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Abstract—Memory systems are becoming bandwidth con-
strained and data compression is seen as a simple technique to
increase their effective bandwidth. However, data compression
requires accessing Metadata which incurs additional bandwidth
overheads. Even after using a Metadata-Cache, the bandwidth
overheads of Metadata can reduce the benefits of compression.

This paper proposes Attaché, a framework that reduces the
overheads of Metadata accesses. The Attaché framework consists
of two components. The first component, called the Blended
Metadata Engine (BLEM), enables data and its Metadata to be
accessed together. BLEM incurs additional Metadata accesses
only 0.003% times and removes almost all Metadata bandwidth
overheads. The second component, called the Compression Pre-
dictor (COPR), predicts if the memory block is compressed. The
COPR predictor uses a fine-grained line-level predictor, a coarse-
grained page-level predictor, and a global indicator. This enables
Attaché to predict the compressibility of the memory block before
sending a memory read request. We implement Attaché on a
memory system that uses Sub-Ranking. On average, Attaché
achieves 15.3% speedup (ideal 17%) and saves 22% energy
consumption (ideal 23%) when compared to a baseline system
that does not employ data compression. Attaché is completely
hardware-based and uses only 368KB of SRAM.

Index Terms—Data Compression, Metadata, Bandwidth, Sub-
Ranking, Memory Systems

I. INTRODUCTION

Increasing the main memory bandwidth is instrumental for

increasing the performance of processor chips and accelera-

tors [1], [2], [3], [4]. Designers have traditionally improved

bandwidth by increasing the frequency or the pin count of the

memory interface [5], [6], [7], [8], [9]. These techniques tend

to have area and energy costs. Furthermore, interface changes

are slow, as new memory standards are proposed only every 2

to 3 years [1], [2]. One can overcome these challenges by using

data compression. Compression enables the memory systems to

transfer data over fewer pins and fewer memory chips, thereby

unlocking higher bandwidth [10]. However, identifying if the

data is compressed requires additional Metadata [10], [11],

[11], [12]. The additional memory accesses to Metadata can

offset the benefits of compression. This paper tries to mitigate

the memory access overheads of obtaining Metadata.

Main memory systems tend to comprise of Dynamic Random

Access Memories (DRAM) [13], [14]. On a memory request,

commodity memory modules transmit/receive 64 bytes of data

(a cacheline). Each module typically contains 8 DRAM chips
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and each chip contributes 8 bytes of the 64-byte memory block.

If we could compress a 64-byte block to a 32-byte block, then

we can enable only 4 DRAM chips for each request, thereby

doubling the effective bandwidth. This technique is called Sub-

Ranking and together with data compression, Sub-Ranking can

be used to improve memory bandwidth [15], [16], [17].

Unfortunately, the Metadata overheads involved in data

compression can offset its bandwidth benefits. This is because

each cacheline-size memory block from main memory will

require a unique Metadata to identify its compressibility [10],

[11], [12], [18]. For a high capacity memory system, it is

impractical to store the Metadata in the memory controller.

For instance, in a 16GB memory system if each cacheline

requires 1 bit of Metadata, then the memory controller will

need 32MB of storage. It is impractical to implement a 32MB

SRAM in the memory controller due to latency, area, and

energy overheads [19], [20], [21]. Therefore, Metadata tends

to be stored in a separate location within the main memory

and tends to require issuing an additional memory request.

One can reduce the bandwidth overhead of Metadata by

employing a small Metadata-Cache within the memory con-

troller [10]. Unfortunately, additional Metadata-Cache eviction

and install requests can reduce the performance benefits of data

compression. Figure 1 shows the proportion of compressed

memory blocks (30 Bytes) and the additional bandwidth

overheads of Metadata accesses. For this analysis, we use

a reasonably large 1MB Metadata-Cache inside the Memory

Controller. We also plot the values for SPEC [22] and GAP [23]

workloads. Ideally, we can reduce the additional memory

requests for accessing Metadata by up to 85%. The goal of this

paper is to reduce almost all Metadata accesses. To this end,

this paper proposes Attaché, a framework that helps mitigate

Metadata accesses to provide a near-ideal speedup.

Fig. 1: The memory access overheads of Metadata accesses for

SPEC [22] and GAP [23] benchmarks. Metadata can increase

the memory traffic by up to 85%. The goal of this paper is to

mitigate this overhead and obtain near-ideal speedup.
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Attaché tackles Metadata bandwidth overheads by storing the

Metadata of a cacheline-size memory block within the block

itself. On a memory read, Attaché gets data and Metadata

together in one access. Therefore, Attaché avoids almost all

additional accesses to the memory. To this end, Attaché consists

of two components. The first component, called the Blended
Metadata Engine (BLEM), tries to place data and Metadata

together. The second component, called Compression Predictor
(COPR), predicts the values of Metadata for memory accesses.

The predictor enables the memory controller to proactively

issue memory requests only to the predicted Sub-Ranks.
The Blended Metadata Engine (BLEM) tries to place the

data and Metadata in the same memory block during writes

to memory. This is easy when the cacheline is compressible,

as compression creates additional space for storing Metadata.

However, if the cacheline is not compressed, then there is

no additional space for Metadata. To overcome this problem,

irrespective of whether the data is compressed or not, BLEM

interprets the first few bits of the cacheline as its Metadata-

header. A Metadata-header consists of a Compressed ID (CID)

and an Exclusive ID (XID).
The Compressed ID (CID) identifies the compression status

of the cacheline. The CID value is chosen randomly at boot-

time and stored in the memory controller. For instance, if we

have a 15-bit CID, the memory controller appends the 15-bit

CID value to the compressed cacheline during a write. As each

Sub-Rank stores 32 bytes of compressed data, for a 15-bit CID,

the target compression size of a cacheline is 30 bytes. For a

64-byte cacheline that cannot be compressed to 30 bytes, the

memory controller does not append the CID value (as there is

no additional space) and simply writes-back the uncompressed

data into both the Sub-Ranks (32 Bytes in each Sub-Rank).
During a read, if the line is compressed, then its top 15-bits

will match the CID value. Therefore, the CID value can be

used to identify compressed memory blocks. Unfortunately,

while reading uncompressed 64-byte memory blocks, the top

15-bits can match the CID value by chance and there can

be false-positives. In fact, for a 15-bit CID value, there is a
1

215 chance (0.003%) that the top 15-bits of the uncompressed

memory blocks will match the CID value 1. This makes it

difficult to identify whether the block is really compressed or

simply a false positive. We refer to such cases as CID collisions

and BLEM must identify all CID collisions.
The second part of Metadata-header, a 1-bit Exclusive ID

(XID), helps identify CID collisions. XID is checked only if

the top 15-bits of the data match the CID value. If the XID

value is set to ‘1’, it indicates a CID collision. During a write,

if the memory block is compressible to 30 Bytes, then the

XID value is reset to ‘0’ and appended after the CID value.

