

For example, Figure 2(a) shows cache block fragments of
last-level cache snapshots for three benchmarks, along with the
number of exact copies of each block found in the cache.

The top panel shows three blocks of the destination grid
written inside LBM_performStreamCollideTRT() in lbm_r. The
cache block is filled with 64-bit floats, which differ enough that
intra-block compression (e.g., B∆I [1]) is ineffective. Because
of fluid flow symmetry, there are multiple copies of many cache
blocks, all of which can potentially be deduplicated, allowing
the size of the cache snapshot to be reduced by 67%.

The middle panel shows three blocks addressed by
swap_locations() in canneal. In contrast to lbm_r, the working
set contains no duplicate blocks. However, there is substantial
intra-block redundancy: the data consists mainly of small 32-bit
integers (netlist elements and locations). This allows the cache
snapshot size to be reduced by 61%.

Finally, the third panel shows cache blocks from roms_r, an
ocean forecasting model. The locality of behaviour within an
surface patch, together with similarities across some patches,
creates both intra-block and inter-block redundancy: many
cache blocks in the working set are present in several copies,
and each contains 64-bit floats that are close to one another.
For these cache snapshots, taking advantage of both forms of
entropy can potentially save 91% of the cache space.

Figure 2(b) shows the potential cache silicon savings for
intra-block (x-axis) and inter-block (y-axis) entropy by using
an ideal compression method on the cache snapshots analyzed.

III. 2DCC architecture and operation

Briefly, when a 2DCC cache inserts a new block, it checks
whether an identical block is already present; if the block is
a duplicate, then a reference to the existing block is inserted
instead. If the block is unique, 2DCC attempts to compress it
and store it in a part of a line in the cache’s data array, with
the rest of the line usable by other compressed cache blocks.

This approach presents several challenges. Firstly, duplicate
cache blocks must be detected quickly. Secondly, allocating
and evicting blocks with different compression factors must
not cause fragmentation. Finally, the varying compressibility of
workloads means that the cache may be limited by either tag

^ĞƚϬ

^Ğƚϭ

͘͘͘

^ĞƚϬ

^Ğƚϭ
͘͘͘

dĂŐ��ƌƌĂǇ �ĂƚĂ��ƌƌĂǇ

,ĂƐŚ��ƌƌĂǇ

dĂŐ WƌĞǀ�
Wƚƌ

EĞǆƚ�
Wƚƌ

�ĂƚĂ�
Wƚƌ

ZƉů͘�
ďŝƚƐdĂŐ��ŶƚƌǇ

ĂͿ
ďͿ

^ĞƚŶ

�ŶĐĚ
ďŝƚƐ

�ĂƚĂ dĂŐ�
ĐŶƚƌ ,ĂƐŚ �ĂƚĂ�

Wƚƌ,ĂƐŚ �ĂƚĂ�
Wƚƌ ,ĂƐŚ��ŶƚƌǇ�ĂƚĂ��ŶƚƌǇ dĂŐ�

Wƚƌ

Ϭ�Ϭ�ϭ�ϭ��������͙�������ϭ�ϭ
&ƌĞĞ�ůŝƐƚ

Fig. 3. (a) The three decoupled storage structures that comprise the 2DCC
cache: arrows show pointers logically linking the structures. (b) Entry contents.

storage or data storage, with each storage structure requiring a
separate and different replacement policy.

Storage structures. Unlike conventional caches, which store
one full (e.g., 64-byte) data block for every tag, compressed
caches can either store multiple blocks in the same space [1,
3, 4, 13] or store only one block for multiple tags [2]; 2DCC
similarly decouples the tag and data arrays. In contrast to prior
approaches, each tag may point to an 8-byte segment anywhere
in the data array rather than to only one index or a few possible
locations; this maximizes data array utilization. To avoid storing
duplicate blocks, multiple tags may point to the same segment.

To detect inter-block redundancy, 2DCC adds a third structure
— the hash array — which stores summaries of cached blocks
and allows the controller to quickly identify duplicate lines.

Figure 3 illustrates the structure of a 2DCC cache, and shows
how the three components are interconnected with pointers.

Data Array. Storage of variable-sized blocks is accomplished
by segmenting each set in the data array into eight-byte
segments (similar to prior work [1]): a single cache block may
occupy from one up to eight contiguous segments depending
on the compression factor.

