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Executive summary

Observation: leveraging redundancy only within or across datalines leads to a
significant loss in compression opportunities

Problem: how to takes advantage of both types of redundancy?
Key Idea: simple technique that enables compressing working sets that
— contain either type of redundancy

— contain both types of redundancy

Results: 2.12x geomean compression



Compressed caches: overview

Uncompressed cache: store a block for each tag

Conventional

Uncompressed line

Uncompressed line

Uncompressed line




Compressed caches: overview

Compress within lines: store multiple smaller blocks

Conventional Intra-line compression

Uncompressed line A —>| Compressed line
B —>| Compressed line

Uncompressed line C —>| Compressed line

compress within lines



compress across lines

Compressed caches: overview

Compress within lines: store multiple smaller blocks
Compress across lines: store only one block for multiple tags

Inter-line compression
Uncompressed line

Conventional Intra-line compression

Uncompressed line A —>| Compressed line
Uncompressed line B —| Compressed line

Uncompressed line C —>| Compressed line

compress within lines




compress across lines

Compressed caches: overview

Compress within lines: store multiple smaller blocks
Compress across lines: store only one block for multiple tags

Inter-line compression

Uncompressed line compress
within and across lines?

Conventional Intra-line compression

Uncompressed line A —>| Compressed line
Uncompressed line B —| Compressed line

Uncompressed line C —>| Compressed line

compress within lines




Motivation

* Does real workloads exhibit both type of redundancy patterns?



Motivation

100%
Workloads are compressible

using: o 80%
é) 60%
® Inter only 5
_‘3 40%
® Intra only 3
0
¢ Either methods g 0%
0%

— o ——
”’ =~

inter only GemsFDTD~
- [
i 7N/ bwaves_r \
/ ! o - \
/ v \
Ilbm v \
I @ 1| roms_r 1
L = I o I
| X264_ri\ ] |
N AN plackscho either J
N ¢/ splackscholes . ,
L S e effective
calculix TS~a_ - e
- . ’————__—:::::—
e bo;dytrack nag)_r\\ intra
= A\
sw.aptlons \ibquantum  canneal ! onl_y
1 \\Q 1 l. ,;1 1
0% 20% 30%~ _ _ _ 60% ---" 80% 100%

intra-block storage savings

(more is better)



compress across lines

Goal: compress within and across cachelines

Compress within and across lines: store smaller block for multiple tags

Inter-line compression 2D compression
Uncompressed line

Compressed line

Conventional Intra-line compression

Uncompressed line A —>| Compressed line
Uncompressed line B —| Compressed line

Uncompressed line C —>| Compressed line

compress within lines




Goal: compress within and across cachelines

Compress within and across lines: store smaller block for multiple tags

2D compression

compress across lines

Changes in cache organization, operation and replacement policies

compress within lines
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Cache Compression in two dimensions

2DCC




Research questions

* Q1: How to compress across and within datalines ?
* Q2: How to find identical cachelines quickly ?
* Q3: How to store variable-sized cachelines ?

* Q4: How to efficiently utilize the storage structures ?
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Compression within and across cachelines

intra-line compression
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2DCC

Architecture



2DCC: challenges

* Detecting duplicate blocks quickly =2 Block content hashing
* Storing variable-sized blocks = segmenting the data array

* Avoiding fragmentation =2 Free list, Replacement policies
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2DCC: storage structures

Tag Array  Tag Array
Added fi.elds: Hash Array
encoding

data pointer

decoupled
arrays

Data Array

Free list
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2DCC: storage structures

Tag Array

Tag Array

tag A

——

tag C

Hash Array

‘ h(A) ‘/

/

Data Array Free list
cacheline A 0
cacheline B 0
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2DCC: challenges (continued)

* Decoupling cache structures = cache may be limited by tag or data
storage

=>» Replacement policies per cache structures
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2DCC: replacement policies

Tag Array
Tag Array: retaining addresses likely to be accessed in the future H

= LRU

Data Array
Data Array: enabling the tag array to store more
1) available free set = insert block ‘ \
= 2) randomly find partly occupied set with enough space
3) chose the set with least number of evictions
Hash Array

Hash Array: identifying H
1) cached blocks whose contents are likely to reappear

2) incoming blocks whose contents are likely to reappear
= LRU
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2DCC: operation example

Available free set

Free list
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2DCC: operation example

Available free set

Tag Array  Tag Array Data Array Free list
tag A cacheline A 0
cacheline B 0
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2DCC: operation example

Avaitlable freeset

Randomly find partly occupied set with enough space

Number
of copies

Data Array /

4x tag —

cacheline A (4x tag)

1x tag
Available

Free list
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2DCC: operation example

Avatable-freeset
Randomly find partly occupied set with eneugh-space
chose the set with least number of evictions

Data Array
4x tag — cacheline A (4x tag)
Evict all tags 1x tag —> B (1x)
3x tag —>

2x tag

Free list

OO0 0O0O0O0o
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2DCC

Results



compression

Results
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Results: compression and performance
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Results: compression breakdown

2DCC compression benefit comes from:

Zero value

Choosing the right method

=

Combining methods