However, if the memory block is not compressible, then instead

of writing-back the unmodified memory block, the memory

controller checks the top 15-bits of the memory block for a

CID collision. In case of a CID collision, the memory controller

1Modern memory systems randomize data by performing data scrambling.
Due to this, the probability of a 15-bit CID false positive for any uncompressed
data memory block is 0.003%.

proactively writes an XID value of ‘1’ as the 16th-bit of the

line, therefore altering the original data bit in the uncompressed

memory block. The 16th data-bit replaced by XID is written

into a separate memory region called the Replacement Area.

On a CID collision, the memory controller reads the entire

64-byte memory block and fetches the 16th data-bit from the

Replacement Area. BLEM incurs additional memory reads

only during CID collisions. As CID collisions are rare (0.003%

times), BLEM incurs negligible bandwidth overheads.

While BLEM minimizes the memory bandwidth overheads

of Metadata to 0.003%, it only allows accessing Metadata

together with data. However, to identify if both Sub-Ranks

need to be enabled for a given memory block (when it is

not compressed), the memory controller needs to access the

Metadata before accessing data. To enable Metadata lookup

before accessing data, several prior works have proposed

using a Metadata-Cache. The Metadata-Cache stores the most

recently accessed Metadata. Unfortunately, Metadata-Cache has

bandwidth overheads as cache-misses have additional evictions

and replacement memory requests.

This paper proposes replacing the Metadata-Cache with

a predictor. This predictor, called a Compression Predictor

(COPR), predicts the compression status of the memory block.

The COPR consists of three levels of predictors. The first level,

called the line-level predictor (LiPR), provides predictions for

cachelines within a DRAM page. The second level, called

the page-level predictor (PaPR), provides predictions for the

compressibility of different DRAM pages. The third level,

called the global indicator (GI), is a simple two-bit counter

that keeps tracks of the compressibility of the most recent four

memory accesses.

After a 32-byte memory block is read, the memory controller

can check if its Metadata prediction was correct by interpreting

the Metadata from BLEM. If the prediction was incorrect, the

memory controller takes a corrective action by reading the

remaining 32-byte memory block. As BLEM ensures that the

Metadata is always read/written from/into the memory, COPR

does not cause additional Metadata accesses.

Overall this paper has the following contributions:

1) Blending Data and Metadata (BLEM), a technique

to encode Metadata within the data irrespective of the

compressibility of the data. Thereby eliminating almost

all bandwidth overheads (99.997%) of Metadata accesses.

2) A Simple Compression Predictor, a high-confidence

predictor that enables the BLEM engine to guess the

compressibility of memory blocks.

Attaché provides 15.3% speedup and 22% energy reduction

by efficiently compressing data into a system that uses Sub-

Ranking. Attaché does not require any software support.

Furthermore, Attaché requires only 368KB of SRAM for the

predictor and a single register to store the CID value.

II. BACKGROUND AND MOTIVATION

We provide a brief background on the main memory organi-

zation and data compression. Furthermore, we also highlight

the bandwidth overheads involved in managing Metadata.
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Fig. 2: Comparison of Baseline System, Sub-Ranking, and Sub-Ranking with compression. Figure (a) shows the baseline system

which does not employ Sub-Ranking or compression. Figure (b) shows that Sub-Ranking can unlock 2x bandwidth but can also

increase latency by 2x. Figure (c) shows that Sub-Ranking with compression can reduce the latency overheads of Sub-Ranking

and still provide 2x bandwidth for compressible lines (more requests/second).

A. Main Memory System Organization

Commodity memory modules consist of several DRAM

chips. Each DRAM chip consists of several bank-groups

and each bank-group is further divided into multiple banks.

Each bank contains millions of DRAM cells and operates

independently within a channel [1], [2], [24], [25], [26].

A memory request from the memory controller activates a

row of DRAM cells in the same bank across all chips. The

row of activated DRAM cells is read into the row-buffer. As

each memory module typically consists of 8 DRAM chips, the

row buffer is split across each chip. For instance, in the case

of an 8KB row buffer, each chip will hold 8Kb of data in its

row buffer. Each memory request will fetch the appropriate 64

bits data from the 8Kb row buffer of a chip. As there are 8

chips, each memory request accesses 64 bytes of data [27].

B. Memory Bandwidth and Latency Tradeoff

As each memory module consists of several DRAM chips,

one can improve bandwidth up to 2x allowing individual

memory requests to be serviced by independently by 4 DRAM

chips. However, each DRAM chip will now have to provide 128

bits of data as compared to 64 bits (2x more) and will increase

memory access latency by 2x [27], [28] 2. To reduce latency,

commodity memory modules tend to operate all DRAM chips

in lockstep as shown in Figure 2(a). This reduces the memory

access latency while providing tolerable bandwidth [15], [30].

Ideally, we would like to get higher bandwidth with no

additional latency overheads.

C. Get Bandwidth without Paying Latency

One can unlock higher bandwidth without incurring addi-

tional latency by using Sub-Ranking with Compression.

1) Sub-Ranking to Unlock Higher Bandwidth: One way

to improve bandwidth is by enabling the memory request to

access a smaller group of DRAM chips within a module. Each

group of DRAM chips is called a Sub-Rank [15]. Unfortunately,

simply Sub-Ranking memory modules increase its latency [16],

[17]. For instance, if a memory module has two Sub-Ranks,

then each memory request is catered by 4 DRAM chips instead

of 8 DRAM chips. This means that each chip will still have to

provide 2x more data and this will increase the access latency

by 2x as shown in Figure 2(b).

