
ADAM: Adaptive Block Placement with Metadata
Embedding for Hybrid Caches

Beomjun Kim
Kyungpook National University

beomjun0816@knu.ac.kr

Prashant J. Nair
The University of British Columbia

prashantnair@ece.ubc.ca

Seokin Hong
Kyungpook National University

seokin@knu.ac.kr

Abstract—Spin-Transfer Torque Random Access Memory
(STT-RAM) is a potential alternative for SRAM-based on-chip
caches. STT-RAM offers high density and low leakage power,
thereby can be used to build a large capacity last-level caches
(LLC). Unfortunately, the write latency of the STT-RAM is
significantly longer, and its write energy is considerably higher
compared to SRAM. To mitigate these concerns, researchers
have proposed hybrid caches that are comprised of SRAM and
STT-RAM regions. In such hybrid caches, an intelligent block
placement policy is necessary to store as many write-intensive
blocks in the SRAM region. This paper proposes an adaptive
block placement framework with metadata embedding (ADAM)
for hybrid caches. ADAM embeds metadata (i.e., write-intensity)
into a cache block when it is evicted from LLC. When a cache
block is brought from the main memory, metadata embedded
in the block is extracted and used to determine the write-
intensity of the block. Our evaluation shows that ADAM can
improve performance by 26% (on average) over a baseline block
placement scheme.

Index Terms—Last-level Cache, Hybrid Cache, Non-Volatile
Memory, STT-RAM

I. INTRODUCTION

On-chip caches occupy a large portion of the on-chip area

in the modern processors. To make matters worse, the ever-

growing working set of modern applications require larger

on-chip last-level caches (LLC) [1]. Unfortunately, Static

Random Access Memory (SRAM), the conventional memory

technology for LLCs, does not scale well due to its high power

consumption and low density. Therefore, many researchers

are investigating emerging non-volatile memory technologies,

such as Spin-Transfer Torque RAM (STT-RAM), as an alter-

native to SRAM. STT-RAM is attractive as it offers higher

density and lower leakage power consumption over SRAM.

However, STT-RAM suffers from long write latency and high

power consumption on write operations, which can offset the

attractive characteristics of STT-RAM.

As both SRAM and STT-RAM have strengths and weak-

nesses, to get the best of both worlds, researchers have

proposed hybrid caches that integrate both SRAM and STT-

RAM [2]–[4]. In the hybrid caches, the data array is partitioned

into two regions: SRAM and STT-RAM regions. To mitigate

long write latency and high write power consumption of

the STT-RAM, the hybrid caches employ an adaptive block

placement policy to allocate write-intensive blocks to the

SRAM region. As the read-latency and power of the STT-

RAM region are low, hybrid caches try to place the read-

intensive blocks in the STT-RAM region proactively. Thus, an

optimal block placement policy is crucial for efficient hybrid

caches.

Prior proposals on the block placement policy predict the

write-intensity of blocks every time they are installed in the

LLC. After the block is installed, the actual write-intensity

is learned during the execution of the program. If the write-

intensity prediction was incorrect, the block is migrated from

the STT-RAM region to the SRAM region and vice versa.

Write-intensity prediction is a key challenge for the hybrid

cache. When a cache block is brought from the main memory,

the reference history for the block is not available because all

information about a block is removed when it is evicted from

the LLC. Therefore, it is likely that the prediction is incorrect

and can result in significant performance degradation.

To tackle this problem, we propose ADAM, a new adaptive

block placement framework with metadata embedding. ADAM

is based on the key observation that the write-intensity of the

cache blocks tends to be almost constant during the execution

of a program. Based on this finding, ADAM embeds the write-

intensity metadata within the cache block by using the data

compression techniques. When a block is brought from the

main memory, the embedded metadata is extracted from the

block and used to determine the appropriate region (STT-

RAM or SRAM) for placing the block. By using the metadata

embedding technique, ADAM can track the write-intensity of

an individual block without additional storage elements.

II. MOTIVATION

A. Limitation of Prior Work: Loss of the Metadata on Eviction

Prior approaches predict the write-intensity of the blocks

when loading them into the caches, and then keep tracking

the number of writes on the individual block to determine

its actual write-intensity. If it turns out that the prediction

was incorrect, the corresponding block is migrated into an

appropriate region. These approaches can work well only if the

target applications have high data locality or the high accuracy

of the write-intensity predictor. In these approaches, when a

block is evicted from the cache, the metadata (e.g., write-

counter value) that was used to determine the write-intensity of

the block is also removed from the cache. Therefore, whenever

a cache block is loaded from the main memory, it is required

to re-learn the actual write-intensity of the block.

421

2020 IEEE 38th International Conference on Computer Design (ICCD)

2576-6996/20/$31.00 ©2020 IEEE
DOI 10.1109/ICCD50377.2020.00077

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on December 30,2021 at 11:53:30 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Performance of hybrid cache using a baseline block

placement technique.