Because the tag array is decoupled from the data array (unlike
in [1]) and the cache can store more tags than uncompressed
blocks, 2DCC may need to evict blocks when space in the
data array runs out even if some tags are still free. To identify
the tags that point to a given data segment, 2DCC uses a
per-segment back-pointer to one of the corresponding tags. To
support the data array replacement policy, each segment also
stores a count of tags pointed to it. A free-list bit vector is used
to allocate entries and manage free space in the data array.

Tag Array. As in a conventional set-associative tag array,
each entry contains the tag itself, tag replacement policy state,
and validity/coherence state. Each entry also specifies the
compression encoding. The tag entry also contains a “data
pointer” to identify the segment(s) storing the cached block.

Finally, multiple tags that point to the same data segment
form a doubly-linked list, used to remove all tags associated
with an evicted block, and to form a free-list of unused tags.

Hash Array. To detect identical cache blocks, 2DCC needs to
compare the contents of an incoming block with the contents of
blocks that are already cached. Naturally, scanning through the
entire cache is not an option. Instead, 2DCC detects candidates
for deduplication by storing hashes of block contents in a
separate small hash array. Because the common case is that

Design, Automation And Test in Europe (DATE 2020) 757

ĚϭͲĐ���

ĚϬ���������������;ϭǆͿ ^ĞƚϬ

^Ğƚϭ

^ĞƚϬ

^Ğƚϭ

dĂŐ��ƌƌĂǇ �ĂƚĂ��ƌƌĂǇ

&ƌĞĞ�ůŝƐƚ

ĚϬ���������������;ϭǆͿ

ĚϭͲĐ���;ϭǆͿ

^ĞƚϬ

^Ğƚϭ
ϬϬ

ŚĂƐŚ;ĚϭͿ�с�΂ϬǆϬϮ͕�ϬǆϬϯĨϮ΃�

ϭϬ

ϬǆϬϭ
ϬǆϬϮ

,ĂƐŚ��ƌƌĂǇ
ϬǆϬϭ
ϬǆϬϮ

Ěϭ �ŽŵƉƌĞƐƐ

ĚϬ���������������;ϭǆͿ

ĚϭͲĐ���;ϮǆͿ

^ĞƚϬ

^Ğƚϭ
ϬϬ

ŚĂƐŚ;ĚϮͿ�с�΂ϬǆϬϮ͕�ϬǆϬϯĨϮ΃�

ϬǆϬϭ
ϬǆϬϮ

/ŶƐĞƌƚ
/ŶƐĞƌƚ

ϮϮ

ϯϯ

ϰϰ

ϱϱ

ϲϲ

ϳϳ

ϴϴϵϵ

ϭϭ

ĚϮͲĐ����ŽŵƉƌĞƐƐ
>ŽŽŬƵƉ

ƚϬ
ƚϮ
ƚϭ

ƚϬ

ƚϬ

ƚϭ

ĚϮ

ĂͿ

ďͿ

ĐͿ

ϳϳ

Fig. 4. Example of 2DCC operation on lines from roms_r benchmark: (a) initial
state; (b) insertion of unique but compressible block; (c) insertion of a new
block whose data is identical to that of panel (b).

incoming lines are unique, the hash array essentially serves to
filter out most lines that cannot be deduplicated.

The hash array is a set-associative table. Each entry points to
the data array segment where the original block is stored. (This
is safe even if the original block is modified or evicted, as hash
collisions mean that hash matches must in any case be verified
against the full cache block.) Based on our experiments, storing
only 1024 hashes is the hash array is sufficient to capture nearly
all possible deduplication while reducing the hash collisions
to less than 1%.

In operation, each incoming block’s contents are hashed
using a 64-bit H3 hash [14]. If the hash is not found, insertion
proceeds normally. If the hash matches (i.e., a duplicate block
may already exist in the cache), the block it points to is fetched
from the data array and the actual data are compared; if the
data are identical, then the line is deduplicated, otherwise it is
inserted as a new block.

Cache operation example. We begin by tracing “the life of
a cache block” on a tiny version of 2DCC in Figure 4 with an
example from the roms_r ocean simulation workload, before
detailing the rules of operation. We begin with the state in
panel (a), with one uncompressible, unduplicated block in the
cache with tag t0 and data d0, such as block L0 in Figure 2(a).