2One may also use pseudo-channels in HBM2 [29] without additional latency
overheads.

2) Compress Data to Reduce Latency: One way to mitigate

the additional access latency from Sub-Ranking is by compress-

ing data. For instance, if a 64-byte memory block is compressed

to at least 32 Bytes, then each Sub-Rank can provide this

compressed data with 2x lower access latency (same latency as

the baseline system) as shown in Figure 2(c). Therefore, Sub-

Ranking with compression is a practical low-latency solution

for enabling high bandwidth memory systems [15], [31].

D. Main Memory Data Compression

To compress data, memory systems can use low-latency

algorithms that are implemented in the memory controller.

1) Efficient Data Compression Algorithms: Data values tend

to be similar within a cacheline. The Base-Delta-Immediate

(BDI) algorithm uses this insight to compress cacheline-

size data blocks [12], [18]. Similarly, the Frequent-Pattern-

Compression (FPC) [32] algorithm keeps track of frequently

occurring data patterns. Data patterns like all-zeros tend to

occur frequently and FPC represents these patterns with fewer

bits. To this end, FPC requires only a small lookup table.

2) Compression-Decompression Engine: The data compres-

sion is performed by a compression-decompression engine in

the memory controller as shown in Figure 3. The compression-

decompression engine typically runs one or more compression

algorithms. During a write, the compression engine is activated

and the data is compressed as it flows through the engine into

the Sub-Rank. During a read, the decompression engine is

activated and the data is decompressed as it flows from the

Sub-Rank to the cores and caches.

Fig. 3: The compression-decompression engine for a Sub-

Ranked memory system (not drawn to scale). Reads flow

through the decompression engine and writes flow through

the compression engine.

328



A key metric for a compression-decompression engine is its

latency. Fortunately, BDI requires only simple arithmetic opera-

tions and FPC requires only table lookups. These compression

algorithms can compress-decompress within 1 cycle.

E. Data Compression: Potential

To understand the effectiveness of data compression, we look

at the compressibility of cachelines (64-byte memory blocks)

for memory intensive SPEC and GAP workloads. Figure 4

shows the percentage of cachelines that can be compressed to

less than 30 bytes.

Fig. 4: The percentage of cachelines compressible to 30 Bytes.

On average, 50% of the cachelines (64-byte memory blocks) are

compressible to 30 Bytes and can be stored within a Sub-Rank

without additional latency overheads.

On average, 50% of the cachelines are compressible to

30 bytes. For these compressible lines, we can potentially

obtain 2x higher bandwidth by using Sub-Ranking. For the

remaining lines, we can disable Sub-Ranking and still maintain

1x bandwidth. Therefore, on average, we can ideally obtain 1.5x

higher bandwidth by employing data compression with Sub-

Ranking. However, in practice, a memory system employing

compression accesses additional Metadata and this lowers the

bandwidth benefits of compression.

F. Data Compression: Metadata Overheads

A memory system that employs compression also maintains

additional Metadata information for each memory block. For

instance, the decompression engine will require a 1-bit per

memory block to identify its compression status.

1) Capacity Overheads: Even if each 64-byte memory block

has only 1 bit of Metadata, the main memory contains millions

of memory blocks. Therefore, the overall capacity overheads of

Metadata tends to be large. For instance, a 16GB main memory

system will need 32MB of Metadata. Due to its large size, it is

impractical to place Metadata on the processor chip. Therefore,

Metadata is typically stored in a separate region within the

main memory with a capacity overhead of only 0.2%.

2) Bandwidth Overheads: Storing Metadata in main memory

has bandwidth overheads. Each memory request requires an

additional access to the Metadata region. These additional

accesses tend to lower the benefits of data compression.

G. Pitfalls of using a Metadata-Cache

A Metadata-Cache can be used to reduce the memory

bandwidth overheads of Metadata. If the Metadata is present

within the Metadata-Cache (cache hit), then no additional

Fig. 5: The Impact of Metadata-Cache hit-rate on performance.

On average, even after using a 1MB Metadata-Cache with a

77% hit-rate, we can obtain only 8% speedup.

memory accesses are required. However, if Metadata is absent

within the Metadata-Cache (cache miss), then two additional

memory requests (eviction and install) may be necessary.

We can increase the hit-rate of the Metadata-Cache by in-

creasing its size. Unfortunately, it is impractical to create a large

Metadata-Cache within the memory controller. Furthermore, a

large Metadata-Cache will incur a significant lookup latency

and also increases the chip area considerably. Figure 5 shows

the average hit-rate of different sizes of Metadata-Cache. On

average, even with an impractically large 1MB Metadata-Cache,

we can obtain only 8% speedup [33].

III. ATTACHÉ: AN OVERVIEW

Figure 6 shows an overview of Attaché for a 16GB main

memory system. Broadly, Attaché consists of two components.

The first component of Attaché, called the Blended Metadata

Engine (BLEM) embeds Metadata with data for both com-

pressed and uncompressed cachelines. To this end, BLEM

interprets the first few bits of data as the Metadata header that

consists of Compression ID (CID) and Exclusive ID (XID).

For cachelines that are uncompressed and their CID value

collides, BLEM will replace a data-bit with the XID value of

1. BLEM also uses a Replacement Area (RA) to store bits

that are replaced by XID. The second component of Attaché,

called the Compression Predictor (COPR), helps predict if a

cacheline is compressible or not. COPR acts as a replacement

to the Metadata-Cache and avoids all bandwidth overheads

that result from managing the Metadata-Cache. Attaché uses a

compression-decompression engine to compress/decompress

memory blocks and provide the compressibility information

of the memory blocks to BLEM and COPR.

Fig. 6: An Overview of Attaché (not drawn to scale). Attaché

consists of a Blended Metadata Engine (BLEM) and a Com-

pression Predictor (COPR). The compression-decompression

engine will compress and decompress memory blocks. The

Replacement Area (0.2% of main memory) stores the bits that

are replaced by XID.
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IV. THE ATTACHÉ FRAMEWORK

This section describes the design of Attaché framework. The

Attaché framework broadly consists of the Blended Metadata

Engine (BLEM) and the Compression Predictor Unit (COPR).