Figure 1 shows the performance of three LLC caches: 16MB

STT-RAM-based cache (denoted by STT-RAM), 12MB hybrid

cache with a baseline block placement (denoted by HYBRID),

12MB hybrid cache with an ideal block placement (denoted

by ideal case). These designs are chosen because they are
expected to consume similar on-chip area in our simulation
with NVSim [5]. The baseline block placement policy only

uses the type of instructions triggering the cache misses as

done in [6]. The experimental environment in this section is

the same as we used in section V. For this experiment, we used

memory-intensive benchmarks showing high MPKI (Miss per

kilo instruction). As shown in the Figure 1, the hybrid cache

with an ideal block placement, where all write-intensive blocks

are located to the SRAM region, achieves a speedup of 41%

(on average). However, the hybrid cache using the naive block

placement achieves limited performance improvement. Even

for some benchmarks such as omnetpp and sphinx3, using

a hybrid cache instead of the STT-RAM-based cache incurs

performance degradation.

The main cause of the hybrid cache’s limited performance

gain for some benchmarks is frequent block eviction on the

LLC due to the limited data locality in the benchmarks.

Even if the write-intensity of cache blocks is determined

while the blocks reside in the LLC, it is removed when the

corresponding block is evicted from the LLC. To maintain

each block’s write-intensity, we can store metadata regarding

the write-intensity of the block in the main memory and use

a metadata cache to store the metadata of the frequently or

recently referenced blocks. However, this approach cannot

mitigate this problem for memory-intensive workloads with

irregular memory access patterns, as studied in [7].

B. Opportunity: Write-intensity is Almost Constant

To design a novel data placement scheme, we start with

a workload characterization on our simulation infrastructure.

We observe that the write-intensity (WI) of a cache block

Fig. 2: Ratio of blocks with constant write-intensity (WI).

is almost constant during the execution across several work-

loads. Figure 2 shows the distribution of the cache blocks of

which write-intensity does not change. On average, the write-

intensity is not changed for 98% of the cache blocks fetched

from the main memory. This motivational result indicates that

the write-intensity of a block can be used to predict the future

write-intensity of the block multiple times once it is learned.

III. ADAM: ADAPTIVE BLOCK PLACEMENT WITH

METADATA EMBEDDING

A. Overview

To fully exploit the benefits of the hybrid caches, we

propose ADAM, an adaptive block placement framework with

Metadata Embedding. Figure 3 shows an overall architecture

of the hybrid cache with the ADAM framework. The ADAM

framework consists of four components. First, the per-block

write-counter in the tag array that counts the number of writes.

Second, a write-intensity detection unit for determining the

number of writes. Third, a metadata embedding unit which

reads or writes the metadata while reading or writing a

cache block from the main memory system. Fourth, the block

placement component that places the block appropriately into

the SRAM or STT-RAM based on write-intensity during reads.

When a cache block is modified within the LLC, the

block is marked dirty, and the write-counter for the block is

incremented. Thereafter, when a dirty cache block is evicted

from the LLC, the write-intensity detection unit uses the write-

counter to generate the metadata for the cache block. The

cache block, along with the metadata, is then transferred into

the metadata embedding unit. The metadata embedding unit

compresses the cache block and places the metadata alongside

the block before writing it into the main memory.

During a read, the metadata embedding unit tries to extract

the metadata out of the cache block. If the cache block contains

the metadata that deems the block write-intensive, the block

placement unit stores the block in the SRAM region. If the

metadata indicates that the block is not write-intensive, the

block is placed in the STT-RAM region.

Hybrid Cache

Main Memory

Data Array

Tags
+

Write
Counter

Demuxes

Block
Placement

Unit

Block with metadata (64B)

Write-intensity
Detection Unit

Write
Counter

Write-intensity

Block (64B)

Tag Array

ADAM Controller

SRAM
Region

STT-RAM
Region

Metadata
Embedding Unit

Embedding Extracting

Muxes
SRAM region or

STT-RAM region?

Block (64B)

Write-intensity

Fig. 3: The ADAM framework

422

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on December 30,2021 at 11:53:30 UTC from IEEE Xplore. Restrictions apply.

B. Per-Block Write Counter

The write-intensity of a cache block is tracked using a 3-bit

saturated counter called a write-counter. Tag array contains the

write-counters, as shown in Figure 3. The write-counter for a

block is incremented by one on a write hit. On the other hand,

on a read hit, the counter is decremented by one.

C. The Write-Intensity Detection Unit

The 3-bit write-counters from the tags are probed by the

write-intensity detection unit. The write-intensity detection

unit compares the write-counter value of the victim block with

a write-intensity threshold. If the write-counter value is greater

than the threshold, the write-intensity detection unit generates

1-bit metadata indicating a low or high write-intensity.