In panel (b), a lower-level cache requests an address with
tag t1, which misses in the tag array ! and triggers a
backing memory request for its data d1. When d1 arrives,
it is compressed to d1-c, and, in parallel, hashed to search for
duplicates ". The hash is then looked up in the hash array to
determine whether the block can be deduplicated, but as it is
the first occurrence of this data, the lookup fails.

To insert the new block in the cache, the controller consults
the freelist to find that set 1 has a free block, and the compressed
d1-c is inserted there #. At the same time, t1 is inserted in
the tag array with its data pointer set to point at d1-c and vice
versa $, and the hash for d1 is inserted in the hash array %.

In panel (c), a lower-level cache requests an address with tag
t2, which also misses in the tag array &; this triggers another
memory request. Once data block d2 arrives, it is compressed
(to d2-c) and hashed as before '. This time, however, the

ZĞĂĚ�
ZĞƋƵĞƐƚ

ZĞĂĚ�
^ĞƌǀŝĐĞĚ

�ĂƚĂ��ƌƌĂǇ
�ĐĐĞƐƐdĂŐ�,ŝƚ�͍

�ǀŝĐƚ
sŝĐƚŝŵ�dĂŐ

�ǀŝĐƚ��ĂƚĂ>ŝŶĞ
Θ�ĐŚĂŶŐĞ�>>

ZĞƋ�ĨƌŽŵ�
DĞŵŽƌǇ

,ĂƐŚ�Θ�
�ŽŵƉƌĞƐƐ ,ĂƐŚ�,ŝƚ͍ �ĂƚĂ�

^ŝŵŝůĂƌ͍
/ŶƐĞƌƚ

dĂŐ�/Ŷ�>>

/ŶƐĞƌƚ�,ĂƐŚ�Θ
WŝĐŬ�sŝĐƚŝŵ��ĂƚĂ�^Ğƚ

�ŶŽƵŐŚ�
^ƉĂĐĞ�͍

/ŶƐĞƌƚ�
�ĂƚĂ�ΘdĂŐ�ŝŶ�>>

WŝĐŬ�sŝĐƚŝŵ
^ĞŐŵĞŶƚ;ƐͿ

�ǀŝĐƚ�
�ƐƐŽĐŝĂƚĞĚ�
dĂŐ;ƐͿ

E
/ŶǀĂůŝĚ
>ŝŶĞ

E

E

z

ĂͿ

ďͿ

ĐͿ

�ŶĚ

E z

zz

ϳ

ϴϴ

ϳϳ

ϯϯ ϰϰ ϲϲϱϱ

ϲϲ
ϮϮ

ϭϭнϭнϭ нϭнϭ

нϭнϭ нϭнϭ

нϭнϭ

Fig. 5. Read access flowchart in 2DCC. Shaded (a) = on the critical path;
unshaded (b, c) = off the critical path. LL = linked list of deduplicated tags.

hash hits in the hash array with the entry pointing to d1-c,
indicating that d2 is a possible duplicate of d1; to verify this,
d1-c is retrieved and compared against d2-c. An exact match is
determined, the deduplication count in d1-c is incremented (,
and t2 is inserted into the tag array pointing to d1-c).

Cache operation details. 2DCC operation is largely similar
to that of a conventional cache, with some differences due
to tag/data array decoupling and the need to deduplicate and
compress stored data. We detail those differences below.

Reads, evictions, and insertions. The operation of these
accesses is illustrated in Figure 5. The critical-path portion of
read accesses — both hit ! and miss " — corresponds to a
conventional cache.

The hash and the compressed line size are calculated off the
critical path # $. If the hash exists in the hash array, the new
block is a deduplication candidate, and the existing block is
retrieved from the data array and compared against the newly
arrived data % to determine if the block is a duplicate.

If the entry is to be deduplicated, an unused tag is obtained
either from the tag free list or by evicting an existing tag &. If
the entry cannot be deduplicated, a data entry is also allocated,
possibly following an eviction of some data segments and
their associated tags '. If the entry was not deduplicated,
its hash is also inserted into the hash array to enable future
deduplicaton (.

Writes. Writes reflect those in a conventional cache: with
inclusive write-back caches, which we use in this paper, write
requests always hit, and execute off the critical path.

Writes may also change the compressed size. In parallel to
the tag access, therefore, the hash of the contents is computed;
if this hits in the hash array, the relevant block is fetched and
compared to the newly written data. If the newly written block
can be deduplicated, the data pointer swings to the existing
copy and the redundant segments are freed.