A. The Blended Metadata Engine (BLEM)

The Blended Metadata Engine (BLEM) aims to store

Metadata and data together for all cachelines, irrespective

of their compressibility. However, traditional memory systems

face challenges in storing and accessing Metadata.

1) Pitfalls of Conventional Metadata Storage: Prior work

on memory compression places data and its Metadata in the

same row-buffer [10]. The memory controller can fetch the

data and Metadata by issuing two consecutive read requests

to the same row-buffer. This reduces the latency of fetching

Metadata. Figure 7 shows such an implementation. Typically

a DRAM row-buffer is 8KB (or 128 cachelines) and each

Metadata memory request accesses 64 Bytes (or 512 bits) of

Metadata. Therefore, even if a data cacheline uses 4-bits of

Metadata, a Metadata memory request can prefetch Metadata

for 127 data cachelines in the DRAM row.

Fig. 7: The conventional technique for storing Metadata.

Metadata is stored in the same row-buffer as data. Therefore,

Metadata and data can be accessed consecutively using two

memory requests to the same row-buffer.

Storing Metadata in this manner has three drawbacks. First,

Metadata will need to be accessed before accessing data. This is

because the memory controller will need the Metadata to figure

out the Sub-Rank or Sub-Ranks (if data is uncompressed) that

need to be enabled. This increases the data access latency and

read traffic from main memory. Second, for several workloads,

only a few cachelines tend to be accessed within a row-buffer.

Therefore, fetching Metadata for all cachelines in a row-buffer

is wasteful. Thirdly, the newly fetched Metadata cacheline can

cause the eviction of another cacheline from the Metadata-

cache. This increases the write traffic to the main memory. If

we can somehow fetch Metadata in the same access as the

data, then we can eliminate the drawbacks of storing Metadata

in the memory.

2) Insight: Intelligently prepend Metadata with data: One

can try to prepend Metadata with data. This is simple for

compressible cachelines as compressing a cacheline creates

additional space within the cacheline for storing Metadata.

However, for cachelines that are not compressed, there is no

additional space to store the Metadata.

Attaché stores Metadata by interpreting the first few bits of

the cacheline as the Metadata-Header and comparing it against

a Metadata-header that is stored in the memory controller. The

Attaché framework performs this comparison irrespective of

the compressibility of the cacheline. The Metadata-Header has

two components; the Compression ID and the Exclusive ID.

3) Identify Compression with Compression ID (CID):
Attaché uses the Compression ID (CID) to identify if the

cacheline is compressed or not. During writes, the CID is

prepended in front of the compressed cachelines. For cachelines

that are not compressed, there is no additional space for storing

CID. Therefore, the memory controller simply writes the lines

as they are. During a read, the memory controller uses the

insight that lines that do not have CID as the first few bits are

uncompressed lines. However, as there are millions of lines

in the memory system, it is possible that the first few bits of

some uncompressed lines will match the CID values. We refer

to this scenario of false positives as a CID collision.

4) Probability of CID Collision and the size of CID: The

probability of CID collision depends on the length of CID. For

instance, if CID is 3-bits long, then CID will collide every 8

memory requests (12.5% probability). In this paper, we use a

15-bit CID to reduce the probability of CID collision to 0.003%

(i.e 1
215 ). Figure 8 shows the probability of CID collision with

the number of accesses to uncompressed lines. Even in the

worst case, if all accesses are only to uncompressed lines, a

15-bit CID collides only every 32K accesses.

Fig. 8: The probability of a CID collision versus the number of

accesses to uncompressed lines. For a 15-bit CID, we expect

a CID collision every 32K accesses.

5) Extending CID to store more information: Currently, by

using only a 15-bit CID, Attaché can identify if the cacheline is

compressible or not. However, it is possible that the cacheline

is dynamically compressed by choosing either the BDI or the

FPC algorithm. To decompress such a cacheline, we will need

to add more Metadata information. To this end, we simply

reduce the size of CID to be 14-bits and use the 15th bit to

identify the compression algorithm. CID can be easily extended

to store additional information. Table I shows the CID size,

the number of information bits and the probability of collision.

TABLE I: Extending CID to store additional information

CID Size Additional Probability
Information Bits of Collision

15 0 0.003%
14 1 0.006%
13 2 0.01 %
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Fig. 9: Analysis of BLEM for reads and writes. During writes, BLEM proactively inserts XID = 1 only for uncompressed lines

that have CID collisions. During reads, BLEM uses this information to identify collisions.

Using this insight, CID can be extended to cater to multiple

compression algorithms on the fly. Unfortunately, even a large

CID will collide at some point in time. If a CID collision is

not identified, the memory controller will wrongly interpret

the uncompressed line as a compressed line and cause data

corruption. Therefore, CID collisions will need to be detected.

6) Detecting CID collisions with Exclusive ID (XID): A

1-bit Exclusive ID (XID) is used to identify CID collisions.

During writes, if there is a CID collision, the memory controller

proactively replaces the 16th data-bit as XID equal to ‘1’.

It stores the replaced data-bit in a separate area called the

Replacement Area (RA). If there is no collision, the memory

controller does not modify the uncompressed line. Therefore,

even if all memory blocks are uncompressed, the Replacement

Area will incur accesses only 0.003% of the time. If the memory

blocks are compressed, then the memory controller will simply

append an XID equal to ‘0’ after the CID. During reads, the

Replacement Area is read-only if the CID matches and the

16th data-bit is set to ‘1’ (collision).

7) Handling the data-bit replaced By XID: To cater to

the worst case in which all cachelines can encounter a CID

collision, each cacheline in the memory system has 1-bit in

the Replacement Area and indexes into it in a direct-mapped

manner. The area overhead of the Replacement Area is only

0.2% (i.e. 1
512 ) of the total capacity of the main memory. The

Replacement Area is invisible to the OS and is visible only to

the memory controller.

B. BLEM: Implementation and Flow

For reliability and security, memory controllers scramble

memory blocks using a Scrambling-Descrambling unit [34],

[35]. After scrambling, the data value appears pseudo-random.

