
A Case for Refresh Pausing in DRAM Memory Systems

Prashant Nair Chia-Chen Chou Moinuddin K. Qureshi

School of Electrical and Computer Engineering
Georgia Institute of Technology

{pnair6, cchou34, moin}@gatech.edu

Abstract

DRAM cells rely on periodic refresh operations to main-
tain data integrity. As the capacity of DRAM memories has in-

creased, so has the amount of time consumed in doing refresh.
Refresh operations contend with read operations, which in-

creases read latency and reduces system performance. We

show that eliminating latency penalty due to refresh can im-
prove average performance by 7.2%. However, simply doing

intelligent scheduling of refresh operations is ineffective at

obtaining significant performance improvement.

This paper provides an alternative and scalable option to
reduce the latency penalty due to refresh. It exploits the prop-

erty that each refresh operation in a typical DRAM device in-
ternally refreshes multiple DRAM rows in JEDEC-based dis-

tributed refresh mode. Therefore, a refresh operation has well

defined points at which it can potentially be Paused to service
a pending read request. Leveraging this property, we propose

Refresh Pausing, a solution that is highly effective at allevi-

ating the contention from refresh operations. It provides an
average performance improvement of 5.1% for 8Gb devices,

and becomes even more effective for future high-density tech-
nologies. We also show that Refresh Pausing significantly out-

performs the recently proposed Elastic Refresh scheme.

1. Introduction

Dynamic Random Access Memory (DRAM) has been the
technology of choice for building main memory systems for
the past four decades. Technology scaling of DRAM has al-
lowed higher density devices, enabling higher capacity mem-
ory systems. As systems integrate more and more cores on
a chip, the demand for memory capacity will only increase,
further motivating the need to increase DRAM densities.

The fundamental unit of storage in a DRAM system is a
DRAM cell consisting of one transistor and one capacitor.
Data is represented in the DRAM cell, as the amount of elec-
trical charge stored in the capacitor. If a DRAM cell stays
idle without any operation for a certain amount of time, the
leakage current drains out the stored charge, which can lead
to data loss. To maintain data integrity, DRAM devices peri-
odically perform Refresh operations.

JEDEC standards [1] specify that DRAM devices must
be refreshed every 64 millisecond (32 millisecond at above

85◦C temperature). All the DRAM rows must undergo re-
fresh within this time period. The total time incurred in doing
refresh is thus proportional to the number of rows in mem-
ory, and approximately doubles as the number of rows in the
DRAM array is doubled. Initial DRAM designs performed
Burst Refreshes whereby refresh for all DRAM rows hap-
pened in succession; however, this mode makes memory un-
available for a long periods of time. To avoid this long latency,
JEDEC standards support Distributed Refresh mode. In this
mode, the total number of rows in a bank is divided into 8K
groups, and each group is refreshed within a time period equal
to 7.8 µsecond (3.9 µsecond at high temperatures). This time
duration is referred to as Refresh Interval or TREFI . The
DRAM controller sends a refresh pulse to DRAM devices
once every TREFI . The standard for TREFI was developed
when memory banks typically had 8K rows; therefore each re-
fresh pulse refreshed exactly one row. Over time, as the size
of memory has increased, the TREFI has remained the same,
only the number of rows refreshed per refresh pulse has in-
creased. For example, for the 8Gb DRAM chips we consider,
each refresh pulse refreshes 8-16 rows. Therefore, the latency
to do refresh for one group is almost an order of magnitude
longer than a typical read operation.

When a given memory bank is performing refresh opera-
tions, the bank becomes unavailable for servicing demand re-
quests such as reads and writes. Thus, a read request arriving
at a bank that is undergoing refresh waits until the refresh
operation gets completed. This increases the effective read la-
tency and degrades system performance. As memory technol-
ogy scales to higher densities, the latency from refresh wors-
ens from being significant to severe. In fact, as JEDEC up-
dates its specifications from DDR3 to DDR4, the refresh cir-
cuitry is expected to undergo significant revision [2] primarily
because of lack of scalability of current refresh schemes.

We explain the problem of contention from refresh, and our
solution to mitigate that, with a simple example. Consider a
memory system that takes 1 unit of time for a read request
and 8 units of time for refresh. Requests A0-B0, A1-B1, A2-
B2, and A3-B3 are to be serviced. A request of type B arrives
one unit of time after a request of type A is serviced, and
request of type A arrives two units after type B is serviced.
Figure 1(a) shows the timing for a system that does not have
any refresh-related penalties. It would be able to service these
requests in a time period equal to 18 units.

978-1-4673-5587-2/13/$31.00 ©2013 IEEE

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on December 28,2021 at 06:47:25 UTC from IEEE Xplore. Restrictions apply.

In the proceedings of the International Symposium on High Performance Computer Architecture (HPCA-2013)

A0

A0

PAUSABLE REFRESH

B0

A0

A1

B0

A1 B1 A2 B2 A3 B3

A0

B0

A1 B1 A2 B2 A3 B3

0 2 4 6 8 10 12 14 16 18 20 22 24 26

(c) A system with intelligent REFRESH scheduling [time=24 units]

(d) A system with REFRESH PAUSING [time=18 units]

(b) Baseline system [time=25 units]

(a) A system with no contention from REFRESH [time=18 units]

REF

REF B0

REF

REFRESH

A0

REFRESH

B0 A1 B1 A2 B2 A3 B3

A1 B1 A2 B2 A3 B3

B0

A1 B1 A2 B2 A3 B3

Figure 1: Latency overheads of doing refresh is significant. Intelligent scheduling of refresh helps reduce this latency overhead

but is not sufficient. Refresh Pausing can avoid the latency penalty of refresh operations.

Figure 1(b) shows the timing for the baseline system where
a refresh operation arrives shortly after A0 is scheduled. The
baseline will start the refresh as soon as A0 is serviced, and
the refresh will continue for 8 time units. A later arriving read
request B0 must wait until the refresh is completed. There-
fore B0 gets delayed, and the entire sequence of requests take
a time period equal to 25 units. Thus, the overall time has
increased significantly compared to a system with no refresh.

A system does not have to schedule a refresh operation as
soon as it becomes ready. JEDEC standards specify that a
total of up-to 8 refresh operations can be postponed. There-
fore, one can design intelligent scheduling polices [3] that
try to schedule refresh in periods of low (idle) memory ac-
tivity. However, given that refresh operations are very long
compared to memory read operations (1120 processor cycles
for our baseline) the likelihood of finding such a long idle pe-
riod for a rank is quite low. So, refresh scheduling typically
cannot hide the latency of refresh completely, however it may
be able to reduce the penalty. Figure1(c) shows the timing
of our system with intelligent refresh scheduling. Instead of
scheduling a refresh after A0, it waits until after B0, to get a
longer idle time. However, this reduces the penalty by only 1
unit, and the entire sequence of request takes 24 units. Thus,
refresh scheduling can help, but it is not enough.

Traditional systems treat refresh as a non-interruptible op-
eration. Once refresh is scheduled, the memory gets commit-
ted for the time period equal to TRFC (8 units for our exam-
ple). Assume (for now) that refresh operation can be paused
at arbitrary points. Figure1(d) shows the timing of our system
with Pausable Refresh. Refresh operations now occur only
during periods of no activity, and as soon as a read request
arrives they relinquish the memory for servicing the pending
read. A given refresh operation can be paused and resumed

multiple times. With pausing, the entire sequence now takes a
time period of 18 units, similar to the system with no refresh
penalty. Thus, an interruptible and pausable refresh can re-
duce (or avoid) the latency penalty due to refresh operations.