If the written block cannot be deduplicated, it is first re-
compressed. If it fits in the same number of segments, the data
array entry is overwritten, possibly freeing some segments. If
the line is larger, victim segments are selected from the data
array before inserting the block as if it were a new insertion.

Intra-block compression/decompression. For compressing in-
dividual cache blocks, we use the B∆I compression method [1].
Briefly, B∆I calculates the mean of the words in the block to

758 Design, Automation And Test in Europe (DATE 2020)

ϯ&ϰϵϲϳ&�ϴ�ϴ&ϴ�ϯ��ϯ&ϰϵϲϳ&�ϴ��Ϭ&ϵϰϲ�ϯ&ϰϵϲϳ&�ϴ�&ϮϬϮϰ��ϯ&ϰϵϲϳ&�ϴ�ϮϮ�ϵϳϴ�͘͘͘�ϯ&ϰϵϲϳ&�ϴ��ϭϳϱϵϮĚϭ͗

ϯ&ϰϵϲϳ&�ϴ�ϴ&ϴ�ϯ������������� �������;нϯϭϲ�Ϭ�Ϳ�������������������;нϲϮϳϰϭϮͿ������������������ �;нϵϯϭ�ϯ�Ϳ��͙���������������;нϭϱϭ�ϳϱϴͿ

ͲͲͲͲ ͲͲ ͲͲͲͲ ͲͲ ͲͲ

ĚϭͲĐ͗

Fig. 6. Example of compressing a 64-byte cache block from roms_r (d1 from
Figure 4). The block consists of 64-bit floating-point numbers whose values
are close; they are compressed to a 64-bit base value followed by eight 32-bit
offsets, for a total compressed size of 36 bytes.

determine the number of bytes needed to express the distance
from this base value or from 0. If all distances can be expressed
in fewer bytes than the original value (e.g., 4 bytes), the
compressed block consists of the base value followed by a
sequence of distance offsets used to reconstruct the original
words in the cache block. Decompression consists of adding
the offsets to the base, and is completed in one cycle.

Figure 6 shows an example of this process. The block (d1

from Figure 4) consists of 64-bit floating-point numbers whose
values are close. The intra-block compression reduces the block
to 40 bytes (an 8-byte base value followed by eight 4-byte
offsets), and compacts it to take up 5 segments in the set.

Replacement Policies. As described in earlier, 2DCC has
three decoupled structures: a tag array, a data array, and a hash
array. Unlike in a conventional cache, the three arrays have
different goals and need different replacement policies.

Tag array. The goal of the tag array replacement policy (RP)
is to preferentially retain addresses likely to be accessed in the
future. The RP should therefore be the same as the equivalent
conventional cache RP. In this paper, we use the least-recently-
used victim selection with most-recently used insertion (LRU),
but other eviction policies may be more appropriate for large
caches and specific workloads [15, 16, etc.].

Data array. The data array, on the other hand, provides
storage space for the blocks identified as likely to be re-
referenced. The storage is many-to-one: when several cache
blocks contain the same data, one data array entry will be
shared among several tags. When evicting a data array entry,
all of the tag array entries that point to it must also be evicted.
This makes conventional cache victim policies, which do not
account for the cost of evicting multiple tags, unsuitable.

Observe that the policy does not need to consider which
blocks are likely to be re-referenced, as the tag array replace-
ment policy already ensures that only useful blocks are cached.
The goal of the data array, therefore, should be to enable the

tag array to store more blocks. Our policy has three stages:

1) If a set in the data array is free, insert the block there.
2) Otherwise, attempt to find space in a partly occupied

block: randomly select four sets, and, if one of them has
enough space, insert the new block there.

3) Finally, examine the four blocks from step 2, and select
the one that (a) has enough space, and (b) minimizes the
number of evicted tags from the tag array.

In effect, this process combines a random sampling process with
a selection policy that retains the most deduplicated entries.

Hash array. The main purpose here is to enable deduplication
of blocks stored in the data array. Thus, the hash array should
identify (a) currently cached blocks whose contents are likely to

reappear in other, soon-to-be-accessed blocks, and (b) incoming
blocks whose contents are likely to reappear later. We therefore
use the LRU policy applied to content hashes.

