2DCC: Cache Compression
in
Two Dimensions

Amin Ghasemazar, Mohammad Ewais,

Prashant Nair, Mieszko Lis
The University of British Columbia

UBC a place of mind
X7~ THE UNIVERSITY OF BRITISH COLUMBIA Natural Sciences and Engineering Conseil de recherches en sciences C d""
W I * I Research Council of Canada naturelles et en génie du Canada ana a

Executive summary

Observation: leveraging redundancy only within or across datalines leads to a
significant loss in compression opportunities

Problem: how to takes advantage of both types of redundancy?
Key Idea: simple technique that enables compressing working sets that
— contain either type of redundancy

— contain both types of redundancy

Results: 2.12x geomean compression

Compressed caches: overview

Uncompressed cache: store a block for each tag

Conventional

Uncompressed line

Uncompressed line

Uncompressed line

Compressed caches: overview

Compress within lines: store multiple smaller blocks

Conventional Intra-line compression

Uncompressed line A —>| Compressed line
B —>| Compressed line

Uncompressed line C —>| Compressed line

compress within lines

compress across lines

Compressed caches: overview

Compress within lines: store multiple smaller blocks
Compress across lines: store only one block for multiple tags

Inter-line compression
Uncompressed line

Conventional Intra-line compression

Uncompressed line A —>| Compressed line
Uncompressed line B —| Compressed line

Uncompressed line C —>| Compressed line

compress within lines

compress across lines

Compressed caches: overview

Compress within lines: store multiple smaller blocks
Compress across lines: store only one block for multiple tags

Inter-line compression

Uncompressed line compress
within and across lines?

Conventional Intra-line compression

Uncompressed line A —>| Compressed line
Uncompressed line B —| Compressed line

Uncompressed line C —>| Compressed line

compress within lines

Motivation

* Does real workloads exhibit both type of redundancy patterns?

Motivation

100%
Workloads are compressible

using: o 80%
é) 60%
® Inter only 5
_‘3 40%
® Intra only 3
0
¢ Either methods g 0%
0%

— o ——
”’ =~

inter only GemsFDTD~
- [
i 7N/ bwaves_r \
/ ! o - \
/ v \
Ilbm v \
I @ 1| roms_r 1
L = I o I
| X264_ri\] |
N AN plackscho either J
N ¢/ splackscholes . ,
L S e effective
calculix TS~a_ - e
- . ’————__—:::::—
e bo;dytrack nag)_r\\ intra
= A\
sw.aptlons \ibquantum canneal ! onl_y
1 \\Q 1 l. ,;1 1
0% 20% 30%~ _ _ _ 60% ---" 80% 100%

intra-block storage savings

(more is better)

compress across lines

Goal: compress within and across cachelines

Compress within and across lines: store smaller block for multiple tags

Inter-line compression 2D compression
Uncompressed line

Compressed line

Conventional Intra-line compression

Uncompressed line A —>| Compressed line
Uncompressed line B —| Compressed line

Uncompressed line C —>| Compressed line

compress within lines

Goal: compress within and across cachelines

Compress within and across lines: store smaller block for multiple tags

2D compression

compress across lines

Changes in cache organization, operation and replacement policies

compress within lines
10

Cache Compression in two dimensions

2DCC

Research questions

* Q1: How to compress across and within datalines ?
* Q2: How to find identical cachelines quickly ?
* Q3: How to store variable-sized cachelines ?

* Q4: How to efficiently utilize the storage structures ?

12

Compression within and across cachelines

intra-line compression

cacheline A

compressed A

Ox3FEOO00O

Ox3FEOOOFF

Ox3FEOO003

Ox3FEOOODS

1Base

Ox3FEOO00O

00 03

IAZ A/A3
FF .

D8

inter-line compression

cacheline A

cacheline B

[1]

Ox3FEOO000

OxCO4000FF

OxBF350003

0x3F490000

Ox3FEOO00O

O0xCO4000FF

OxBF350003

0x3F490000

7 identical

2]

13

2DCC

Architecture

2DCC: challenges

* Detecting duplicate blocks quickly =2 Block content hashing
* Storing variable-sized blocks = segmenting the data array

* Avoiding fragmentation =2 Free list, Replacement policies

15

2DCC: storage structures

Tag Array Tag Array
Added fi.elds: Hash Array
encoding

data pointer

decoupled
arrays

Data Array

Free list

1

R R R R R

16

2DCC: storage structures

Tag Array

Tag Array

tag A

——

tag C

Hash Array

‘ h(A) ‘/

/

Data Array Free list
cacheline A 0
cacheline B 0
— 1
1
1
1

17

2DCC: challenges (continued)

* Decoupling cache structures = cache may be limited by tag or data
storage

=>» Replacement policies per cache structures

18

2DCC: replacement policies

Tag Array
Tag Array: retaining addresses likely to be accessed in the future H

= LRU

Data Array
Data Array: enabling the tag array to store more
1) available free set = insert block ‘ \
= 2) randomly find partly occupied set with enough space
3) chose the set with least number of evictions
Hash Array

Hash Array: identifying H
1) cached blocks whose contents are likely to reappear

2) incoming blocks whose contents are likely to reappear
= LRU

19

2DCC: operation example

Available free set

Free list

Tag Array Tag Array Data Array
tag A cacheline A
cacheline B
— 4y
A8 B ,,
O ,,
‘9
4y
‘9
‘9
!/
4y
‘7
!/
!/

Hash Array /

‘ h(A) ':,/

4

+—1 0

—

N =)

20

2DCC: operation example

Available free set

Tag Array Tag Array Data Array Free list
tag A cacheline A 0
cacheline B 0
d g 3] |
, 1
/',' 1
Ay 1
4
!/
!/

Hash Array ,/ / compare

h(A) /
Mﬁ o

21

2DCC: operation example

Avaitlable freeset

Randomly find partly occupied set with enough space

Number
of copies

Data Array /

4x tag —

cacheline A (4x tag)

1x tag
Available

Free list

OO0 0O0O0O0o

22

2DCC: operation example

Avatable-freeset
Randomly find partly occupied set with eneugh-space
chose the set with least number of evictions

Data Array
4x tag — cacheline A (4x tag)
Evict all tags 1x tag —> B (1x)
3x tag —>

2x tag

Free list

OO0 0O0O0O0o

23

2DCC

Results

compression

Results

M Dedup NN °DCC

I BAI

2.12xl

100% =
80%
60%
40%
20%

9z1s passaisdwoo

0%

Inter

Inter

Intra

Intra

J

Selecting / Combining methods

2DCC

25

Results: compression and performance

O Working Set Size Miss Rate
N
g7
100% _
*a}° <z ! 1.6x
2 80% S o3
o 2.12x = Y .
.% 60% 8 06 Iso-silicon 1MB
o 0 N Results reported
z 40% c 04 for SPEC CPU’06,
ao 20% g 0.2 SPEC CPU’17,
g 0 2 PARSEC
> Q — — ()] - - U .
= c= =9 £ 2g Compression
v g £ 0 o 4 2 0
2 m g N s © 5 °
a2 9 2.12x

(Lower is better)

26

Results: compression breakdown

2DCC compression benefit comes from:

Zero value

Choosing the right method

=

Combining methods