This paper proposes Refresh Pausing, an interruptible and
pausable refresh architecture. It exploits the behavior that for
each pulse (every TREFI), a typical DRAM device performs
refresh of multiple rows in succession. To refresh a given
row, that row is activated, then precharged. And, then the
next row is refreshed. We can potentially Pause an on-going
refresh operation to service a pending read request. We keep
track of the address of row undergoing refresh and store that
address when the refresh is paused. After the pending read
operation finishes, the refresh of the group is resumed using
the row address information stored during pause. The number
of Refresh Pause Points (RPP) is thus dictated by the number
of rows in a refresh group. For a DRAM device containing 8
(or 16) rows, we have 7 (or 15) RPP. Thus, while pausing at
an arbitrary point may not be practical, with our proposal it
becomes possible to pause at many well-defined RPPs.

Our evaluations with a detailed memory system simulator
(USIMM) shows that on average removing refresh related
penalties has the potential for 7.2% performance improve-
ment and Refresh Pausing provides 5.1% performance im-
provement. Our implementation of Refresh Pausing avoids
extra signal pins between the processor memory interface,
and incurs the hardware of only one AND gate and one byte
per rank. It reuses the existing pins to indicate pausing.

The paper is organized as follows: Section 2 provides back-
ground and motivation, Section 3 design of Refresh Pausing,
Section 4 methodology, Section 5 results and analysis. We
compare Refresh Pausing with Refresh Scheduling in detail
in Section 6, and discuss other related work in Section 7.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on December 28,2021 at 06:47:25 UTC from IEEE Xplore. Restrictions apply.

2. Background and Motivation

2.1. DRAM Refresh: Background and Terminology

DRAM cells maintain data integrity using refresh operations,
a process whereby the data is rewritten to the cell periodi-
cally. While DRAM cells have varying retention time [4], the
JEDEC standards specify a minimum of 64ms retention time
(32ms for high temperature), which means all DRAM rows
must be refreshed within this small time period. Let’s call
this time period as DRAM Retention Time. Initially, DRAM
arrays had relatively few rows, so the total time in performing
refresh operations was small. Therefore it was acceptable to
refresh all rows using one refresh pulse every DRAM Reten-
tion Time. This is referred to as Burst Mode refresh.

As the number of rows in a typical DRAM array increased
to few (tens of) thousand, the latency penalty of Burst Mode
became unacceptable, as it tied up the memory banks for a
latency equivalent to tens of thousands of read operations.
To overcome this long latency, JEDEC [1] provided a Dis-

tributed Refresh mode, whereby a fraction of memory is re-
freshed at frequent intervals. When JEDEC standards were
formed, memories typically had approximately 8K rows per
bank, so memory array was divided into 8K groups. For dis-
cussion, let’s call this group as a Refresh Bundle. To ensure
that all refresh bundles get refreshed in the DRAM Reten-
tion Time, a refresh pulse is now required at a much smaller
time period, called Refresh Interval (TREFI). The time pe-
riod for TREFI is simply DRAM Retention Time divided by
8K groups, so it is 7.8µsec (3.9µsec for high temperature).
The TREFI remains constant across DRAM generations. A
constant TREFI across generations means that a system can
mix-and-match different DRAM DIMMs, or upgrade to a dif-
ferent DIMM while still using the same refresh infrastructure
that sends one refresh pulse every TREFI interval. The re-
fresh activity is handled entirely inside the DRAM chip, and
is triggered by the refresh pulse.

The size of DRAM memory has continued to increase,
which means current DRAM banks have more than 8K rows.
This is simply handled by refreshing multiple rows for each
refresh pulse. For example, for the 8Gb device we consider,
there are 8 rows per Refresh Bundle. When the DRAM ar-
ray gets a refresh pulse, it refreshes 8 rows, one after another.
Thus, the time incurred to perform refresh operation for each
refresh pulse is a function of number of rows per refresh bun-
dle. This time is referred to as Refresh Cycle Time (TRFC).

REFRESH REFRESH
Pulse Pulse

time

}

T REFI

 RFCT

T } RECT RC

Memory available for read and write operations

Figure 2: Timing parameters of distributed DRAM Refresh

The time taken to refresh one row is bounded by the Row

Cycle Time (TRC), which is the time to activate and precharge
one row. In general TRFC is greater than the number of rows
in a refresh bundle multiplied by the TRC , as refresh opera-
tion is also provisioned with Recovery Time (TREC) [5][6] to
subside the effects of large current draw. Figure 2 illustrates
the different timing parameters related to DRAM refresh per-
formed in distributed refresh mode.

2.2. The Latency-Wall of Refresh

When the DRAM array receives a refresh pulse, the memory
gets tied up and then released only after the refresh opera-
tion is completed. Thus, the memory is unavailable during
refresh period. Lets, define Refresh Duty Cycle (RDC) as the
percentage time that the memory is doing refresh. RDC can
be computed as the ratio of TRFC to TREFI . Ideally, we
want small RDC so that the memory is available for servicing
demand requests. Unfortunately, RDC is increasing.

The increase in TRFC across technology generations is
shown in Table 1. The row cycle time has largely re-
mained unchanged, however the TRFC has increased con-
siderably. For high-temperature server operation, TREFI is
3900ns, so for 8Gb1 memories available currently[7], RDC is
350ns/3900ns=9%.

Table 1: TRC and TRFC for different DRAM Densities

Memory Density TRC TRFC RDC

1 Gb 39ns 110ns 2.8%

2 Gb 39ns 160ns 5.1%

4 Gb 39ns 300ns 7.7%

8 Gb 39ns 350ns 9.0%

While RDC has been increasing at almost an exponential
rate (theoretically about 2x every DRAM generation) in the
past, it is expected to increase at an even higher rate in the
future because of the combination of the following reasons:

1. High Density: As the number of rows in the DRAM array
increases, so does the number of rows in a refresh bun-
dle. TRFC can be expected to increase linearly with mem-
ory capacity. Thus, RDC would increase in proportion to
memory capacity.

2. High Temperature Operation: At higher temperature,
DRAM cells leak at a faster rate. Therefore, JEDEC spec-
ifications dictate that above 85◦C memories should be re-
freshed at 2x the rate at normal temperature. This reduces
the TREFI from 64ms to 32ms. A 2x reduction in TREFI

corresponds to doubling of RDC.

3. Increasing Device Variability: As DRAM devices get
pushed into smaller geometries, the variability in per-cell

1For meeting the JEDEC specifications of TRFC of 350ns for 8Gb chips,
some designs have adopted TwinDie technology[7] which combines two 4Gb
dies to create one 8Gb chip. Thus, meeting the JEDEC specifications of
TRFC may necessitate significant changes to the DRAM chip architecture.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on December 28,2021 at 06:47:25 UTC from IEEE Xplore. Restrictions apply.

behavior increases and larger number of weak bits gets
placed into the array. To handle such weak bits, the typical
refresh rate of DRAM devices could be reduced to 32ms,
reducing TREFI by 2x, and increasing RDC by 2X.

4. Reduction in Row Buffer Size: The energy efficiency of
DRAM memories can be improved by making the the row-
buffer smaller in order to reduce over-fetch [8]. Such op-
timizations increase the total number of rows in memory,
and hence the number of rows in a refresh bundle. As TRC

remains unaffected, TRFC would increase in proportion to
the number of rows, and increase RDC proportionally.