Interpreting the Metadata-Header in the BLEM engine after

the data flows through the Scrambling unit will ensure that the

expected 15-bit CID collision probability is 0.003% 3.

Figure 9 shows how BLEM works for reads and

writes. BLEM uses the compression information from the

Compression-Decompression engine and can disable the

Compression-Decompression engine for uncompressed lines 4.

As shown in Figure 9(a), on a write request, if data cannot be

compressed, BLEM writes data as it is. However, as shown

in Figure 9(b), on a CID collision, BLEM proactively inserts

3Scrambling-Descrambling units tend to choose hashes with memory block
address as an input. This ensures that even if the same data is written in every
memory block, data will still appear pseudo-random [36].

4As Scrambling-Descrambling unit is placed after the Compression-
Decompression engine, scrambling the data has no effect on its compressibility.

XID as ‘1’ in the 16th data-bit. Thereafter, it will write the 16th

data-bit into the Replacement Area (not shown in the Figure).

As shown in Figure 9(c), for compressed lines, BLEM simply

prepends the CID and XID of ‘0’ in front of the data.

As shown in Figure 9(d), on a read request, if the top 15-bits

do not match the CID, BLEM simply reads the data and as

the data is deemed not compressed. However, as shown in

Figure 9(e), if CID matches and XID is set to ‘1’ (collision),

then BLEM fetches the 16th data-bit from the Replacement

Area (not shown in the Figure) and does not decompress the

data. As shown in Figure 9(f), for compressed lines, BLEM

simply checks if the CID matches and XID is set to ‘0’ and

sends these lines to be decompressed.

C. Compression Predictor (COPR): Design

While BLEM reduces the Metadata bandwidth overheads, it

delivers Metadata together with data. However, to identify if

Sub-Ranking needs to be enabled during reads, the memory

controller will need to access Metadata before accessing data.

Therefore, prior works have proposed using a Metadata-Cache.

1) Pitfalls of Metadata Caches: Unlike regular caches,

Metadata-Caches tend to reside within the memory controller.

The goal of the Metadata-Cache is to keep the most recently

accessed Metadata. Furthermore, the Metadata-Cache must be

amenable to a small lookup latency by the memory controller.

This is important as the memory controller will probe the

Metadata-Cache for every memory request and if the lookup

latency is large, it can cause slowdown. Therefore, prior

work in both industry and academia have assumed Metadata-

Caches that are typically small [10], [33]. In this paper, we

optimistically assume a 1MB Metadata-Cache (impractical)

within the memory controller.

Our analysis shows that a 1MB Metadata-Cache achieves

a hit-rate of 77%. Unfortunately, additional memory accesses

are involved for the 23% of the requests that miss on the

Metadata-Cache. In case of a Metadata-Cache miss, the memory

controller needs to issue a separate request to the Metadata

region in the DRAM row to fetch the new Metadata. After the

new Metadata is fetched, the Metadata-Cache should evict a

line of Metadata to install the new Metadata line. If the evicted

line is dirty, then the Metadata-Cache will require the memory

controller to issue another write request.

2) Compression Predictor to mitigate overheads: The key

drawback of the Metadata-Cache is that it is in charge of

managing Metadata. Therefore, Metadata-Cache must ensure

that Metadata is always kept updated in the main memory

and incurs bandwidth overheads. However, in the case of
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Attaché, BLEM is responsible for managing the Metadata.

Due to this, the Attaché framework does not need a Metadata-

Cache for issuing write-back and install requests to or from the

main memory. Due to this, the Attaché framework can replace

the Metadata-Cache with a predictor called the Compression

Predictor (COPR).

On a read, the COPR simply predicts the compression status

of the cacheline. After reading the cacheline and passing it

through BLEM, the memory controller can determine if the

COPR predictor was correct. Thereafter, the memory controller

updates COPR with the correct prediction. If COPR can obtain

the atleast the same prediction accuracy as the hit-rate of

the Metadata-Cache, then COPR will mitigate the additional

memory accesses that stem from the Metadata-Cache.

3) COPR: Enabling multi-granularity prediction: The mem-

ory system can have compressible cachelines that are sparsely

distributed over an entire row or evenly spread throughout the

row. For instance, there may be rows that have a few cachelines

that are compressible to 30B. On the other hand, there may also

be rows in which all cachelines are compressible to 30B. To

predict both these instances, COPR employs a multi-granularity

predictor. The multi-granularity predictor is composed of three

components as shown in Figure 10.

The Global Indicator (GI): GI tries to provide an overall

information of the data-compressibility of the running appli-

cations. GI is composed of eight two-bit saturating counters,

each of which keeps track of the compressibility of 1
8

th
the

memory space. At boot time, the counter values are initialized

to zero. For every memory request, a counter corresponding

to the requested memory space is incremented by one when

the cacheline is compressible, otherwise it is reinitialized to

zero. GI can be used as an accurate indicator for predicting

the compressibility within a memory space if there is abundant

similarity in compressibility.
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Fig. 10: The Compression Predictor (COPR). COPR contains

three components; the Global Indicator (GI), the Page-level

Predictor(PaPR), and the Line-Level Predictor (LiPR).

Page-Level Predictor (PaPR): By exploiting the similarity

in the compressibility of cachelines within an OS page [12],

[18], [37], PaPR provides compression predictions at the page

granularity. PaPR is a small set-associative cache structure that

is indexed by the page number. Each entry of PaPR is a two-bit

saturating counter. On memory access, if the accessed cacheline

is compressible, then the PaPR entry indexed by the page

number is incremented. In case the cacheline is incompressible,

the entry is decremented. If the entry value is greater than

or equal to 2, then the cachelines of the corresponding page

are predicted to be compressible. Otherwise, cachelines are

predicted to be incompressible. If there is no entry for the

accessed page, PaPR allocates a new entry for the page with

an initial value determined by the GI. When the corresponding

counter value of GI is greater than a threshold value, the new

entry is set to its maximum value (i.e., 3), otherwise it is reset

to zero. For this paper, we use PaPR of 192KB5.

