
A Case for Emerging Memories in DNN Accelerators

Avilash Mukherjee∗, Kumar Saurav†, Prashant Nair∗, Sudip Shekhar∗, and Mieszko Lis∗
∗The University of British Columbia, Vancouver, Canada †QUALCOMM India

avilash@ece.ubc.ca, saurav@qti.qualcomm.com, {prashantnair,sudip,mieszko}@ece.ubc.ca

Abstract—The popularity of Deep Neural Networks (DNNs) has
led to many DNN accelerator architectures, which typically focus
on the on-chip storage and computation costs. However, much of
the energy is spent on accesses to off-chip DRAM memory. While
emerging resistive memory technologies such as MRAM, PCM,
and RRAM can potentially reduce this energy component, they
suffer from drawbacks such as low endurance that prevent them
from being a DRAM replacement in DNN applications.

In this paper, we examine how DNN accelerators can be
designed to overcome these limitations and how emerging
memories can be used for off-chip storage. We demonstrate
that through (a) careful mapping of DNN computation to the
accelerator and (b) a hybrid setup (both DRAM and an emerging
memory), we can reduce inference energy over a DRAM-only
design by a factor ranging from 1.12× on EfficientNetB7 to 6.3×
on ResNet-50, while also increasing the endurance from 2 weeks
to over a decade. As the energy benefits vary dramatically across
DNN models, we also develop a simple analytical heuristic solely
based on DNN model parameters that predicts the suitability of
a given DNN for emerging-memory-based accelerators.

Index Terms—Machine-Learning, Convolutional Neural
Networks, Non-Volatile Memories, PCM, RRAM, MRAM

I. Introduction

Deep Neural Network (DNN) models are extremely compute-
and memory-intensive, requiring hundreds of MBs of memory
and 50-90K multiply and accumulate operations (MACs) per
fetched model weight [1–3]. Accelerators used exclusively for
inference reduce energy even further by using short fixed-point
values [4]. While this reduces the computation energy, the total
inference energy now becomes dominated by memory accesses,
since each memory access costs up to two orders of magnitude
more energy than a MAC operation for the same bitwidth [5].

DNN accelerators [4, 6, 7] attempt to reduce the memory
access energy through an on-chip memory hierarchy. Since
on-chip SRAM accesses tend to cost an order of magnitude
less energy than off-chip DRAM accesses [5], energy can be
saved if memory blocks fetched from DRAM can be reused
for multiple computations. For maximizing reuse, a typical
DNN accelerator has three levels of memory hierarchy: off-chip
DRAM, an on-chip SRAM global buffer, and per-PE register
files (RFs) (Fig. 1(a)). However, even with the conventional
memory hierarchy, for a ResNet-50 [1] inference, 80% of energy
is consumed by off-chip DRAM accesses (Fig. 1(b)).

In this paper, we investigate the potential for reducing
memory access energy for DNN accelerators by using emerging
memories (eMEMs). These offer much lower read energies, but
suffer from low write endurance and bandwidth (BW). Naïvely
using eMEMs as a DRAM replacement would result in DNN
accelerator chips that have lifetime of a few weeks (Fig. 1(d)).

†Work done while the author was with the University of British Columbia.

Fig. 1. (a) Conventional memory hierarchy in DNN accelerators — DRAM
stores both weights and activations. (b) Energy consumed across the memory
hierarchy shows that DRAM consumes more than 80% of the energy in
the conventional system for ResNet-50 inference, which we reduce by 6.3×
by leveraging low read energy of eMEMs. (c) Proposed memory hierarchy,
utilizing a hybrid memory setup to store weights and activations separately.
(d) The lifetime of the system on naive usage of eMEM is only two weeks —
increasing indefinitely upon utilizing a hybrid memory setup.

We therefore propose a hybrid design that uses a combination
of eMEM and DRAM (Fig. 1(c)) as storage for a digital DNN
accelerator (in contrast to prior uses of eMEMs for analog
in-memory compute [8]). By carefully scheduling the DNN
computations, we minimize the writes into the low-endurance
eMEM modules. This yields up to 6.3× lower inference
energy (Fig. 1(b)) while maintaining chip endurance on the
order of decades (Fig. 1(d)). Because the benefits depend on the
DNN architecture, we also develop an analytical heuristic based
solely on DNN model parameters that predicts the suitability
of deploying the model in a hybrid-memory accelerator.

II. Memory Technologies

Owing to its high density and BW, DRAM is commonly
employed as the main memory for computing systems. As
DRAM accesses are energy-inefficient [5], designers generally
create a hierarchy with intermediate memory technologies like
SRAM that offer much lower access energies [7].