For our studies, we use a refresh rate of 32ms, similar to
prior work [3]. This value corresponds to a high temperature
operation, typical for dense server environments [3]. It also
reflects future technologies where variability in devices may
dictate a shorter refresh interval even at room temperature.

Thus, while current DRAM systems spend about 7%-9%
of the time performing refreshes, future systems can be ex-
pected to spend an even more time. This high refresh duty
cycle makes the memory unavailable for longer time, and is
the impending Latency-Wall of refresh.

2.3. Latency Impact of Refresh

Our baseline assumes 8Gb chips, with TRFC equals to 350ns
and TREFI of 3900ns, so the memory system spends 9% of
the time doing refresh operations. Figure 3 shows the aver-
age latency of baseline as well as if all refresh operations are
removed (No Refresh). Detailed methodology is described
in Section 4. The bar labeled AMEAN represents arithmetic
mean over all 18 workloads. The average latency for reads
in the baseline system is 234 processor cycles. Whereas, if
the contention from refresh operations is removed then the
average read latency would get reduced to 215 cycles.2

 0

 50

 100

 150

 200

 250

 300

COMMERCIAL SPEC PARSEC BIOBENCH AMEAN

R
ea

d
 L

at
en

cy
 (

cy
cl

es
)

Baseline
No Refresh

Figure 3: Impact of refresh on read latency

2One may simplistically estimate the latency impact from refresh as a
product of collision probability and Average delay under collision. Collision
probability is related to RDC (so, it will get approximated as 9%), and aver-
age delay under collision is half of TRFC , so 175ns. Therefore, one may
estimate that the average delay due to refresh as 0.09*175ns=15.75ns, or 63
processor cycles. However, the implicit assumption in such simple estima-
tion is that a read request is equally likely to come during refresh, as during
other times. We found that this key assumption is invalid, as refresh delays
the read, which stops or slows down the subsequent read stream; hence this
method of estimating latency impact of refresh is incorrect.

2.4. Mitigating Latency Impact via Refresh Scheduling

Refresh operations have a significant impact on read latency
of memory system. Reducing this impact can improve read
latency and thereby system performance. One potential op-
tion to alleviate the latency impact of refresh is exploiting the
flexibility in scheduling refresh operations. JEDEC standard
provide the ability to postpone refresh operations for up-to 8
TREFI cycles. The work most related to our work, was on
scheduling refresh operations, called Elastic Refresh[3]. In-
stead of scheduling a pending refresh operation as soon as the
memory becomes idle, this scheme delays the pending refresh
for some time. This time is determined based on average time
duration of idle periods of the memory queues.

Refresh scheduling schemes, including Elastic Refresh, are
unlikely to give significant benefit though, as they need to fre-
quently accommodate a very long latency operation. Finding
the memory idle for that long on a regular basis is difficult
for memory intensive workloads. Furthermore, scheduling a
refresh after a period of time has passed could increase the
waiting time for a later arriving read request.

2.5. Performance Potential

Figure 4 shows the performance improvement over baseline
if we remove all the refresh operations (No Refresh) and if
the baseline adopts Elastic Refresh. The bar labeled GMEAN

represents geometric mean over all 18 workloads throughout
this paper.

 0.96

 0.98

 1.00

 1.02

 1.04

 1.06

 1.08

 1.10

 1.12

 1.14

COMMERCIAL SPEC PARSEC BIOBENCH GMEAN

 S
p

ee
d

u
p

No Refresh
Elastic Refresh

Figure 4: Potential Speedup from removing refresh is signif-

icant. However, Elastic Refresh degrades perfor-

mance (detailed study in Section 6).

The “No Refresh” system has potential for significant per-
formance improvement, 7.2% compared to the baseline. Our
baseline has read priority scheduling, so refreshes are delayed
in favor of reads, and get done in a forced manner if there are
8 pending refreshes. Compared to this simple refresh schedul-
ing scheme, Elastic Refresh ends up degrading performance.
Section 6 will analyze the inefficacy of refresh scheduling al-
gorithms (including Elastic Refresh) in details.

We need a practical solution that can reduce the latency im-
pact of refreshes. Next section presents a scheme that greatly
reduces the contention from refreshes, and easily scales to fu-
ture technologies/situations when RDC will be quite high.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on December 28,2021 at 06:47:25 UTC from IEEE Xplore. Restrictions apply.

R0 R1 R2 R3 R4 R5 R6 R7

R0 R1 R2 R3 R4 B R5

RPP3

PAUSE
READ A

RPP1 RPP2 RPP3 RPP6 RPP7RPP5

RESUME

RPP5

PAUSE

ACT PRE

RPCT

R0 R1 R2 R4 R5 R6 R7R3

RFC
T

RPP4

(a)

(b)

(c)

RESUME
READ B

A

Figure 5: Enabling Refresh Pausing in DRAM systems (a) Refresh operation in traditional DRAM memories (b) Identifying poten-

tial pause points (RPP) for Refresh Pausing and (c) How Refresh Pausing can quickly service pending requests

3. Refresh Pausing in DRAM Systems

Traditionally, refresh operations are considered uninterrupt-
ible, therefore once a refresh is scheduled later arriving de-
mand requests must wait until the refresh gets completed. The
longer the refresh operation, the longer is the expected wait-
ing time for a pending demand request. We avoid this latency
penalty due to refresh by making refresh operations interrupt-
ible, and propose Refresh Pausing for DRAM memory sys-
tems. With an interruptible refresh, the refresh can be paused
to service a pending read request, and then resumed once the
read request get serviced. This section describes the concept,
implementation, and implications of Refresh Pausing.

3.1. Refresh Pausing: Concept

While it may not be possible to Pause a refresh at an arbi-
trary point, there are some well defined points during refresh,
where it can potentially be paused in order to service a pend-
ing read request. Consider the refresh operation done in tradi-
tional DRAM systems, as shown in Figure 5(a). In a time
interval of TRFC , the DRAM array refreshes say 8 rows,
numbered R0 to R7. To refresh a row, the given row is ac-
tivated, and then the bank waits for a time period equal to
TRAS , and then precharges the row. This cycling takes a time
equal to TRC . Then shortly after, the next row is refreshed
and so on, until all rows R0-R7 are refreshed.

When one row is refreshed, we can potentially pause the re-
fresh operation and relinquish the DRAM array for servicing
some other operation, as shown in Figure 5(b). Each such po-
tential point of pausing is called Refresh Pause Point (RPP).
For a memory with N rows in a refresh bundle, there would
be (N-1) RPP. In practice, the time interval of TRFC is longer
than simply the sum of row cycle times because of recovery
time. Details about how the recovery time is calculated, or
provisioned, are not typically provided by DRAM vendors.
In our work, we assume that the recovery time is spread out

over all rows. Therefore, we divide the time TRFC into 8 (in
general N) equal time quanta, and call this duration Refresh

Pause Cycle (TRPC).3 A memory array that supports Pausing
can potentially Pause at an interval of every TRPC .

Figure 5(c) shows the working of memory system with Re-
fresh Pausing. Let’s say a read request for row A arrives while
Row R2 is being refreshed. The memory controller signals
the device to pause, the device pauses refresh at the next RPP,
which is RPP3. The memory then services A, and then the
memory controller can signal the refresh circuit to RESUME
the refresh operation. A refresh operation can be paused and
resumed multiple times, as shown for a request for Row B
which arrives while refreshing Row R4.

