A Case for Refresh Pausing in DRAM Memory Systems

Prashant Nair

Chia-Chen Chou

Moinuddin Qureshi

Introduction

- Dynamic Random Access Memory (DRAM) used as main memory
- DRAM stores data as charge on capacitor

Introduction

- Dynamic Random Access Memory (DRAM) used as main memory
- DRAM stores data as charge on capacitor

Introduction

- Dynamic Random Access Memory (DRAM) used as main memory
- DRAM stores data as charge on capacitor

Refresh: Restoring Data in DRAM

DRAM maintains data by Refresh operations

Refresh: Restoring Data in DRAM

DRAM maintains data by Refresh operations

Charge on cells restored

Refresh: Restoring Data in DRAM

DRAM maintains data by Refresh operations

Time between Refresh ≤ Retention Time

DRAM relies on Refresh for data integrity

Refresh: A Growing Problem

Time spent in Refresh proportional to number of Rows

Increasing memory capacity -> More time spent in Refresh

The time for doing Refresh is increasing with chip density

Memory unavailable for Read/Write during Refresh

Memory unavailable for Read/Write during Refresh

Memory unavailable for Read/Write during Refresh

Memory unavailable for Read/Write during Refresh

Refresh blocks reads \rightarrow Higher read latency

Impact of Refresh is significant, and increasing

Our Goal: Reduce the Read Latency impact of Refresh

Outline

- Introduction & Motivation
- Refresh Operation: Background
- Refresh Pausing
- Evaluation
- Alternative Proposals

> Summary

Refresh Operation

Refresh operates on a Row granularity

Refresh Operation

Refresh operates on a Row granularity

Refresh Modes

Memory unavailable until all rows finish refresh

• Distributed Mode:

Refresh Modes

Memory unavailable until all rows finish refresh

• Distributed Mode:

8K refresh pulses in 64ms

Refresh Modes

Memory unavailable until all rows finish refresh

• Distributed Mode:

Distributed mode reduces contention from Refresh

Refresh Bundle

Every pulse refreshes a 'Bundle of rows'

Chip Size	Rows in a Refresh bundle (per bank)
512 Mb	1
1Gb	2
2Gb	4
4Gb or 8Gb (Twin 4Gb die)	8

Refresh Bundle

Every pulse refreshes a 'Bundle of rows'

Chip Size	Rows in a Refresh bundle (per bank)
512 Mb	1
1Gb	2
2Gb	4
4Gb or 8Gb (Twin 4Gb die)	8

Refresh Bundle currently have upto 8 rows, and increasing

 T_{RFC} is the time to do refresh for every refresh pulse

 T_{RFC} is the time to do refresh for every refresh pulse

 T_{RFC} is the time to do refresh for every refresh pulse

 T_{RFC} is the time to do refresh for every refresh pulse

Current 8Gb chips have T_{RFC} of 350ns >> read latency

High $T_{RFC} \rightarrow$ Read waits for refresh for long time

Outline

- Introduction & Motivation
- Refresh Operation: Background
- Refresh Pausing
- Evaluation
- Alternative Proposals

> Summary

Insight: Make Refresh Operations Interruptible

Pausing Refresh reduces wait time for Reads

Insight: Make Refresh Operations Interruptible

Pausing at arbitrary point can cause data loss

Pausing Refresh reduces wait time for Reads

Refresh Pausing at Row boundary to service read

- Memory Controller generates a Refresh Enable (RE) signal
- Pausing requires '*active low*' detection of RE
- One way communication only

- Memory Controller generates a Refresh Enable (RE) signal
- Pausing requires '*active low*' detection of RE
- One way communication only

- Memory Controller generates a Refresh Enable (RE) signal
- Pausing requires '*active low*' detection of RE
- One way communication only

- Memory Controller generates a Refresh Enable (RE) signal
- Pausing requires '*active low*' detection of RE
- One way communication only

Refresh Pausing: Track a Paused Row

• Row Address Counter increments the addresses

Refresh Pausing: Track a Paused Row

- Row Address Counter increments the addresses
- Stop the increment using a simple AND gate

Refresh Pausing: Track a Paused Row

- Row Address Counter increments the addresses
- Stop the increment using a simple AND gate
- Active Low Refresh Enable as 'Refresh Pause'

Refresh Pausing: Memory Scheduler

- Scheduler schedules: Read, Write, and Refresh
- Responsible for Pausing Refresh for Read
- Keeps track of refresh time done before Pause

Forced Refresh

• Pausing can delay Refresh

• JEDEC allows delay of up-to 8 pending refresh

Forced Refresh

• Pausing can delay Refresh

- JEDEC allows delay of up-to 8 pending refresh
- If 8 pending refresh, then issue 'Forced Refresh'