IV. Results

Methods. We extended ZSim [17] to implement 2DCC
and the state-of-the-art hardware compression techniques for
intra-block compression (B∆I [1]) and inter-block dedupli-
cation (Dedup [2]). We modeled detailed event timing and
interconnect congestion for both on- and off-critical-path events.
The simulated system is shown in Table I; compression was
applied to the L3 level only. We used CACTI 6.0 [18] to
estimate silicon area requirements, including all data structures
for each compression method. For all performance studies, we
normalized the three designs to the same silicon area.

We used an extensive set of integer and floating-point
applications from SPEC CPU2017 [10] and PARSEC [12],
as well as those applications from SPEC CPU2006 [11] that
are not in CPU2017. All were run with large input sizes (native
in Parsec and reference in SPEC). Simulations skipped the first
40 billion instructions, and then sampled the last 20% of each
1 billion instructions for a total of 40 billion instructions.

Sizing data structures. Sizing decoupled structures (tag,
data, and hash arrays) under a fixed silicon area budget is key
to our design. In 2DCC, we must make two sizing decisions:
(a) the ratio of tags to raw data blocks (which must exceed 1
to enable compression) and (b) the size of the hash array that
captures inter-block redundancy.

Tag array vs. data array. We observed that the compress-
ibility of cache blocks varies not only among applications, but
also among different phases within an application, from as
low as 1× in streamcluster to more than 10× in fotonik3d_r.
Similar to prior work [2], we allow the cache to store four
times more compressed lines than uncompressed lines.

Hash Table. For the hash array, the tradeoff is between, on
the one hand, reducing the silicon footprint to make more space
for tags and data entries and, on the other hand, making it
large enough to capture enough of the inter-block redundancy.

To examine the design space, we compared an oracle hash
table — which searches the entire cache for a match — against
hash array sizes from 64 to 16,384 entries. In our experiments,
99.2% of the locality was captured with 1,024 entries (64 sets
× 16 ways), with a collision rate of < 1%. We use this hash
size for the remainder of the experiments.

Silicon area allocation. We configured 2DCC as well as our
three baselines to match that of a conventional, uncompressed
cache with 1MB of data storage. For the compressed caches,

CPU i5-750-like: x86-64, 2.6GHz, 4-wide OoO, 80 entry ROB

L1I 32KB, 4-way, 3 Cycle access lat, 64B lines, LRU

L1D 32KB, 8-way, 4 Cycle access lat, 64B lines, LRU

L2 Private, 256KB, 8 way, 11 Cycles lat, 64B lines, LRU

L3 Shared 1 MB, 8-way, 39 Cycles lat, 64B lines, 8 banks

Memory DDR3-1066, 1GB

TABLE I
Configuration of the simulated system.

Design, Automation And Test in Europe (DATE 2020) 759

 1 2 3 4 5 6 7 8

intra-block compression factor

1

2

3

4

5

6

7

8

9

10+

in
te

r-
b

lo
ck

 c
o

m
p

re
ss

io
n

 f
a

ct
o

r

Z

E

C

D

A
B

A: 16.9%
B: 12.1%
C: 3.4%
D: 5.7%
E: 5.2%
Z: 9.5%

Fig. 7. The bubble sizes represent storage savings due to combined intra- and
inter-block compression, plotted against different compression factors. Z is the
amount of savings due to all-zero blocks.

the total space available in the data array is less that 1MB
because more of the available silicon budget must be dedicated
to tags; Table II shows space allocation details.

Metadata for each conventional cache tag entry consists of
valid/dirty/LRU bits. 2DCC adds 4 bits for the compression
type encoding, 32 bits for the previous and next tag pointers,
and 17 bits for the data pointer (11 bits to index the set and 6
bits to index the segment within that set). B∆I adds 10 bits over
the conventional cache for compression-type encoding and the
segment pointer. Finally, Dedup tag entries add 32 bits for tags
pointers and 14 bits for the data pointer. Data array overheads
in 2DCC are 16 bits per segment for the tag list pointer, while
Dedup has one 16-bit pointer for each cache block. 2DCC also
requires a hash array, with each entry consisting of 10 bits for
the hash tag and 17 bits for the data segment pointer; Dedup
has a similar table but uses only 14 bits for the data pointer.