Refresh operations cannot be paused indefinitely if there
is a heavy read traffic. When the refresh operation is done
because it has reached the refresh deadline (8×TREFI), then
it cannot be paused. We refer to such refresh operations as
Forced Refresh. To maintain data integrity, and to confirm to
JEDEC standards, pausing is disallowed for forced refresh.

3.2. Refresh Pausing: Implementation

To facilitate Refresh Pausing, we need to make minor changes
to the memory controller and the DRAM devices. The task of
the memory controller is to decide if and when to PAUSE an
on-going refresh, and when to RESUME a paused refresh, de-
pending on the occupancy of the memory queues. The task of
the DRAM refresh circuit is to PAUSE the on-going refresh
operation at the next RPP, if the pause signal is received. And
to RESUME from the check-pointed state, a paused refresh
gets resumed. Figure 6 shows the system that implements Re-
fresh Pausing. Our implementation is geared toward keeping
the hardware modifications to minimum.

3We make the assumption of equal time quanta only for simplicity.
DRAM vendors can adapt the definition of TRPC and placement of RPP,
depending on their specific implementation of recovery time management.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on December 28,2021 at 06:47:25 UTC from IEEE Xplore. Restrictions apply.

INCREMENTER

BANK3

BANK4

BANK5

BANK6

BANK2

BANK1

BANK7

BANK1

BANK2

BANK3

BANK4

BANK5

BANK6

BANK7

BANK 0 BANK 0

SENSE AMPLIFIERS

MEMORY ARRAY

ROW ADDRESS

MULTIPLEXER

8192
BITS

DATA ADDRESS

MEMORY CONTROLLER

REFI

ROW ADDRESS
LATCH
AND

DECODER

IO GATING
DM MASK LOGIC

8 T

Pulses

Refreshes

Issue

Aggregate

PAUSE RESUME

time
0

1

16
(65536 x 256 x 32)

65536

SCHEDULER

EN

Row Address Counter
(RAC)

16

0 01

REFRESH ENABLE (RE)

16

ADDRESS GENERATOR

8−BIT RANK TIMER

16

RE

(One pulse every T
REFI

)

CIRCUITRY
REFRESH

Figure 6: Implementing Refresh Pausing with: (1) reusing REFRESH ENABLE signal to indicate REFRESH, PAUSE, and RESUME

(2) an AND gate in DRAM refresh circuit to check for RE during refresh (3) A one-byte timer in the memory controller.

Signaling REFRESH, PAUSE, and RESUME: A naive
implementation may provision additional signal pins for
PAUSE and RESUME. However, extra signal pins are costly
and a deterrent for adoption in standards, so we simply reuse
the existing signal REFRESH ENABLE (RE). A DRAM re-
fresh circuitry starts the refresh procedure once RE gets as-
serted. The role of RE during the refresh is unimportant for
traditional systems. To facilitate Refresh Pausing, we simply
require that RE must remain asserted during the entire refresh
period for an uninterruptible refresh. A de-assertion of RE in-
dicates a request for PAUSE. A RESUME is treated same as
REFRESH, in that it starts a regular REFRESH operation, but
only refreshes the rows remaining in the refresh bundle.

Changes to DRAM Refresh Circuit: When REFRESH
ENABLE (RE) signal gets asserted, the refresh circuitry
probes a register called Row Address Counter (RAC) that
points to the next row to be refreshed. In each refresh iter-
ation, the row pointed to by the RAC gets refreshed and the
RAC is incremented. This is done until the number of rows
in a refresh bundle gets refreshed. Thus, after the refresh for
one pulse is done the RAC stores the row address for the next
refresh pulse. To support PAUSE, the refresh circuitry sim-
ply checks if the RE remains asserted at each RPP. If not, the
refresh operation gets stalled. On RESUME, the refresh oper-
ation gets performed till RAC reaches the end of the refresh
bundle. Thus, to support Refresh Pausing, we need only one

additional AND gate in the DRAM refresh circuitry.

Changes to Memory Controller: The memory controller
needs to keep track of the amount of time that a refresh has
completed, to remove it from the refresh queue as well as to
schedule a PAUSE. A PAUSE must be send at-least one cycle
before the RPP point. To enable such time tracking, we keep
a one-byte timer for each rank. For the refresh operation in
service or paused this timer indicates the time spent in doing
refresh. Thus, even with Refresh Pausing, the direction of

signals is still from memory controller to DRAM circuits, and
the operation of DRAM still remains deterministic.

3.3. Summary of Hardware/Interface Support

Our implementation of Refresh Pausing avoids extra pins or
signals. However, it relies on modifying the specification of
RE signal during on-going refresh operation. The DRAM
refresh circuitry needs one AND gate. And, the memory con-
troller needs one byte for time keeping. The hardware for
AND gate and time keeping is incurred per rank, as refresh
is typically done on a per-rank basis. Thus, implementing
Refresh Pausing requires negligible support in terms of hard-
ware and interfaces.

3.4. Implication on Reducing Latency Overhead

With Refresh Pausing, the maximum time that a later-arriving
read request has to wait gets shortened from TRFC to TRPC ,
about 8x if we have 8 rows in the refresh bundle. The average
waiting time can be expected to reduce by 8x as well, assum-
ing the refresh is not done in Forced mode. Such a significant
reduction in waiting time greatly reduces the latency impact
of refresh and improves system performance.

3.5. Implication on Scalability to Future Technologies

As the density of DRAM memories increases and more and
more rows get packed into a DRAM array, the specified
TRFC is expected to increase at an alarming rate. This would
make traditional memory designs unavailable for significant
periods of time and increase latency greatly. However, with
Refresh Pausing the contention remains bounded to TRPC , al-
most independent of TRFC and memory size. Thus, Refresh
Pausing can enable future memory designs to overcome the
latency wall due to refresh induced memory unavailability.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on December 28,2021 at 06:47:25 UTC from IEEE Xplore. Restrictions apply.

4. Experimental Methodology

4.1. System Configuration

We use the memory system simulator USIMM [9] from
the recently conducted MSC (Memory Scheduling Champi-
onship) [10]. USIMM models DRAM system in detail, en-
forcing the various timing constraints. We modified USIMM
to conduct a detailed study for refresh operations. We added a
refresh queue (REFQ) in addition to the existing Read Queue
(RDQ) and write queue (WRQ). Refresh operations thus be-
come part of scheduling decisions. The REFQ is incremented
every TREFI . The scheduler for a channel can issue a read,
a write, or a refresh to a rank every memory cycle.

The parameters of system configuration are shown in Ta-
ble 2. We model a quad-core system operating at 3.2GHz.
The memory system is configured as a 4-channel design oper-
ating at 800MHZ. The memory system is composed of chan-
nels, ranks, and banks. The RDQ and WRQ are on a channel
basis, and the REFQ is provisioned on a rank basis. We use
the default write scheduling policy of USIMM that services
writes at the lowest priority, using high and low watermarks
to decide when to drain the write queue. To schedule mem-
ory requests, we adopt close-page policy, which is known as
a better scheduling policy in multiprogram platform.