Line-Level Predictor (LiPR): The goal of LiPR is to

provide compression predictions at 64-byte cacheline (memory

block) granularity. LiPR helps predict the compressibility of

cachelines even for pages with low similarity in compressibility

of cachelines. LiPR is a set-associative cache structure indexed

by the page number. Each LiPR entry is 64 bits long and

represents the compressibility of contiguous cachelines in a

page. After a cacheline indexes into LiPR entry, LiPR updates

the entry value if the prediction is not correct. At this time,

LiPR also proactively updates the neighboring entries to the

current entry. To this end, LiPR uses the two-bit values of

PaPR to determine if the neighboring cachelines have the same

compressibility. If the two-bit values are greater than or equal

to 2, LiPR updates the neighboring entries because the page

is deemed to have similar compressibility across cachelines.

If the two-bit values are less than 2, then the page has a mix

of compressible and incompressible cachelines. For this paper,

we use LiPR of 176KB5.

4) Prediction accuracy of COPR: Figure 11 shows the

prediction accuracy of COPR. On average, COPR provides a

prediction accuracy of 88% which is 8% higher than the hit-rate

of a 1MB Metadata-Cache. COPR achieves this by using the

insight that neighboring lines have similar compressibility and

that certain rows tend to have all lines that are compressible.

Furthermore, even for benchmarks that produce a low prediction

accuracy, BLEM does not require any Metadata accesses.

Fig. 11: The prediction accuracy of Compression Predictor

(COPR). On average, COPR provides an accuracy of 88%.

5The area overhead of COPR (192KB+176KB), which is estimated using
McPAT, is only 0.9% of the chip area in the baseline [38].
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D. Change in Compressibility and Software Support

Attaché does not use the free space made available by

compression. Therefore, as far as the capacity goes, the real to

physical (compressed) memory sizes are the same. Thus, even

if the compressibility of data changes, the data overflowing

the memory capacity is not possible in Attaché.

Attache is a completely hardware-based approach. The

main memory provisions 0.2% of the capacity for a reserved

area and does not expose this area to the OS. The memory

modules simply show a reduced capacity (99.8%) to the

OS at boot time. Therefore Attache requires no software

interactions and does not change the Virtual to Physical

memory management. The memory controller alone handles

the compression-decompression and metadata management.

E. Tying it together: Attaché with Sub-Ranking

To highlight the benefits of Attaché, this paper evaluates

Attaché on a memory system that uses Sub-Ranking. It should

be noted that the implementation of the Attaché framework is

not limited to a system that uses Sub-Ranking and the Attaché

framework can be easily applied to other proposals as well.

In memory system that uses two Sub-Ranks, we can unlock

2x the bandwidth for cachelines that are compressed to 30

bytes (32 bytes with Metadata-header). We can disable Sub-

Ranking for uncompressed cachelines and maintain the same

latency as the baseline. For simplicity, our implementation

tries to compress cachelines in odd-numbered rows into the

first Sub-Rank and cachelines in even-numbered rows into the

second Sub-Rank.

If the memory controller receives a read request to an odd-

numbered row, Attaché checks COPR to predict if the cacheline

is compressed or not. If COPR says that the cacheline is

compressed, then it fetches the cacheline entirely from the first

Sub-Rank with the same latency as the baseline. After reading

the line, BLEM can interpret the Metadata and determine if the

prediction was accurate. If the prediction is inaccurate, then

Attaché simply fetches the rest of the cacheline by enabling

the second Sub-Rank. If COPR predicts that the cacheline

is not compressed, then both the Sub-Ranks are enabled and

the entire 64 Byte cacheline is fetched. The same process is

followed for read requests to even-numbered row. However,

the top 32 Bytes of the uncompressed data are flipped and

stored. Therefore, in the case of uncompressed cachelines, the

memory controller will fetch the top 32 Bytes from the second

Sub-Rank. This is important as the Metadata-Header is stored

in the top 2 Bytes by design. After the read operation, Attaché

updates COPR with the correct values of Metadata.

V. EXPERIMENTAL METHODOLOGY

To evaluate the performance and energy benefits of Attaché,

we use the SST simulation framework [39]. For modeling the

processor core, we use the Ariel core component in SST. Ariel

is a simple core model that dynamically generates memory

instruction streams from a running application by using a

Pintool. We extended the Ariel core to model detailed out-of-

order (OoO) execution.

TABLE II: Baseline System Configuration

Number of cores (OoO) 8
Processor clock speed 4 GHz

Issue width 4
Last Level Cache (Shared) 8MB, 8-Way, 64-byte lines

LLC access latency 20 cycles
Memory bus speed 1600 MHz
Memory channels 2
Ranks per channel 1

Banks Groups 4
Banks per Bank Group 4

Rows per bank 64K
Memory blocks (64 bytes) per row 128

DRAM Access Timings: TRCD-TRP-TCAS 22-22-22
DRAM Refresh Timings: TRFC/TREFI 350ns/7.8s

To model the memory system, we use CramSim [40].

CramSim is a cycle-accurate main memory component of SST.

CramSim enforces strict timing and also models JEDEC DDR4

protocol specifications. Each rank in the memory module has

8 DRAM chips and can have two sub-ranks. This is enabled

by provisioning two different chip-select signals for groups

of 4 DRAM chips. We configure CramSim to prioritize read

requests over write requests. The memory controller also has a

write buffer that drains writes to the main memory once a high

watermark is reached. To enable compression, the compression

engine compresses a memory block using both BDI and FPC,

and selects the one with the best compression ratio for the

block. As per prior work, we assume that compression and

decompression of data occurs within 1 cycle [11]. For both

Metadata-Cache and COPR, we assume that the access latency

is 8 cycles, which is the same as that of the L2 cache. CramSim

models the energy and power overheads using a DRAMSim2

style power calculator [41]. The baseline system does not

employ compression and Sub-Ranking. The parameters for the

baseline system are shown in Table II.

For our evaluations, we chose memory intensive benchmarks,

which have greater than ”1 Miss Per 1000 Instructions”

from Last Level Cache, from the SPEC2006 [22] and GAP

suites [23]. We warm up the caches and the memory for 40

Billion instructions and execute 4 Billion instructions. We

execute all benchmarks in the rate mode, in which all eight

cores execute the same benchmark. We also evaluate two 8-

threaded mixed workloads, which are created by classifying

workloads and forming four categories from highly compress-

ible to incompressible. We randomly pick two benchmarks

from each category to form mixed workloads.