Effectiveness of 2D compression. Figure 7 shows the
inter-block compression factor for each possible intra-block
compression factor averaged over all benchmarks; the bubble
size shows how much cache area was saved due to a specific
combination. The largest savings — 16.9% of cache — come
from blocks that cannot be compressed by themselves, but
can be deduplicated, on average, 1.4× (bubble A). The next
12.1% is saved by blocks that cannot be deduplicated, but
are amenable to intra-block compression with a compression
factor of 1.6× on average (B). Significant additional savings
(14.3% cache space total) come from blocks that are both
compressible within each block but also identical to other
blocks (C, D, E). Finally, 9.5% cache space is saved by using
a special representation for zero-only blocks.

This validates the 2DCC intuition: both choosing the

Baseline B∆I [1] Dedup [2] 2DCC

T
a
g

#Entries 16384 49152 40960 36864
Entry Size 39b 49b 85b 93b
Total Size 78KB 294KB 425KB 414KB

D
a
ta

#Entries 16384 12288 10240 9216
Entry Size 512b 512+0b 512+16b 512+104b
Freelist 1152b
Total Size 1024KB 768KB 660KB 694KB

H
a
sh

Entries - - 1024 1024
Entry Size - - 3B 3.375B
Total Size - - 3KB 3.375KB

Total Size 1.08MB 1.05MB 1.07MB 1.08MB

TABLE II
Storage allocation. All compressed caches are sized to fit in the same
silicon size of a 1MB conventional cache with 48-bit address space.

Cache Size(MB) Dynamic read energy Leakage power

Conv. 1 0.35 nJ 677.66 mW

B∆I 1 0.37 nJ 679.21 mW
Dedup 1 0.39 nJ 699.70 mW
2DCC 1 0.39 nJ 695.16 mW

TABLE III
Dynamic energy and leakage power of compressed caches and

conventional of 1MB (silicon area of 2.52mm
2) in 32nm technology.

appropriate compression for each block (A, B) and using both
compression methods in the same block (C, D, E) are important.

Cache footprint. Figure 8(a) shows the cache space needed
by different workloads using 2DCC compared to state-of-the-
art methods for intra- (B∆I [1]) and inter-block compression
(Dedup [2]), normalized to a conventional cache. We report
averages over the entire program runtime from an execution-
driven simulation (see Section IV). All caches take the same
silicon area as a 1MB conventional cache (see Table II).

On average, 2DCC is able to reduce the cache footprint
to 47.2% of the original footprint (i.e., 2.1× compression), a
substantial improvement over B∆I (67.1%) and Dedup (69.2%).

Performance. We divided the benchmarks into cache sensi-
tive (S) and cache insensitive (NS): we consider a benchmark
to be cache insensitive if there is < 3% change in MPKI when
the conventional LLC size is doubled (this typically means that
their workloads mostly fit in the L2 or even L1D cache).

Figure 8(b) shows that 2DCC reduces cache misses per 1,000
instructions (MPKI) by 1.6× compared to 1.3× for B∆I and
1.2× for Dedup on average for the cache sensitive benchmarks.
At the same time, the MPKI impact of cache compression on
the cache-insensitive benchmarks is negligible (1.6%)

Figure 8(c) shows that the lower MPKI allows 2DCC to
improve performance (IPC) by 11.7% for the cache-sensitive
benchmarks, vs. 7.3% for B∆I and 5.2% for Dedup. Cache-
insensitive benchmarks can suffer a slight performance degrada-
tion (avg. 2.6%): for example, bwaves is highly compressible but
cache-insensitive, so the compression/decompression latencies
are not offset by more frequent cache hits.

We also investigated whether evictions of multiple tags are
a significant problem, by measuring the ratio of evicted tags to
cache accesses. Because of its better compression, 2DCC has
the lowest eviction rate of 0.032 evictions per access, compared
to 0.049, 0.042, and 0.041 for the conventional cache, B∆I,
and Dedup, respectively. This means that multi-tag evictions
are very rare, and do not have any performance impact.

Energy impact. We used CACTI [18] to measure the latency,
read energy, and leakage power of 2DCC and the three baselines
(see Table III); results show that 2DCC uses 11% more energy
for each read, and has a 2.5% leakage power overhead.

V. RelatedWork

Inter-block deduplication: Data deduplication techniques
work well when many cache blocks are either entirely zero [1, 3]
or copies of other blocks that concurrently reside in the
cache [2, 19]. 2DCC leverages many of the same insights
to take advantage of inter-block redundancy, but also takes
advantage of intra-block redundancy, which implies substantial
differences in the overall structure and operation.