The refresh scheduling policy in our baseline favors reads
over refresh requests unless the REFQ becomes full (8 pend-
ing requests). Refresh operation takes TRFC cycles to com-
plete. In all scheduling policies, the number of refresh can be
accumulated up to eight without breaking the rules specified
by JEDEC standards. We use 8Gb devices for our study, the
timing parameters for which is shown in Table 3. TRFC is
280 DRAM cycles (350ns [1]). We use a TREFI of 3.9 micro
seconds, which translates to 3120 DRAM cycles.

Table 2: Baseline System Configuration(default USIMM)

Number of cores 4

Processor clock speed 3.2GHz
Processor ROB size 160

Processor retire width 4
Processor fetch width 4

Processor pipeline depth 10

Last Level Cache (Private) 1MB per core
Cache line size 64Byte

Memory bus speed 800MHz
DDR3 Memory channels 4

Ranks per channel 2
Banks per rank 8
Rows per bank 128K/256K

Columns(cache lines) per row 128

Write queue capacity 64
Write queue high watermark 40
Write queue low watermark 20

Table 3: DRAM timing parameters for our memory system

Timing DRAM Cycles Processor Cycles
Parameters (at 800MHZ) (at 3.2GHz)

TRCD 11 44
TRP 11 44
TCAS 11 44
TRC 39 156
TRAS 28 112
TFAW 32 128
TRFC 280 1120
TREFI 3120 12480

4.2. Workloads

We use the workloads from the recently held Memory
Scheduling Championship (MSC) [10], as it contains a wide
variety of applications. Table 4 shows key characteristics of
our workloads. The MSC suite contains five commercial ap-
plications, comm1 to comm5. There are nine benchmarks
from the PARSEC suite, including two mutlithread-versions
of applications fluid and canneal (marked MT -fluid and
MT -canneal). Also, there are two benchmarks each from
the SPEC4 suite and the biobench suite.

We execute these benchmarks in rate mode on the quad-
core processor. We compute the execution time as the time to
finish the last benchmark in the workload (as the benchmarks
are executed in rate mode, the variation in execution time of
individual benchmarks within the workload is negligible).

Table 4: Workload Characteristics (suite from MSC [10]).

Suites Workloads MPKI Read Latency IPC

COMMERCIAL

comm1 6.6 186 1.73
comm2 7.5 221 1.30
comm3 3.2 186 2.28
comm4 2.2 195 2.63
comm5 1.4 195 2.89

SPEC
leslie 6.4 313 1.15
libq 13.6 191 0.94

PARSEC

black 2.8 252 2.27
face 6.0 455 1.66

ferret 4.8 305 1.98
fluid 2.4 246 2.46
freq 2.7 226 2.53

stream 3.4 232 2.25
swapt 2.9 229 2.35

MT-canneal 13.2 215 2.88
MT-fluid 1.4 539 0.97

BIOBENCH
mummer 19.3 187 0.81

tigr 26.9 184 0.79

4We also evaluated other memory intensive benchmarks from the SPEC
suite and found that Refresh Pausing provides similar performance improve-
ment for memory intensive SPEC workloads, as it does for the MSC suite.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on December 28,2021 at 06:47:25 UTC from IEEE Xplore. Restrictions apply.

 0

 100

 200

 300

 400

 500
R

ea
d
 L

at
en

cy
 (

cy
cl

es
)

Baseline
Pausing RP−7
Pausing RP−15
No Refresh

co
mm1

co
mm2

co
mm3

co
mm4

co
mm5

les
lie lib

q
blac

k
fac

e
fer

ret
flu

id fre
q

str
ea

m
sw

ap
t

M
T−ca

nnea
l

M
T−flu

id

mummer tig
r

Amea
n

Figure 7: Average read latency for different systems

 1.00

 1.02

 1.04

 1.06

 1.08

 1.10

 1.12

 1.14

 S
p
ee

d
u
p

Pausing RP−7
Pausing RP−15
No Refresh

co
mm1

co
mm3

co
mm4

co
mm5

les
lie lib

q
blac

k
fac

e
fer

ret

flu
id fre

q

str
ea

m
sw

ap
t

mummer

M
T−flu

id

M
T−ca

nnea
l

tig
r

Gmea
n

co
mm2

Figure 8: Performance Improvement from Refresh Pausing

5. Results and Analysis

In this section, we analyze the effectiveness of Refresh Paus-
ing. For our baseline memory system with 8Gb chips, there
are 8 rows in a refresh bundle, so there can potentially be 7
refresh pause points. However, for future memory systems,
the number of rows in a refresh bundle is expected to in-
crease (both because of increase in capacity and decrease in
row buffer size). So, to indicate the effectiveness of Refresh
Pausing for future memory systems we will also consider a
version that has 16 rows in the refresh bundle, therefore 15
refresh pause points. We will refer to the configuration that
implements Refresh Pausing with 7 pause points as RP-7 and
the one with 15 pause points as RP-15.

5.1. Impact on Read Latency

The read latency of a system is increased by contention due
to refresh operations. Figure 7 shows the read latency of our
baseline system, the baseline system with Refresh Pausing
(RP-7 and RP-15), and the ideal-bound system with No Re-
fresh. We report latency in terms of processor cycles. The
bar labeled Amean denotes the arithmetic average over all the
18 workloads. For the baseline system, the average read la-
tency is 234 cycles, and for the system with No Refresh it is
215 cycles. Thus, a significant fraction of read latency (19
cycles) is due to contention from refresh. With Refresh Paus-
ing, this latency impact gets reduced to 7 cycles (RP-7) and
4 cycles (RP-15). Thus, Refresh Pausing can remove about
half to two-thirds of the delay induced by refresh operations.

5.2. Impact on Performance

The reduction in read latency with Refresh Pausing translates
into performance improvement. Figure 8 shows the speedup
from Refresh Pausing (RP-7 and RP-15) and No Refresh. The
bar labeled Gmean denotes the geometric mean over all the 18
workloads. For a system with No Refresh, there is a potential
gain of approximately 7.2% on average. Refresh Pausing ob-
tains 4.5% improvement with RP-7 and 5.1% improvement
with RP-15. Thus, with Refresh Pausing we can get about
half to two-thirds of the potential performance gains. Few
workloads, such as comm1, MT-canneal, and mummer ob-
tain significantly better performance improvement with RP-
15 than with RP-7.

We observed that on an average 2.7 pauses and 3.6 pauses
per refresh was incurred for the RP-7 and RP-15 schemes re-
spectively, with 90% of the refreshes incurring pausing.

Our default configuration consists of 1MB per core LLC.
We varied the LLC size from 512KB per core to 2MB per
core. For 512KB per core, RP-7 provides 4.7%, RP-15 pro-
vides 5.2% and No Refresh provides 7.5% performance im-
provement, on average. With 2MB per core, these become
4%, 4.6%, and 6.4% respectively. The performance benefit
of Refresh Pausing is robust to cache size.

5.3. Sensitivity to Page Closure Policy

Similar to typical server systems, our baseline employs a
close-page policy, as we found that close-page policy had bet-
ter performance than open-page policy. However, our pro-
posal is applicable to open-page systems as well. Figure 9

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on December 28,2021 at 06:47:25 UTC from IEEE Xplore. Restrictions apply.

shows the speedup from Refresh Pausing (RP-7 and RP-15)
and No Refresh, all implemented on a system employs open
page policy (with row buffer friendly data mapping policy).
No Refresh still gains approximately 5.9% on average and Re-
fresh Pausing becomes even more effective, RP-7 improves
performance by 5.5% and RP-15 by 6.8%, over the open page
policy. A paused refresh serves as an implicit page closure,
so an access that would get a row-buffer conflict with open
page avoids the row-precharge latency. These results are con-
sistent with the evaluations reported in Memory Scheduling
Championship, that showed that the default close page policy
was better than most of the open-page policies, due to con-
tention in the memory reference streams from different cores.
Thus the performance of RP-15 is found to exceed that of No
Refresh for a system that employs open page policy.