VI. RESULTS

This section discusses the performance and energy benefits

of Attaché, and the sensitivity of Attaché to design parameters.

A. Performance

Figure 12 shows the performance gains of using Attaché

when compared to a system that only uses Metadata Caching.

On average, Attaché provides 15.3% speedup across all

benchmarks using only 368KB of COPR 6. This is almost close

to the ideal case of 17%. On the other hand, a system that uses

6As the data is scrambled, irrespective of the benchmark and its data contents,
only 0.003% of the memory accesses go into the replacement area, on average.
For instance, even if the baseline system had data that were all 0s, after data
scrambling, the data written to the memory tends to be random 64 Byte strings.
The negligible bandwidth overhead into the replacement area tends to be
imperceivable in performance and energy simulations.
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Fig. 12: The performance of Attaché when compared to the baseline system that does not employ compression. On average,

Attaché provides 15.3% speedup (ideal 17%) which is 7% higher than a system that uses Metadata Caching. The results on

synthetic RAND and STREAM benchmarks highlight the robustness of Attaché to regular and irregular data patterns.

Fig. 13: The energy consumption of the Attaché memory system when compared to the baseline system that does not employ

compression. On average, across High-MPKI SPEC benchmarks, Attaché reduces energy consumption by 22% (ideal 23%)

which is 12% higher than a system that uses Metadata Caching. The results on synthetic RAND and STREAM benchmarks

highlight the energy benefits of Attaché irrespective of the data patterns.

a 1MB Metadata Caching only provides 8% speedup. Attaché

remains robust over synthetic benchmarks and consistently

provides speedup irrespective of the access pattern. On the other

hand, Metadata-Cache is not useful for the RAND benchmark

and therefore it shows a slowdown of 17%.

The performance gains of using Attaché come from its

bandwidth improvement. Figure 14(a) shows the memory

bandwidth usage and Figure 14(b) shows the average memory

latency. On average, Attaché enables 16% higher bandwidth

which results in 14% lower average memory latency.

(a) Memory Bandwidth Usage

(b) Average Memory Latency

Fig. 14: Memory bandwidth improvement and latency reduction

due to Attaché.

The performance of Metadata caching is correlated to

the Metadata-Cache hit rate. For instance, bc.kron shows a

slowdown as it has a poor hit-rate in the Metadata Cache.

Benchmarks like libquantum are not compressible, and as it

is a streaming application, there is no performance gain for it.

Additionally, while a system with Metadata caches will require

additional write-back operations, Attaché does not require this

for any benchmark. Due to this, even for the RAND benchmark,

Attaché has no additional bandwidth overheads from Metadata.

B. Energy Reduction

Figure 13 shows the energy benefits of using Attaché when

compared to a system that only uses Metadata Caching. On

average, Attaché saves 22% energy across all benchmarks,

close to the ideal case of 23%. On the other hand, a system

that uses Metadata caching only provides energy savings of

10%. The energy savings of Attaché also sustain over synthetic

benchmarks. On the other hand, Metadata-cache is not useful

for the RAND benchmark and therefore shows an increased

energy consumption of 40%.

The energy overhead of Metadata Caching is correlated to

the Metadata-Cache miss-rate. For instance, bc.kron shows

20% higher energy as it has a low hit-rate in the Metadata

Cache. For the same benchmark, Attaché shows a lower energy

consumption as it does not incur any additional Metadata

accesses. Benchmarks like libquantum are not compressible,

however as it is a streaming application, there are no energy

savings for it. Attaché consistently saves energy when compared

to the baseline for all benchmarks.

C. Additional traffic due to Metadata-cache

Figure 15 shows the additional memory traffic due to

Metadata caching. On average, even a large Metadata-cache

increases the memory traffic by 25%. This is because of

cache evictions and installs from the Metadata region in the

main memory. Furthermore, most additional requests are read
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Fig. 15: Normalized number of memory requests in a system that uses Metadata caching. On average, even a large 1MB

Metadata-cache incurs 25% additional memory accesses due to evictions and installs.

requests (installs). This is because the compressibility of the

line does not change much during its lifetime. Therefore, the

Metadata bits associated with the compressibility of cachelines

tends to remain the same. As a result, Metadata cachelines

tend to be predominantly clean.

D. Sensitivity to Replacement Algorithm

Figure 16 shows the hit-rates of a 1MB Metadata cache with

state-of-the-art replacement policies like DRRIP and SHIP [42],

[43]. As compared to last level caches that have hit rates

between 40% to 60%, Metadata caches tend to have a much

higher hit-rate (77%) [42], [43]. Therefore, other state-of-art

policies like DRRIP and SHIP provide only a 2% increase in

the hit-rate of the Metadata cache.

Fig. 16: Hit rate of a 1MB Metadata-Cache with different

replacement policies. The baseline LRU policy provides a very

high hit-rate (77%) and other policies only increase the hit-rate

by 2%.

E. Sensitivity to Predictor Components

Different components of COPR contribute to its performance

benefits. Figure 17 shows that PaPR (page-level predictor) alone

can provide 11.5% speedup. However, after combining with

GI (global indicator) can provide 15.3% speedup. The LiPR

(line-level predictor) is only useful for mixed workloads.

Fig. 17: The performance with different components of COPR.

On average, except for mixed benchmarks, the PaPR (page-

level predictor) and GI (global indicator) provide most of the

prediction accuracy.

VII. RELATED WORK

In this section, we describe prior work that is closely related

to our work.

A. Data Compression for Main Memory

Memzip [10] compresses data for improving the bandwidth

of the main memory. To this end, Memzip employs static

Sub-Ranking and uses a Metadata-Cache. Attaché can be

easily applied to the Memzip framework to reduce metadata

overheads. A prior work by Lee and Hong used the XRL

compression algorithm for low latency decompression [44].

While lower compression-decompression latency improves

performance, it does not reduce the overheads of Metadata

caching. Pekhimenko et. al. [12] proposed an efficient technique

for the main memory compression. However, this compression

technique is focused on improving the memory capacity.