760 Design, Automation And Test in Europe (DATE 2020)

lb
m

_r

ex
ch

an
ge

2_
r

lib
qu

an
tu

m

bl
ac

ks
ch

ol
es

po
vr

ay
_r

st
re

am
clu

st
er

ca
nn

ea
l

m
ilc

sw
ap

tio
ns

ca
ct
uB

SSN_r

de
du

p

so
pl
ex

bw
av

es
_r xz

_r

de
ep

sje
ng

_r

le
sli

e3
d

fa
ce

sim
na

b_
r

flu
id
an

im
at

e

na
m

d_
r

pe
rlb

en
ch

_r

pa
re

st
_r

fo
to

ni
k3

d_
r

fe
rre

t

G
em

sF
DTD

m
cf
_r

go
bm

k

le
el
a_

r

ga
m

es
s

x2
64

_r

ze
us

m
p

wrf_
r

gc
c_

r

ca
m

4_
r

im
ag

ick
_r

xa
la
nc

bm
k_

r
bz

ip
2

gr
om

ac
s

hm
m

er
as

ta
r

ca
lcu

lix

bo
dy

tra
ck

to
nt

o
vip

s

fre
qm

in
e

om
ne

tp
p_

r

h2
64

re
f

ro
m

s_
r

G
m

ea
n

Average cache occupancy (100% = no savings, 0% = perfect compression)

0%

20%

40%

60%

80%

100%

co
m

p
re

ss
e
d
 s

iz
e

a)

Dedup

2DCC

lb
m

_r

ex
ch

an
ge

2_
r

lib
qu

an
tu

m

bl
ac

ks
ch

ol
es

po
vr

ay
_r

st
re

am
clu

st
er

ca
nn

ea
l

m
ilc

sw
ap

tio
ns

ca
ct
uB

SSN_r

de
du

p

so
pl
ex

bw
av

es
_r xz

_r

de
ep

sje
ng

_r

le
sli

e3
d

fa
ce

sim
na

b_
r

flu
id
an

im
at

e

na
m

d_
r

pe
rlb

en
ch

_r

pa
re

st
_r

fo
to

ni
k3

d_
r

fe
rre

t

G
em

sF
DTD

m
cf
_r

go
bm

k

le
el
a_

r

ga
m

es
s

x2
64

_r

ze
us

m
p

wrf_
r

gc
c_

r

ca
m

4_
r

im
ag

ick
_r

xa
la
nc

bm
k_

r
bz

ip
2

gr
om

ac
s

hm
m

er
as

ta
r

ca
lcu

lix

bo
dy

tra
ck

to
nt

o
vip

s

fre
qm

in
e

om
ne

tp
p_

r

h2
64

re
f

ro
m

s_
r

Misses per 1,000 instructions (MPKI) relative to a conventional (uncompressed) cache (lower is better)

0

0.2

0.4

0.6

0.8

1

n
o

rm
a

liz
e

d
 M

P
K

I

b)

Insensitive (NS) Sensitive (S)

lb
m

_r

ex
ch

an
ge

2_
r

lib
qu

an
tu

m

bl
ac

ks
ch

ol
es

po
vr

ay
_r

st
re

am
clu

st
er

ca
nn

ea
l

m
ilc

sw
ap

tio
ns

ca
ct
uB

SSN_r

de
du

p

so
pl
ex

bw
av

es
_r xz

_r

de
ep

sje
ng

_r

le
sli

e3
d

fa
ce

sim
na

b_
r

flu
id
an

im
at

e

na
m

d_
r

pe
rlb

en
ch

_r

pa
re

st
_r

fo
to

ni
k3

d_
r

fe
rre

t

G
em

sF
DTD

m
cf
_r

go
bm

k

le
el
a_

r

ga
m

es
s

x2
64

_r

ze
us

m
p

wrf_
r

gc
c_

r

ca
m

4_
r

im
ag

ick
_r

xa
la
nc

bm
k_

r
bz

ip
2

gr
om

ac
s

hm
m

er
as

ta
r

ca
lcu

lix

bo
dy

tra
ck

to
nt

o
vip

s

fre
qm

in
e

om
ne

tp
p_

r

h2
64

re
f

ro
m

s_
r

Performance improvement normalized to a conventional (uncompressed) cache

(0.7)

0.8

0.9

1

1.1

1.2

1.3

n
o

rm
a

liz
e

d
 I

P
C

c)

Insensitive (NS) Sensitive (S)

Fig. 8. Cache occupancy, cache miss rates, and performance improvements of 2DCC compared to iso-silicon B∆I (intra-block) and Dedup (inter-block) caches,
normalized to an iso-silicon conventional (uncompressed) cache.