 0.90

 0.95

 1.00

 1.05

 1.10

COMMERCIAL SPEC PARSEC BIOBENCH GMEAN

 S
p

ee
d

u
p

Open Page Implementation
Pausing RP−7 (Open Page)
Pausing RP−15 (Open Page)
No Refresh (Open Page)

Figure 9: Speedup from Refresh Pausing on systems that em-

ploy open-page policy compared to close-page base-

line

5.4. Refresh Pausing in Highly Utilized Systems

Refresh Pausing tries to exploit idle cycles in memory for do-
ing refresh, and relinquishing refresh as soon as memory is
required for a demand read request. If the memory is almost
always busy with servicing reads and writes, then the refresh
operations get done in a forced manner. Since Forced Re-
fresh cannot be paused, there is little scope for Refresh Paus-
ing to improve performance. To analyze Refresh Pausing for
highly utilized systems, we re-configured our baseline to have
1-channel instead of 4-channels. This increases memory uti-
lization greatly and hence reduces the idle periods available
for doing refresh operations.

Figure 10 shows the performance improvement with Re-
fresh Pausing (RP-7 and RP-15) and with No-Refresh. The
potential performance improvement with No Refresh is ap-
proximately 6.3%. However, the improvement with Refresh
Pausing is reduced, with RP-7 providing 2% performance
improvement and RP-15 providing negligible 0.003% perfor-
mance degradation respectively. The RP-15 is less effective
because it gets paused often, and the refreshes eventually get
done in Forced mode, which cannot be paused. In the limit, if
the memory is 100% utilized then all refreshes will be done
as Forced Refresh, leaving no scope for performance improve-
ment with Refresh Pausing.

 0.96

 0.98

 1.00

 1.02

 1.04

 1.06

 1.08

 1.10

 1.12

COMMERCIAL SPEC PARSEC BIOBENCH GMEAN

 S
p

ee
d

u
p

Pausing RP−7
Pausing RP−15
No Refresh

Figure 10: Performance impact of Refresh Pausing in a highly

utilized memory system (number of channels in

baseline reduced from 4 to 1)

5.5. Comparisons with Alternative Proposals for DDR4

As DRAM chips scale from 8Gb node to higher densities,
JEDEC is updating the DDR specifications from DDR3 to
DDR4. One of the critical elements that is likely to change
in DDR4 is the refresh circuitry [2]. One of the refresh pro-
posal that is being considered for DDR4 is fine-grained re-
fresh scheme which lowers the refresh interval TREFI and
TRFC both by a factor of either 2x or 4x, and are called
Refresh Rate Mode-x2 (RRMx2) or Refresh Rate Mode-x4

(RRMx4) [2]. Unfortunately, these proposals are not as ef-
fective at tolerating refresh latency as Refresh Pausing. Fur-
thermore, as memory capacity increases, these granularity of
these modes will need to be revised to tolerate longer refresh.

SPEC BIOBENCHCOMMERCIAL GMEANPARSEC

 0.90

 1.00

 1.10

 1.20

 1.30

 1.40

 1.50

 1.60

 S
p
ee

d
u
p

1
6
G

b

3
2
G

b

1
6
G

b

3
2
G

b

1
6
G

b

3
2
G

b

1
6
G

b

3
2
G

b

1
6
G

b

3
2
G

b

Refresh Rate Mode−x2 (JS Choi[2])
Refresh Rate Mode−x4 (JS Choi[2])
Refresh Pausing (RP−15 for 16Gb and RP−31 for 32 Gb chips)
No Refresh

Figure 11: Effectiveness of Refresh Pausing at High Density

Figure 11 compares Refresh Pausing for High Density
(16Gb and 32Gb) chips with RRMx2 and RRMx4. Refresh
pausing gives significant performance gains of 10% for 16Gb
and 22% for 32Gb. Comparatively, RRMx2 gives 1.2% for
16Gb, and 2.8% for 32Gb. And, RRMx4 gives 3.4% for 16Gb
and 6% for 32Gb. The limited effectiveness of RRMx hap-
pens because it still incurs the penalty of locking up the rank
for long refresh periods more frequently. Thus, for high den-
sity devices (say 32Gb), Refresh Pausing provides more than
double the performance improvement compared to one of the

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on December 28,2021 at 06:47:25 UTC from IEEE Xplore. Restrictions apply.

aggressive proposal being considered by JEDEC (RRMx4).
Given the low implementation complexity (one AND gate in
refresh controller) and high effectiveness, Refresh Pausing is
a strong candidate for future standards.

5.6. Sensitivity to Temperature

Table 5 shows the performance improvement with Refresh
Pausing and No Refresh, for different operating temperature
at different chip densities. Thus, even for low operating tem-
perature (< 85◦C), Refresh Pausing provides 11.5% perfor-
mance improvement for 32Gb chips. As chip densities in-
crease, future chips can use Refresh Pausing to mitigate the
latency impact of refresh across all operating temperatures.

Table 5: Performance Improvement of Refresh Pausing at dif-

ferent temperature ranges and densities

No Refresh Refresh Pausing
Density < 85◦C > 85◦C < 85◦C > 85◦C

8Gb 3.5% 7.2% 2.6 % 5.1 %
16Gb 9.7% 19% 5% 10.1%
32Gb 18.4% 35.3% 11.5% 22.3%

6. Refresh Pausing vs Refresh Scheduling

We proposed Refresh Pausing to mitigate refresh-related la-
tency penalties. An alternative option to tolerate the delay
from such long-latency refresh operations is to do intelligent
Refresh Scheduling. The scheduler can place the refresh op-
erations in a time period when memory is idle. A key prior
work, Elastic Refresh [3], performed such refresh scheduling
and their study indicated that simply doing refresh schedul-
ing can mitigate almost all of the performance loss from re-
fresh. Our evaluations, however, show that this is unlikely to
be the case for memory intensive workloads. The initial set of
results presented in Figure 4 showed that Elastic Refresh de-
grades performance compared by 1.3% on average compared
to our baseline refresh scheduling policy. In this section, we
analyze Elastic Refresh, the requirements for Elastic Refresh
to be effective, understand the reasons for performance loss,
place approximate bounds on intelligent refresh scheduling,
and compare Refresh Pausing and Refresh Scheduling for
scaling to future technologies.

6.1. Elastic Refresh

A system can delay the servicing of a refresh request for a
time period of up-to 8 TREFI . Therefore, if the system is
busy servicing reads, current systems would delay the refresh
till either the rank is idle or the refresh deadline approaches.
The critical idea behind Elastic Refresh (ER), is to not sched-
ule a refresh even if the rank is idle but rather have a wait-
and-watch decision. After a rank becomes idle, ER waits for
a given time period (say tER), as determined by the average
idle time of the rank and the number of pending refreshes. If
the rank does receive a demand request within tER, then the

wait-and-watch time gets reset. However, if the rank does not
receive any request within tER, it schedules the pending re-
fresh. The key objective is to avoid a long-latency of refresh
when a read is predicted to come within a short time period.