D. The Metadata Embedding Unit

The metadata embedding unit tries to place the 1-bit meta-

data within the cache block. Unfortunately, cache blocks are

typically 64 Bytes in size, and when placed in memory, they

do not have any additional space to store any metadata.

Prior work Attaché [7], overcomes the problem of em-

bedding metadata by using blended metadata. The metadata

embedding unit evolves the blended metadata framework to

store the write-intensity metadata. Unlike Attaché that needs

to compress a 64-Byte block to 30 Bytes, ADAM only needs

to compress a 64-Byte block up to 61 Bytes. In this work,

the metadata embedding unit uses the Base-Delta-Immediate

(BDI) and Frequent-Pattern-Compression (FPC) techniques to

compress a cache block to at least 61 Bytes and chooses the

best of the two [8], [9]. In our experiments, 82% of the blocks

are compressible to less than 61 bytes on average.

The metadata embedding unit stores a 2-byte signature

alongside the 61-Byte compressed cache block, as shown

in Figure 4. Similar to the Attaché framework [7], the 2-

byte signature consists of a 15-bit Compression ID (CID)

and a 1-bit Exclusive ID (XID). The CID helps identify

compressed cache blocks, and XID helps detect CID collisions

and eliminate false positives. The metadata embedding unit

then stores 1-byte of metadata alongside the signature, as

shown in Figure 4. The 1-byte metadata contains 1 bit to

indicate the type of compression technique and 1 bit to indicate

the write-intensity. The remaining 6 bits can be used to store

any information regarding the corresponding cache block.

If the cache block is compressible, the metadata embedding

unit stores the signature (2 Bytes), metadata (1 Byte), and

compressed data (61 Bytes) tuple into the memory system. If

the data is not compressible, then the data is stored as it is.

However, like Attaché, if the first 15 bits of the uncompressed

data collide with the CID, then the 16th bit (XID) is set to

0, and the original 16th bit of the data is placed in a separate

region within the main memory.

E. The Block Placement Unit

On a read, the metadata embedding unit decompresses the

cache block and extracts the write-intensity metadata. The

metadata embedding unit then forwards the write-intensity

64B

61B2B 1B

Block

Block w/ metadata

Compressed

Metadata
(Write-intensity)

Signature
Compressed Block

Fig. 4: Embedding metadata into the cache block.

information to the block placement unit. If the block is deemed

to be write-intensive, then the block placement unit places this

block into the SRAM region. If not, the block placement unit

places this block into the STT-RAM region.

F. Selectively Writing Back Clean Blocks

An evicted block is deemed clean if it is not updated

during its lifetime in the cache. Clean evicted blocks are

traditionally not written back into the main memory to save

memory bandwidth. However, a clean cache block can change

its write-intensity (WI). For instance, suppose a block with

a high write-intensity is read into the cache. Thereafter, the

block may encounter only reads during its lifetime in the

cache. This would decrement the write-intensity counter. As

the block remains clean, on eviction, this block would not be

written back to the memory. However, as there is a change in

write-intensity, the ADAM framework will write back these

clean evicted blocks to the main memory. We call the write

requests for the clean evicted blocks as Clean Writes (CW) in

this paper.

IV. EVALUATION METHODOLOGY

To evaluate the performance benefits of the ADAM, we

developed a hybrid-cache simulator based on USIMM [10].

Table I lists the simulated system configuration. The LLC is

configured to have multiple banks to service multiple requests

in parallel.

TABLE I: Baseline System Configuration

Processor 3.2GHz, 4 cores

L1 Cache 32KB, 8-Way, 4 cycles
L2 Cache 256KB, 8-Way, 12 cycles

12MB (SRAM: 4MB, STT-RAM: 8MB), 16-Way
LLC SRAM Read/Write: 30 cycles

(Hybrid Cache) STT-RAM Read : 30 cycles
STT-RAM Write : 90 cycles

The efficiency of ADAM is compared to a baseline and an

ideal block placement. The baseline block placement scheme

predicts the write-intensity of a cache block only with the

type of operation (i.e., load or store) triggering a cache miss.

In the ideal scheme, we assume that all write-intensive blocks

are allocated to the SRAM region.

V. SIMULATION RESULTS

A. Write Hits on SRAM and STT-RAM Regions

Figure 5 shows the distribution of write hits on LLC. The

primary goal of the block placement scheme for the hybrid

cache is to reduce write-hits on the STT-RAM region to

423

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on December 30,2021 at 11:53:30 UTC from IEEE Xplore. Restrictions apply.

(a) Baseline hybrid cache (b) Hybrid cache with ADAM

Fig. 5: Distribution of write hits on hybrid caches.

mitigate a long write latency and high energy consumption

of the STT-RAM. As shown in the Figure, ADAM yields low

write hits on the STT-RAM region compared to the baseline

scheme for all of the benchmarks. On average, the percentage

of write hits on the STT-RAM region is reduced from 81% to

25%.