On the other hand, resistive memories use high or low
resistance to differentiate stored values and offer low read access
energy. MRAM [11, 19, 24] utilizes the magnetic configuration
of two ferromagnetic layers; RRAM [13, 21, 23, 25] relies on the
formation of conductive filaments in the insulator between two
electrodes; and PCM [12, 17, 20] uses chalcogenide materials
that switch between crystalline and amorphous resistance states.

Table I compares the best performance measurements
reported for each memory technology. MRAM has the lowest
read energy, followed by RRAM and PCM; however, the read
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TABLE I
COMPARISON OF DIFFERENT MEMORY TECHNOLOGIES

SRAM DRAM eF MRAM PCM RRAM

Write Energy/Bit* (pJ) 0.75 [9] 20 - 40.625 [5] 122 [10] 4.5 [11] 32.7 [12] 7 [13]

Read Energy/Bit* (pJ) 0.954 [9] 20 - 40.625 [5] 2.2 [10] 0.7 [11] 2 [12] 2 [13]

Write Bandwidth (GB/s) 167 [14] 12.8 [15] 0.002 [16] 0.1 [11] 0.001 [17] 1.5 [13]

Read Bandwidth (GB/s) 167 [14] 12.8 [15] 6.25 [16] 0.7 [11] 0.833 [17] 8 [13]

Memory Size (MB) 0.128 [9] 16000 [15] 0.032 [10] - 24 [18] 0.125 [11] - 1024 [19] 0.125 [17] -1024 [20] 2 [13] - 2048 [21]

Area (mm2) 0.164 [9] 24.192 [15] 0.85 [10] - 8.64 [18] 0.214 [11] - 107.5 [19] 3 [17] - 59.409 [20] 0.0212 [13] - 168 [21]

Cell Size (!2
) 100 [22] 6 [22] 4 - 57.39 [18, 22] 9-75 [11, 19] 4-12 [12, 20] 6 [21]

Endurance (# Writes Cycles) 1016 [22] 1016 [22] 105 [16] 108 [11] 108
− 109 [12, 22] 106

− 107 [22, 23]

*Includes macro access energies for all memories. DRAM energy also includes data transfer which accounts for 10-20% of total energy [15]. For fair comparison

across all memories, we exclude the data transfer energy from DRAM in our experiments.

BW and endurance of these technologies are significantly
worse than SRAM and DRAM. This means that substantial
energy savings are on offer provided the attendant endurance,
bandwidth, and latency challenges can be addressed.

III. Methods

A. DNN Layers and Model Selection

We first examine how commonly used DNN layers,
like convolutional (CONV) layers, depthwise convolutional
layers (dw-CONV), as well as fully connected (FC) layers can
take advantage of eMEMs.

CONV layers are the most common layer in DNNs; the
computation can be thought of as a seven-dimensional loop
over the following dimensions (using the terminology in [26]):
the output tensor dimensions P, Q, the input and output tensor
channel counts C, K, the dimensions of the weight kernel R,

S, and the number of inputs in the batch N. The weight kernel
is convolved over the input image, making reuse of weights
possible across the input. Input activations can be reused
across different filters to produce different output channels.
The maximum possible weight reuse is " ×# × $ , while the
maximum possible input reuse is % × & × ' .

dw-CONV layers are used in models for mobile
applications [2, 3, 27]. Each kernel is separately applied to each
channel rather than across all input channels, saving significant
computation but offering far less input reuse.

FC layers are often used as the classifier at the end of DNNs
after feature extraction using CONV layers. FC layers reuse
weights only across the batch size dimension $ and reuse
inputs only across the output dimension ' .

We selected the representative DNN models by considering
top-1 accuracy on ImageNet [28] together with the compute
cost. We chose two types of models on the accuracy/#MACs
Pareto frontier: in the high-performance category, we chose
EfficientNets [3] and ResNet-50 [1]; in the mobile-computing
category, we chose ShuffleNet [27] and MobileNet v2 [2]. We
used the full models (all layers) for all experiments.

B. Chip Architecture

We modeled a DNN accelerator similar to the Eyeriss
architecture [6]: a 2D array of 14 × 24 processing elements,
each containing a single 16b fixed-point MAC unit and separate
register files (RFs) for weights (64B W-Reg), input activations
(24B InReg), and partial sums (16B PsumReg), together with

a 512 kB on-chip SRAM global buffer (GBuF) shared among
the PEs for long-term reuse.