6.2. Requirements for Elastic Refresh to be Effective

There are three key requirements for ER to be effective. First,
there must be a large number of idle periods with duration
longer than TRFC . Otherwise, waiting for the right time to
schedule refresh will be rendered ineffective. Second, even
if there are a large number of long idle periods (LIP) in a
workload, these idle periods must be spread throughout the
program execution. More specifically, idle period must be
within 8 ·TRFC of the refresh request time. Third, the hard-
ware predictor should predict the start of LIP correctly.

6.3. The Loss Scenarios for Elastic Refresh

ER does not schedule a pending refresh operation even if the
rank is idle. This does have a potential disadvantage com-
pared to a simple scheme that schedules refresh operation if
no other requests are available. Consider the example shown
in Figure 12 for a system where read takes 1 unit of time and
refresh 8 units of time. When A is serviced (at time 1) the
rank is idle. The simple policy will schedule refresh imme-
diately. A later arriving read request B at time 7 will have
to wait for 2 time units. However, with ER if we delay the
start of refresh by say 3 time units, and the read request B
arrives at time 7, it will have to wait for 5 time units. Thus,
the wait-and-watch policy of ER can degrade performance.

(b)

1210 11

waiting time=5 units

waiting time=2 units

13

Elastic Refresh
Delay

(a)

(c)

time

0 1 2 3 4 5 6 7 8 9

A

A

A

B

B

B

REFRESH

REFRESH

Figure 12: Waiting time for a system with (a) No Refresh (b)

baseline scheduling (c) Elastic Refresh

The implicit assumption in design of ER, is that idle peri-
ods are either less than average delay or longer than TRFC .
If a request has idle period within these two values, it will
result in higher latency with ER than with baseline schedul-
ing which services a pending refresh operation as soon as the
rank becomes idle.

Figure 13 shows the Cumulative Density Function (CDF)
of idle periods in cycles. The maximum value of in x-axis is
1120 cycles, same as TRFC (350ns). The vertical dotted line

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on December 28,2021 at 06:47:25 UTC from IEEE Xplore. Restrictions apply.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2
50

 5
00

 7
50

 1
00

0

comm1

loss sceraio of ER

Idle=75%

 0

 0.2

 0.4

 0.6

 0.8

 1

 2
50

 5
00

 7
50

 1
00

0

comm2

Idle=63%

 0

 0.2

 0.4

 0.6

 0.8

 1

 2
50

 5
00

 7
50

 1
00

0

comm3

Idle=83%

 0

 0.2

 0.4

 0.6

 0.8

 1

 2
50

 5
00

 7
50

 1
00

0

comm4

Idle=87%

 0

 0.2

 0.4

 0.6

 0.8

 1

 2
50

 5
00

 7
50

 1
00

0

comm5

Idle=89%

 0

 0.2

 0.4

 0.6

 0.8

 1

 2
50

 5
00

 7
50

 1
00

0

leslie

Idle=80%

 0

 0.2

 0.4

 0.6

 0.8

 1

 2
50

 5
00

 7
50

 1
00

0

libq

Idle=65%

 0

 0.2

 0.4

 0.6

 0.8

 1

 2
50

 5
00

 7
50

 1
00

0

black

Idle=84%

 0

 0.2

 0.4

 0.6

 0.8

 1

 2
50

 5
00

 7
50

 1
00

0

face

Idle=67%

 0

 0.2

 0.4

 0.6

 0.8

 1

 2
50

 5
00

 7
50

 1
00

0

ferret

Idle=70%

 0

 0.2

 0.4

 0.6

 0.8

 1

 2
50

 5
00

 7
50

 1
00

0

fluid

Idle=82%

 0

 0.2

 0.4

 0.6

 0.8

 1

 2
50

 5
00

 7
50

 1
00

0

freq

Idle=82%

 0

 0.2

 0.4

 0.6

 0.8

 1

 2
50

 5
00

 7
50

 1
00

0

stream

Idle=80%

 0

 0.2

 0.4

 0.6

 0.8

 1

 2
50

 5
00

 7
50

 1
00

0

swapt

Idle=81%

 0

 0.2

 0.4

 0.6

 0.8

 1

 2
50

 5
00

 7
50

 1
00

0

MT-canneal

Idle=61%

 0

 0.2

 0.4

 0.6

 0.8

 1

 2
50

 5
00

 7
50

 1
00

0

MT-fluid

Idle=84%

 0

 0.2

 0.4

 0.6

 0.8

 1

 2
50

 5
00

 7
50

 1
00

0

mummer

Idle=67%

 0

 0.2

 0.4

 0.6

 0.8

 1

 2
50

 5
00

 7
50

 1
00

0

tigr

Idle=62%

Figure 13: Cumulative density function of idle periods of a rank in processor cycles. The percentage of execution time that

the rank is idle is specified within the figure. The vertical line represents the average length of an idle period. The

maximum value of x-axis is 1120 cycles, similar to TRFC . The average length of idle period for MT-Fluid is 1330.

indicates the average idle time of the rank, one of the parame-
ters used by ER. Note that idle periods longer than TRFC are
very few. And, about 20% of idle periods are between aver-
age idle period and TRFC , which represents a loss scenario
for ER. So, for our workloads the loss scenarios with ER are
quite common, hence the performance loss.

6.4. Mitigating Loss of ER with Oracle Information

To validate our hypothesis that the performance degradation
of ER is indeed due to the wait-and-watch policy of ER based
on average idle time, we conducted the following study. We
assumed that ER is extended to have oracle information, such
that when ER decides to schedule a refresh after a time period
tER, we give ER prior credit, and schedule the refresh oper-
ation as if it was scheduled as soon as the idle period began.
Note this is not for practical implementation but only a study
to gain insights. With such an Oracle-Based Loss Mitigation

(OBLM), ER would avoid the loss scenario.

Figure 14 shows the speedup of Elastic Refresh and Elastic
Refresh with OBLM. Elastic Refresh degrades performance
by 1.3% on average; however with OBLM it improves perfor-
mance by 2.0%. Thus, the wait-and-watch based on average
delay is costing ER a performance loss of about 3.3%.

6.5. Potential Performance of Refresh Scheduling

With ER+OBLM, the decision of whether to schedule a re-
fresh or not is still with the ER scheduler, which makes this
decision based on average idle period. We also tried to esti-
mate the performance potential of intelligent refresh schedul-
ing, without regards to hardware implementation. At the end
of each idle period, we decide whether or not refresh should
have been scheduled at the start of the idle period. If the idle
period is greater than a threshold we assume that the pend-
ing refresh was issued at the beginning of the idle period.

We reduce this threshold linearly with the number of pend-
ing refreshes. Figure 14 also shows the performance of such
Oracle-Based Linear Refresh Scheduling. We observe that
with perfect information about the future we can get approx-
imately 3.7% performance improvement on average. While
this is smaller than we get with Refresh Pausing, it sill indi-
cates a good opportunity of future research to develop effec-
tive refresh scheduling algorithms.