Fig. 6: The performance improvement of ADAM over baseline

block placement.

B. Performance

Figure 6 shows the speedup of ADAM when compared to a

baseline block placement. ADAM improves performance by

24% on average. Ideally, if we allocate all write-intensive

blocks to the SRAM region, we get a speedup of 40% on

average. The performance results show that libquantum and

astar benefit the most from ADAM due to the dramatic

reductions in the write hits on the STT-RAM region. Our

analysis shows that the Clean Write (CW) scheme can fur-

ther improve the performance for some benchmarks such as

omnetpp by writing back the clean blocks to the main mem-

ory to maintain the write-intensity information. For omnetpp

benchmark, ADAM delivers a speedup of 4% without the

Clean Write scheme. With the Clean Write scheme, ADAM

achieves a speedup of 46% for the omnetpp benchmark, which

is comparable to the speedup with ideal block placement.

On average, ADAM achieves a speedup of 26% when the

Clean write is applied. Most benchmarks can benefit from

accurate block placement with ADAM. However, for some

benchmarks such as cactusADM and h264ref, ADAM shows

lower performance compared to the baseline scheme. The

performance degradation for this benchmark is caused by the

increased misses on LLC. In hybrid caches, the SRAM region

is smaller than the STT-RAM region, and therefore when many

blocks are allocated to the SRAM region, the LLC miss rate

will increase. To address this problem, we can extend the

ADAM to consider the pressure on the SRAM region as well

as the block’s write-intensity.

VI. CONCLUSION

In this paper, we proposed ADAM, a new adaptive block

placement framework with metadata embedding for hybrid

caches. ADAM maintains the write-intensity of an individual

block by embedding metadata in the cache block. When

installing a block in the hybrid cache, ADAM extracts the

embedded metadata and uses it to determine the write-intensity

of the block. ADAM provides an efficient framework for

hybrid cache management by enabling the storage of metadata

without additional storage elements.

ACKNOWLEDGMENTS

This work was supported by the National Research Foun-

dation of Korea (NRF) grant funded by the Korea government

(MSIT) [NRF-2019R1G1A1011403]. Seokin Hong is the cor-

responding author.

REFERENCES

[1] S. Hong, B. Abali, A. Buyuktosunoglu, M. B. Healy, and P. J. Nair,
“Touché: Towards ideal and efficient cache compression by mitigating
tag area overheads,” in 52nd Annual IEEE/ACM International Sympo-
sium on Microarchitecture, 2019.

[2] G. Sun, X. Dong, Y. Xie, J. Li, and Y. Chen, “A novel architecture of
the 3d stacked mram l2 cache for cmps,” in 15th IEEE International
Symposium on High Performance Computer Architecture, 2009.

[3] Z. Wang, D. A. Jiménez, C. Xu, G. Sun, and Y. Xie, “Adaptive placement
and migration policy for an stt-ram-based hybrid cache,” in 20th IEEE
International Symposium on High Performance Computer Architecture.

[4] Y. Chen, J. Cong, H. Huang, B. Liu, C. Liu, M. Potkonjak, and
G. Reinman, “Dynamically reconfigurable hybrid cache: An energy-
efficient last-level cache design,” in 2012 Design, Automation Test in
Europe Conference Exhibition (DATE), 2012.

[5] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “Nvsim: A circuit-level
performance, energy, and area model for emerging nonvolatile memory,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 31, no. 7, pp. 994–1007, 2012.

[6] Xiaoxia Wu, Jian Li, Lixin Zhang, E. Speight, and Yuan Xie, “Power
and performance of read-write aware hybrid caches with non-volatile
memories,” in 2009 Design, Automation Test in Europe Conference
Exhibition, 2009.

[7] S. Hong, P. J. Nair, B. Abali, A. Buyuktosunoglu, K. Kim, and M. Healy,
“Attaché: Towards ideal memory compression by mitigating metadata
bandwidth overheads,” in 51st Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO), 2018.

[8] G. Pekhimenko et al., “Base-delta-immediate compression: Practical
data compression for on-chip caches,” in 21st International Conference
on Parallel Architectures and Compilation Techniques (PACT), 2012.

[9] A. R. Alameldeen and D. A. Wood, “Frequent pattern compression:
A significance-based compression scheme for l2 caches,” Dept. Comp.
Scie., Univ. Wisconsin-Madison, Tech. Rep, vol. 1500, 2004.

[10] N. Chatterjee et al., “Usimm: the utah simulated memory module a sim-
ulation infrastructure for the jwac memory scheduling championship,”
2012.

424

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on December 30,2021 at 11:53:30 UTC from IEEE Xplore. Restrictions apply.