Similarly, Abali et. al [45] proposed an alternative technique

of implementing compression in main memories, primarily for

improving memory capacity. These techniques for compression

do not focus on primarily mitigating the bandwidth overheads

of Metadata. Non-Volatile Memories can also use compression

to reduce energy and improve performance [46].

Deb et. al. [21] describes the challenges in maintaining

Metadata and recommend using ECC storage to store Metadata

with a predictor. While this technique is useful for memory

modules that have ECC in them, commodity memory modules

do not have ECC chips [34], [47], [48], [49]. Attaché is

applicable to non-ECC systems as well. Furthermore, the

predictor by Deb et. al. [21] is different from COPR. COPR

employs a multi-granularity predictor which enables COPR to

track compression status at page-level and line-level granularity.

Compression is also useful for increasing the effective

memory capacity. Prior works from the industry such as IBM

MXT and VMWare ESX use “Balloon Drivers” to allocate and

hold unused memory when data becomes incompressible or

when Virtual Machines exceed capacity thresholds [50], [51],

[52], [53], [54]. Similarly, Kim et. al. proposed “Dual Memory

Compression” that helps improve memory capacity. Attaché

is a bandwidth optimization technique and does not improve

memory capacity [55]. Nevertheless, Attaché can be used for

efficient metadata storage in those systems too.

B. Data Compression for Energy Savings

Kim et al. [56] introduce a bit-plane compression technique

that uses a bit-plane transformation to achieve a high compres-
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sion ratio. They exploit this high compression ratio to save

bandwidth. Pekhimenko et. al. [57] addresses an inefficiency of

the memory compression techniques and its consequent increase

in bus energy consumption. This is because compression

naturally increases the number of bit toggles. These work

are efficient at improving the memory interface performance

and energy consumption. Unfortunately, these techniques do

not address the Metadata bandwidth overheads and therefore

Attaché can be easily applied to these techniques.

C. Data Compression for Caches

Prior work has also focussed on using compression to

improve the effective cache-capacity and lower energy [32],

[58]. To this end, prior work focuses on the similarity of data

content present in caches and employ compression. In the

similar spirit, Young et. al. [11] use compression in DRAM

caches to improve both capacity and bandwidth dynamically.

While this work tries to improve the bandwidth of DRAM

caches, it does not incur any Metadata overheads. This is

because the tag storage in caches acts as natural avenues for

storing Metadata and can be fetched together with data. Attaché

works well for systems, such as main memories, that do not

have this design and tend to be bandwidth constrained.

Caches can also use a dictionary-based compression scheme

for higher compressibility [59]. Attaché can be easily used with

schemes for obtaining Metadata along with data. Other cache-

compression techniques like YCC, SCC, Sc2, and Decoupled

Compressed Cache can easily use Attaché to fetch data and

Metadata together [60], [61], [62], [63].

D. Compression for NOCs

Thuresson et al. [64] try to improve the bandwidth of the

network on chips by compressing cachelines. In this work, the

compression is primarily employed between the LLC and the

memory controller. Providing additional lanes for Metadata at

this interface is relatively simpler. This is because the NOC

is designed by the processor vendor and therefore can be

customized. However, the DDR interface is a standard and

therefore it is challenging to transmit Metadata over the memory

interface without any additional accesses. Nevertheless, Attaché

can easily be extended to other levels of the memory hierarchy.

E. Data Compression for GPUs

Sathish et al. [65] try to save memory bandwidth for GPUs.

In this work, they propose using both lossy and lossless

compression for GPU content. Attaché is orthogonal to the

compression technology and characteristics. Therefore, Attaché

can easily be applied over this work for GPUs to get additional

bandwidth savings.

F. Other Relevant Work

Sardashti and Wood [37] observe that cachelines in the

same page may not have similar compressibility. If the

compressibility of a page varies, the Metadata cache will still

perform poorer than COPR. Due to varying compressibility,

the traffic from Metadata cache will now dominate write-backs.

Hallnor et. al. [66] proposed using compressed data through-

out the memory hierarchy. Such an approach reduces the

overheads of compression and decompression at every level in

the hierarchy. Attaché is orthogonal to this approach and can

be used with this approach at every level to improve bandwidth

efficiency even further.

Recent work by Han et. al. [67] and Kadetotad et. al. [68]

used compression with deep neural networks to significantly

improve performance and reduce energy. This work primarily

focused on improving capacity. However, even to improve

bandwidth, frameworks like Attaché will help such deep

networks as it can save Metadata bandwidth for every level of

the deep neural network.

New technologies like stacked memories and non-volatile

memories tend to have ECC, security primitives, and endurance

optimizations for increasing their lifetime [69], [70], [71], [72],

[73]. Attaché can be applied independently to any of these

schemes and is broadly applicable. Going forward, Attaché

can also be co-optimized with caching policies [42], [43] and

memory-request scheduling policies [74].

VIII. SUMMARY

Main memory systems are bandwidth constrained and data

compression is a practical technique to improve their bandwidth.

While one can use Sub-Ranking to unlock higher bandwidth,

one cannot simply employ data compression to utilize this

bandwidth. This is because data compression relies on Metadata

for identifying the compressibility of the cacheline. Therefore

each access to the line will also require an additional access to

its metadata. While one can resolve this issue by completely

placing the Metadata in an on-chip buffer near the processor,

such a design will not be scalable. For instance, in a 16GB

memory system, if each cacheline requires 1 bit of Metadata,

the size of the buffer will be 32MB. Therefore, prior work

has proposed caching Metadata in an on-chip Metadata-cache.

This paper observes that even at high Metadata-cache hit-rates

Metadata-Cache requests can cause bandwidth overheads.

To this end, this paper proposes Attaché, a technique that re-

duces the bandwidth overheads of Metadata accesses to 0.003%.

Attaché is a scalable technique and can be implemented without

any software changes. For a 16GB main memory, the hardware

overhead of Attaché is only 368KB. Furthermore, Attaché

requires 0.2% Replacement Area in the main memory for

storing data from cachelines that incur CID collisions. Overall,

Attaché provides 15.3% higher performance (ideal is 17%) and

22% lower energy (ideal is 23%) by reducing the Metadata

bandwidth for compression.
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