Forced Refresh

• Pausing can delay Refresh

- JEDEC allows delay of up-to 8 pending refresh
- If 8 pending refresh, then issue 'Forced Refresh'
- Forced Refresh cannot be Paused

Forced Refresh for data integrity

Outline

Introduction & Motivation

- Refresh Operation: Background
- Refresh Pausing

Evaluation

Alternative Proposals

Summary

Experimental Setup

- Simulator: uSIMM from Memory Scheduling Championship (MSC)
- Workloads: MSC Suite COMMERCIAL(5), PARSEC(9), BIOBENCH(2) and SPEC(2)

• Configuration:

Number of Cores	4
Last Level Cache	1MB
DRAM (DDR3)	8 Chips/Rank, 8Gb/Chip
Channels, Ranks, Banks	4,2,8
Refresh (Baseline)	Distributed (JEDEC)

• Results presented for temperature > 85C (paper also has <85C)

Results: Read Latency

Results: Read Latency

- Refresh Pausing gives ~7% read latency reduction for an 8Gb chip

Results: Performance

Results: Performance

- Refresh Pausing gives ~5% performance improvement for an 8Gb chip

Refresh Pausing more effective as chips density increases

Outline

- Introduction & Motivation
- Refresh Operation: Background
- Refresh Pausing
- Evaluation
- Alternative Proposals

> Summary

- Elastic Refresh waits for idle period before issuing a refresh
- Estimates average inter-arrival time of memory request

- Elastic Refresh waits for idle period before issuing a refresh
- Estimates average inter-arrival time of memory request

No Refreshes

time

- Elastic Refresh waits for idle period before issuing a refresh
- Estimates average inter-arrival time of memory request

- Elastic Refresh waits for idle period before issuing a refresh
- Estimates average inter-arrival time of memory request

- Elastic Refresh waits for idle period before issuing a refresh
- Estimates average inter-arrival time of memory request

- Elastic Refresh waits for idle period before issuing a refresh
- Estimates average inter-arrival time of memory request

- Elastic Refresh waits for idle period before issuing a refresh
- Estimates average inter-arrival time of memory request

- Elastic Refresh waits for idle period before issuing a refresh
- Estimates average inter-arrival time of memory request

- Elastic Refresh waits for idle period before issuing a refresh
- Estimates average inter-arrival time of memory request

- Elastic Refresh waits for idle period before issuing a refresh
- Estimates average inter-arrival time of memory request

- Elastic Refresh waits for idle period before issuing a refresh
- Estimates average inter-arrival time of memory request

- Elastic Refresh waits for idle period before issuing a refresh
- Estimates average inter-arrival time of memory request

- Elastic Refresh waits for idle period before issuing a refresh
- Estimates average inter-arrival time of memory request

- Elastic Refresh waits for idle period before issuing a refresh
- Estimates average inter-arrival time of memory request

- Elastic Refresh waits for idle period before issuing a refresh
- Estimates average inter-arrival time of memory request

- Elastic Refresh waits for idle period before issuing a refresh
- Estimates average inter-arrival time of memory request

- Elastic Refresh waits for idle period before issuing a refresh
- Estimates average inter-arrival time of memory request

Comparison with Elastic Refresh

Refresh Pausing outperforms Elastic Refresh

DDR4 proposals: x2 and x4 modes

Reduce bundles size and have more bundles

DDR4 proposals: x2 and x4 modes

Reduce bundles size and have more bundles

- In x2 mode, T_{REFI} is reduced by 2 (x4 mode by 4)
- In x2 mode T_{RFC} is reduced by 2 (x4 mode by 4)

DDR4 proposals: x2 and x4 modes

Reduce bundles size and have more bundles

- In x2 mode, T_{REFI} is reduced by 2 (x4 mode by 4)
- In x2 mode T_{RFC} is reduced by 2 (x4 mode by 4)

Fine Grained Refresh to reduce contention of Refresh

Comparison with DDR4

DDR4 modes (x2 and x4) useful but not enough

Comparison with DDR4

DDR4 modes (x2 and x4) useful but not enough

Outline

- Introduction & Motivation
- Refresh Operation: Background
- Refresh Pausing
- Evaluation
- Alternative Proposals

> Summary

Summary

- DRAM relies on Refresh for data integrity
- Time for Refresh increases with chip density
- Refresh blocks read, increases read latency
- Refresh Pausing: make Refresh Interruptible
- Pausing provides 5% improvement for 8Gb, increases with higher density
- Applicable also to DDR4 (fine grained refresh)