Intra-block compression: Data values in a block can also
be compressed due to low dynamic range [1, 3]. Prior work
categorized these into (a) repeated values, (b) a set of values
(especially zeros) repeated in a data block, and (c) near values,
which have the same upper bits and different lower bits.

B∆I [1] uses one word-granularity “base” value for each
compressed cache block, and replaces the other words in the
block with their distances from the base value. 2DCC borrows
the B∆I compression method to compress each block; however,
because 2DCC also deduplicates identical blocks, the overall
cache organization, operation, and replacement policy differ.

In general, intra-block methods are useful in compressing
one block (or superblock of several lines, akin to prefetching),
but none consider redundancy among different non-contiguous
blocks at far-away addresses. 2DCC, in contrast, can store only
one copy of duplicate lines, and offers better compression.

VI. Acknowledgements

This research was supported in part by the Natural Sciences
and Engineering Research Council of Canada.

References

[1] G. Pekhimenko, V. Seshadri, O. Mutlu, M. A. Kozuch, P. B. Gibbons,
and T. C. Mowry, “Base-delta-immediate compression: Practical data
compression for on-chip caches,” in PACT, 2012.

[2] Y. Tian, S. M. Khan, D. A. Jiménez, and G. H. Loh, “Last-level Cache
Deduplication,” in ICS, 2014.

[3] A. R. Alameldeen and D. A. Wood, “Frequent pattern compression: A
significance-based compression scheme for L2 caches,” University of
Wisconsin-Madison, Tech. Rep., 2004.

[4] J. Yang, Y. Zhang, and R. Gupta, “Frequent value compression in data
caches,” in MICRO, Dec 2000.

[5] E. G. Hallnor and S. K. Reinhardt, “A unified compressed memory
hierarchy,” in HPCA, 2005.

[6] B. Panda and A. Seznec, “Dictionary sharing: An efficient cache
compression scheme for compressed caches,” in MICRO, 2016.

[7] P. R. Wilson, S. F. Kaplan, and Y. Smaragdakis, “The Case for
Compressed Caching in Virtual Memory Systems,” in USENIX ATC,
1999.

[8] M. Ekman and P. Stenström, “A Robust Main-Memory Compression
Scheme,” in ISCA, 2005.

[9] D. A. Huffman, “A method for the construction of minimum-redundancy
codes,” Proceedings of the IRE, vol. 40, no. 9, pp. 1098–1101, 1952.

[10] “SPEC releases major new CPU benchmark suite,” 2017. [Online].
Available: https://www.spec.org/cpu2017/press/release.html

[11] J. L. Henning, “SPEC CPU2006 Benchmark Descriptions,” SIGARCH
Comput. Archit. News, vol. 34, pp. 1–17, 2006.

[12] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Benchmark
Suite: Characterization and Architectural Implications,” in PACT, 2008.

[13] A. R. Alameldeen and D. A. Wood, “Adaptive cache compression for
high-performance processors,” in ISCA, June 2004, pp. 212–223.

[14] D. Sanchez, L. Yen, M. D. Hill, and K. Sankaralingam, “Implementing
Signatures for Transactional Memory,” in MICRO, Dec 2007.

[15] C.-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C. Steely Jr,
and J. Emer, “SHiP: Signature-based hit predictor for high performance
caching,” in MICRO, 2011.

[16] J. Gaur, A. R. Alameldeen, and S. Subramoney, “Base-Victim Com-
pression: An Opportunistic Cache Compression Architecture,” in ISCA,
2016.

[17] D. Sanchez and C. Kozyrakis, “ZSim: Fast and Accurate Microarchitec-
tural Simulation of Thousand-core Systems,” in ISCA, 2013.

[18] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “CACTI 6.0:
A tool to model large caches,” Research report HPL-2009-85, HP
Laboratories, 2009.

[19] T. E. Denehy, W. W. Hsu, T. E. Denehy, and W. W. Hsu, “Duplicate
management for reference data,” in IBM Research Report RJ10305, 2003.

Design, Automation And Test in Europe (DATE 2020) 761