The off-chip memory consists of only DRAM in the baseline
model (Fig. 1(a)) and a combination of eMEM and DRAM in
the hybrid configurations (Fig. 1(c)). We choose the size of
eMEM based on the DNN workload, ranging from 4.8 MB for
ShuffleNet [27] to 132 MB for EfficientNetB7 [3].

C. Simulation Environment

We used Accelergy [29] to model the hardware and the
corresponding energies and BW for the MAC operations and
reads/writes to the main memories, GBuF, and RF. To determine
the optimal scheduling and use of the available storage, we
used Timeloop [26]. We also used Timeloop with the Accelergy
model to obtain the energy costs and inference latencies.

IV. Using Emerging Memories in DNN Accelerators

A. Endurance and Architectural Constraints

Because the eMEMs offer significantly lower read energies than
DRAM, a designer might be tempted to directly replace DRAM
with eMEM of choice as the off-chip memory. However, this
means that the eMEM will store both weights and activations,
and will burn out quickly: e.g., ShuffleNet [27] needs 7.8M
off-chip writes, and will last only a few weeks (Fig. 2).

To be effectively employed, therefore, eMEMs must be read
often but written relatively rarely. This consideration motivates
the overall architecture shown in Fig 1(c): the off-chip memory
is divided into an eMEM weight memory (W-Mem) and a
DRAM activation memory (Act-Mem).

Fig. 2. The lifetime of memory technologies under naive replacement of
DRAM for (a) ShuffleNet, (b) MobileNet v2, and (c) ResNet-50 workloads
assuming continuous operation.

B. Layer Types and Workload Mappings

Because our design uses eMEMs to store weights, energy
savings depend heavily on how many accesses are made
to W-Mem compared to Act-Mem. Below, we examine the
common DNN layer types and show how to schedule them to
support eMEM usage.
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1) Fully-Connected Layers: Because FC layers have a
separate weight per combination of input and output activation,
they have significantly more weights than activations.

Since all weight reads access external memory, nearly all
inference energy goes towards reading the W-Mem. Fig. 3 shows
that replacing DRAM with any of the eMEM options therefore
offers more than an order of magnitude energy savings.

Fig. 3. Energy across different memory levels for an 1536–1000 (input-output)
FC layer for different W-Mem, normalized to DRAM. We obtain >95% energy
savings when using eMEM in place of DRAM. Note that the SRAM energy
is comparatively higher due to the large size of W-Mem required.

2) CONV layers with high weight counts: For typical
image-processing DNNs, relatively few MACs are expended
in the initial layers since there are only tens of channels. In
contrast, the later layers have many more channels (e.g., 1920
in stage 7 in EfficientNet-B0 [3]), with many more weights
than input activations: for example, the conv5-1x1-512-s2 layer
in ResNet-50 has 524,288 weights and 50,176 input activations.

Consequently, implementing W-Mem with an eMEM offers
substantial savings: the conv5-1x1-512-s2 layer on a hybrid
MRAM+DRAM accelerator takes 2.2× less energy than a
DRAM-only accelerator using the same dataflow (Fig. 4(c)).

However, a hybrid memory setup allows even more savings
since reading one activation from the Act-Mem (DRAM) costs
the same energy as multiple weights from W-Mem. Therefore,
we propose a weight-streaming dataflow, which ensures that
activations are only accessed once even if weights must be
accessed many more times. While this would consume more

energy in a DRAM-only accelerator (Fig. 4(b)), in the hybrid
accelerator this mapping saves 10% more energy over the
DRAM-optimal mapping (Fig. 4(d)), as it decreases GBuF and
Act-Mem energies more than it increases the W-Mem energy.

Fig. 4. Energy distribution across different memory levels for conv5-1x1-512-s2
in ResNet-50: (a) DRAM with DRAM-optimal dataflow; (b) DRAM with weight
streaming dataflow; (c) MRAM with DRAM-optimal dataflow; (d) MRAM
with weight streaming dataflow. Energy normalized to (a).

3) CONV layers with low weight counts: These layers
appear at the start of the DNNs, where the input dimensions
are large, but there are relatively few channels. In these layers,
W-Mem accesses do not dominate the overall energy, and, using
an eMEM for weights yields limited savings of up to 14%.

4) Depthwise-CONV Layers: Since each filter of a
dw-CONV layer acts only on a single channel of the input
activations, these layers have few weights, and W-Mem accesses
consume an insignificant part of the total energy; savings from
using an eMEM are therefore negligible (<1%).