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

COMM SPEC PARSEC BIOBENCH MEAN

Elastic Refresh Scheduling
Elastic Refresh Scheduling + Oracle-Based Loss Mitigation
Oracle-Based Intelligent Refresh Scheduling
Pausing RP-15
No Refresh

Figure 14: Speedup for Elastic Refresh and Elastic Refresh

with Oracle-Based Loss Mitigation

6.6. Scaling to Future Technologies

As devices move to higher densities, TRFC will become
longer, which means refresh scheduling will have to accom-
modate even longer refresh operations. Finding larger idle pe-
riods is harder than finding smaller ones. On the other hand,
Refresh Pausing would require accommodating only a delay
of TRPC (similar to row cycle time). Therefore, Refresh Paus-
ing is more scalable and effective at higher densities. How-
ever, both techniques are orthogonal and can be combined.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on December 28,2021 at 06:47:25 UTC from IEEE Xplore. Restrictions apply.

7. Other Related Work

The latency of refresh operations can be reduced by having
more banks and thus doing more refreshes in parallel. How-
ever, refresh is already a current limited operation, so increas-
ing parallel refresh operations may not be practical.

Another option is to tune the refresh operations based on
the DRAM retention characteristics. Such schemes, can ei-
ther decommission high refresh pages [11] or use multi-rate
refresh where high-retention pages (rows) are refreshed in-
frequently [12][13][11]. These approaches rely on a having
retention characteristics of DRAM cells available, and that
these characteristics do not change. Unfortunately, such an
assumption can result in data-loss in practice, as captured in
Jacob et al.’s [6] book on Memory System (Anecdote IV):
“The problem is that these [proposals to exploit variability in
cell leakage] ignore another, less well-known phenomenon of
DRAM cell variability, namely that a cell with a long reten-
tion time can suddenly (in the frame of second) exhibit a short
retention time”. Such, Variable Retention Time (VRT) would
render these proposals functionally erroneous. Avoiding re-
fresh operations may still be possible in specific scenarios.
For example when the row has recently been accessed [14],
or when the data is not critical [15][16], or when the system
provisions ECC to tolerate data errors [17].

Refresh operations can also be done at a finer granularity,
such as on a per-bank basis instead of a per-rank basis [18].
This would enable better refresh scheduling, exploiting the
time periods when the bank is idle (while the rank may still
be busy). Our proposal is applicable to (and remains effective
for) such per-bank implementations as well.

8. Summary

DRAM is one of the most forgetful memory technology, with
retention time in the range of few milliseconds. It relies on
frequent refresh operations to maintain data integrity. The
time required to do refresh is proportional to the number of
rows in memory array; therefore this time has been increas-
ing steadily. Current high density 8Gb DRAM chips spend
9% of the time doing refresh operations, and this fraction is
expected to increase for future technologies.

Refresh operations are blocking, which increases the wait
time for read operations, thus increasing effective read latency
and causing performance degradation. We mitigate this la-
tency problem from long-latency refresh operations, by break-
ing the notion that refresh needs to be an uninterruptible op-
eration, and make following contributions:

1. We propose Refresh Pausing, a highly effective solution
that significantly reduces the latency penalty due to refresh.
Refresh Pausing simply pauses an on-going refresh opera-
tion to serve a pending read request.

2. We show that Refresh Pausing is scalable to future tech-
nologies, such as DDR4, which will have very high
(TRFC). With Refresh Pausing, the latency impact of re-

fresh is determined less by TRFC , and is simply a function
of row cycle time TRC , which tends to remain unchanged.

3. We show that Refresh Pausing is much more effective than
simply relying on Refresh Scheduling. Refresh Pausing
not only significantly outperforms Refresh Scheduling al-
gorithms, but it becomes even more attractive as design
move to future technology nodes.

Our evaluations, for current 8Gb chips, using a detailed
memory system simulator show that removing refresh can
provide 7.2% performance improvement and Refresh Paus-
ing can provide 4.5%-5.1% performance improvement. Im-
plementing Refresh Pausing entails negligible changes to the
DRAM circuitry (one AND gate), reusing existing signal, and
a 1-byte timer in memory controller. Given the impending la-
tency wall of refresh, the simplicity of our proposal makes it
appealing for adoption in future systems and standards.

Acknowledgments

Thanks to Jeff Stuecheli and Rajeev Balasubramonian for dis-
cussions and feedback. Moinuddin Qureshi is supported by
NetApp Faculty Fellowship and Intel Early Career Award.

References

[1] JESD79-3F, JEDEC Committee JC-42.3 Std. DDR3, 2010.
[2] (2011) Js choi ddr4 miniworkshop. [Online]. Available: http:

//jedec.org/sites/default/files/JS_Choi_DDR4_miniWorkshop.pdf
[3] J. Stuecheli, D. Kaseridis, H. C.Hunter, and L. K. John, “Elastic re-

fresh: Techniques to mitigate refresh penalties in high density mem-
ory,” in MICRO-43, 2010.

[4] H. Kim, B. Oh, Y. Son, K. Kim, S.-Y. Cha, J.-G. Jeong, S.-J. Hong,
and H. Shin, “Characterization of the variable retention time in dy-
namic random access memory,” Electron Devices, IEEE Transactions
on, vol. 58, no. 9, pp. 2952 –2958, sept. 2011.

[5] TN-47-16 Designing for High-Density DDR2 Memory, Micron, 2009.
[6] B. L. Jacob, S. W. Ng, and D. T. Wang, Memory Systems: Cache,

DRAM, Disk. Morgan Kaufmann, 2008.
[7] MT41J512M4:8Gb QuadDie DDR3 SDRAM – Rev. A 03/11, Micron,

2010.
[8] A. Udipi et al., “Rethinking dram design and organization for energy-

constrained multi-cores,” in ISCA-37, 2010.
[9] N. Chatterjee, R. Balasubramonian, M. Shevgoor, S. Pugsley,

A. Udipi, A. Shafiee, K. Sudan, M. Awasthi, and Z. Chishti, “USIMM:
the Utah SImulated Memory Module,” University of Utah, Tech. Rep.,
2012, uUCS-12-002.

[10] (2012) Memory scheduling championship (msc). [Online]. Available:
http://www.cs.utah.edu/~rajeev/jwac12/

[11] R. K. Venkatesan, S. Herr, and E. Rotenberg, “Retention-aware place-
ment in dram (rapid):software methods for quasi-non-volatile dram,”
in HPCA-12, 2006.

[12] J. Kim and M. Papaefthymiou, “Block-based multi-period refresh for
energy efficient dynamic memory,” in ASIC/SOC Conference, 2001.
Proceedings. 14th Annual IEEE International, 2001, pp. 193 –197.

[13] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “Raidr: Retention-aware
intelligent dram refresh,” in ISCA, 2012, pp. 1–12.

[14] M. Ghosh and H.-H. S. Lee, “Smart refresh: An enhanced mem-
ory controller design for reducing energy in conventional and 3d die-
stacked drams,” in MICRO-40, 2007.

[15] C. Isen and L. John, “Eskimo: Energy savings using semantic knowl-
edge of inconsequential memory occupancy for dram subsystem,” in
MICRO-42, 2009.

[16] S. Liu et al., “Flikker: saving dram refresh-power through critical data
partitioning,” in ASPLOS-XVI, 2011.

[17] C. Wilkerson et al., “Reducing cache power with low-cost, multi-bit
error-correcting codes,” in ISCA-37, 2010.

[18] V. Cuppu, B. Jacob, B. Davis, and T. Mudge, “A performance compar-
ison of contemporary dram architectures,” in ISCA-26, 1999.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on December 28,2021 at 06:47:25 UTC from IEEE Xplore. Restrictions apply.