C. Inference Energy

Table II lists single-sample inference energies for a DRAM-only
accelerator and hybrid accelerators using various eMEMs.
Energy savings can be substantial for models with high reuse
(e.g., up to 6.3× over DRAM on ResNet50). Models with less
reuse (e.g., MobileNet v2 and EfficienNetB7) still see savings
between 1.12× and 2.1×.

D. Inference Latency

The latencies of classifying a single sample on different DNN
models are shown in Fig. 5. The maximum read BW demanded
from W-Mem occurs for CONV layers with high weight counts
in the later stages of these DNNs. MRAM and PCM become
BW-bound for these layers, and hence show latency degradation
compared to DRAM and SRAM (Fig. 5(a–d)).

In the case of EfficientNetB7, we observe that the maximum
read BW demanded from W-Mem is 1.14GB/s; hence changing
memories does not affect the latency at all (Fig. 5(e)).

Fig. 5. Latency for processing (a) ShuffleNet, (b) MobileNet v2, (c)
EfficientNetB0, (d) ResNet-50, and (e) EfficientNet7, with different W-Mems.
Latency normalized to worst latency for each DNN.

Fig. 6. Energy savings of a hybrid-eMEM vs. DRAM-only accelerator
compared to the OIR heuristic.

Fig. 7. Energy savings compared to DRAM versus the proposed network
score. The energy savings increase with the network score, starting from 1.12×
for EfficientNetB7 to 6.3× for ResNet-50.

E. Energy Heuristics

The potential benefits of eMEM hinge upon the number of
weights (% × & × ' × () compared to activations (" ×# × ()
in each layer. We define the output channel to input dimension

ratio (OIR) to predict whether a specific layer will be suitable
for implementation with a hybrid-memory eMEM accelerator:

OIR = '/(" ∗#)

High OIR indicates high potential savings with eMEM, while
low OIR indicates limited savings. Fig. 6 demonstrates this by
plotting the OIR against the actual energy savings for all layers
from the chosen DNN models.

The layer-wise OIR heuristic estimates the energy savings
potential of a single layer. To extend this to the entire DNN, we
need to consider each layer’s energetic contribution to the full
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TABLE II
DNN INFERENCE ENERGIES WITH DRAM AND eMEMs (in milliJoules)

DNN
Workloads

DRAM SRAM eF MRAM PCM RRAM

ShuffleNet 5.33 2.05 2.12 1.96 2.10 2.09

MobileNet v2 4.75 2.49 2.41 2.29 2.39 2.39

EfficientNetB0 6.41 3.05 2.93 2.72 2.95 2.91

ResNet50 75.89 17.23 15.03 11.97 14.60 14.60

EfficientNetB7 370.8 320 330.87 328.42 330 330

model; the heuristic then becomes a weighted sum of per-layer
OIRs. Using MAC counts in each layer as a proxy for its energy
contribution, we obtain the network score NS:

NS =

∑

!∈layers

'

{(" ∗#) ∗ MACL}

NS only depends on the network dimensions and layer type
(e.g., CONV, FC, etc), and can hence be easily computed for
a specific model. Fig. 7 shows that NS is a useful heuristic: it
correlates well with the energy savings when using a hybrid
DRAM+eMEM design compared to a DRAM-only accelerator.

F. Silicon area

We follow the cell sizes in Table I to find the implementation
area for the memories. eF has not yet been implemented in
large sizes (e.g., the 132 MB needed for the 66 M parameters
in EfficientNetB7), but projecting from [18], 132 MB would
take around 48.16 mm2. For the same capacity, the area
required for MRAM [19], PCM [20] and RRAM [21] would be
13.4375 mm2, 7.426 mm2, and 10.5 mm2; meanwhile, SRAM
would consume a whopping 168.96 mm2 (13×–23× more).

V. Discussion

Overall, our results make a strong case that emerging memories
(eMEMs) can significantly reduce inference energy — by up
to 6.3× for a full DNN model — when used to supplement
DRAM in a traditional DNN accelerator with a dataflow that
maximally exploits activation reuse by streaming weights.

The key challenge of eMEMs is their limited write endurance.
To address this, the hybrid accelerator architecture we propose
uses an eMEM only for weights and DRAM for activations,
which allows multi-decade lifetimes.

However, the benefits are heavily dependent on the potential
for weight and activation reuse, and consequently on the layer
geometries within the DNN. To estimate the suitability of
specific models, we propose a Network Score heuristic that
predicts a DNN’s suitability for hybrid-eMEM accelerators.
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