
10

Refresh Pausing in DRAM Memory Systems

PRASHANT J. NAIR, CHIA-CHEN CHOU, and MOINUDDIN K. QURESHI,
School of Electrical and Computer Engineering, Georgia Institute of Technology

Dynamic Random Access Memory (DRAM) cells rely on periodic refresh operations to maintain data in-
tegrity. As the capacity of DRAM memories has increased, so has the amount of time consumed in doing
refresh. Refresh operations contend with read operations, which increases read latency and reduces system
performance. We show that eliminating latency penalty due to refresh can improve average performance by
7.2%. However, simply doing intelligent scheduling of refresh operations is ineffective at obtaining significant
performance improvement.

This article provides an alternative and scalable option to reduce the latency penalty due to refresh.
It exploits the property that each refresh operation in a typical DRAM device internally refreshes multiple
DRAM rows in JEDEC-based distributed refresh mode. Therefore, a refresh operation has well-defined points
at which it can potentially be Paused to service a pending read request. Leveraging this property, we propose
Refresh Pausing, a solution that is highly effective at alleviating the contention from refresh operations. It
provides an average performance improvement of 5.1% for 8Gb devices and becomes even more effective for
future high-density technologies. We also show that Refresh Pausing significantly outperforms the recently
proposed Elastic Refresh scheme.

Categories and Subject Descriptors: B.3.1 [Hardware]: Semiconductor Memories

General Terms: Dynamic Random Access Memory, Refresh, Subarray, Sub-bank, Performance

Additional Key Words and Phrases: Memory scheduling, memory controller

ACM Reference Format:
Prashant J. Nair, Chia-Chen Chou, and Moinuddin K. Qureshi. 2014. Refresh pausing in DRAM memory
systems. ACM Trans. Architec. Code Optim. 11, 1, Article 10 (February 2014), 26 pages.
DOI: http://dx.doi.org/10.1145/2579669

1. INTRODUCTION
Dynamic Random Access Memory (DRAM) has been the technology of choice for build-
ing main memory systems for the past four decades. Technology scaling of DRAM has
allowed higher-density devices, enabling higher-capacity memory systems. As systems
integrate more and more cores on a chip, the demand for memory capacity will only
increase, further motivating the need to increase DRAM densities.

The work is an extension of the conference paper, “A Case for Refresh Pausing in DRAM Memory Systems”
[Nair et al. 2013]. This submission adds the following items that are not present in the original paper.
(1) Section 5.3 describes the scalability of Refresh Pausing; (2) Section 5.4 describes the distribution of pauses
within any refreshing intervals; (3) Section 5.5 describes impact of Refresh Pausing on forced refreshes;
(4) Section 6.3 gives a mathematical overview and insight on the impact of normal and forced refreshes on
ER; (5) Section 7 describes the applicability of Refresh Pausing on power-constrained DRAM systems; These
add more than 30% newer material in terms of giving greater insight into the behavior of forced refreshes
on baseline and elastic refresh, distribution and scalability of pausing, and also applicability of refresh to
subarrays and sub-banks.
Authors’ addresses: P. J. Nair, C.-C. Chou, and M. K. Qureshi, School of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, GA 30332; email: {pnair6, cchou34, moin}@gatech.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 1544-3566/2014/02-ART10 $15.00

DOI: http://dx.doi.org/10.1145/2579669

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 10, Publication date: February 2014.

Appears in the ACM Transactions on Architecture and Code Optimization (TACO-2014)

10:2 P. J. Nair et al.

The fundamental unit of storage in a DRAM system is a DRAM cell consisting of one
transistor and one capacitor. Data is represented in the DRAM cell as the amount of
electrical charge stored in the capacitor. If a DRAM cell stays idle without any operation
for a certain amount of time, the leakage current drains out the stored charge, which
can lead to data loss. To maintain data integrity, DRAM devices periodically perform
Refresh operations.

JEDEC standards [JEDEC Committee JC-42.3 2012] specify that DRAM devices
must be refreshed every 64ms (32ms at above 85◦C temperature). All DRAM rows
must undergo refresh within this time period. The total time incurred in doing refresh
is thus proportional to the number of rows in memory and approximately doubles as the
number of rows in the DRAM array is doubled. Initial DRAM designs performed Burst
Refreshes whereby refresh for all DRAM rows happened in succession; however, this
mode makes memory unavailable for a long period of time. To avoid this long latency,
JEDEC standards support Distributed Refresh mode. In this mode, the total number
of rows in a bank is divided into 8K groups, and each group is refreshed within a time
period equal to 7.8µs (3.9µs at high temperatures). This time duration is referred to as
Refresh Interval or TREFI . The DRAM controller sends a refresh pulse to DRAM devices
once every TREFI . The standard for TREFI was developed when memory banks typically
had 8K rows; therefore, each refresh pulse refreshed exactly one row. Over time, as the
size of memory has increased, the TREFI has remained the same, and only the number
of rows refreshed per refresh pulse has increased. For example, for the 8Gb DRAM
chips that we consider, each refresh pulse refreshes 8 to 16 rows. Therefore, the latency
to do refresh for one group is almost an order of magnitude longer than a typical read
operation.

When a given memory bank is performing refresh operations, the bank becomes un-
available for servicing demand requests such as reads and writes. Thus, a read request
arriving at a bank that is undergoing refresh waits until the refresh operation gets
completed. This increases the effective read latency and degrades system performance.
As memory technology scales to higher densities, the latency from refresh worsens from
being significant to severe. In fact, as JEDEC updates its specifications from DDR3 to
DDR4, the refresh circuitry is expected to undergo significant revision [JEDEC-DDR4
2011] primarily because of lack of scalability of current refresh schemes.

We explain the problem of contention from refresh, and our solution to mitigate that,
with a simple example. Consider a memory system that takes 1 unit of time for a read
request and 8 units of time for refresh. Requests A0-B0, A1-B1, A2-B2, and A3-B3 are
to be serviced. A request of type B arrives one unit of time after a request of type A is
serviced, and request of type A arrives two units after type B is serviced. Figure 1(a)
shows the timing for a system that does not have any refresh-related penalties. It
would be able to service these requests in a time period equal to 18 units.

Figure 1(b) shows the timing for the baseline system where a refresh operation
arrives shortly after A0 is scheduled. The baseline will start the refresh as soon as A0
is serviced, and the refresh will continue for 8 time units. A later-arriving read request
B0 must wait until the refresh is completed. Therefore, B0 gets delayed, and the entire
sequence of requests takes a time period equal to 25 units. Thus, the overall time has
increased significantly compared to a system with no refresh.

A system does not have to schedule a refresh operation as soon as it becomes ready.
JEDEC standards specify that a total of up to eight refresh operations can be postponed.
Therefore, one can design intelligent scheduling polices [Stuecheli et al. 2010] that try
to schedule refresh in periods of low (idle) memory activity. However, given that refresh
operations are very long compared to memory read operations (1,120 processor cycles
for our baseline), the likelihood of finding such a long idle period for a rank is quite
low. Thus, refresh scheduling typically cannot hide the latency of refresh completely;

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 10, Publication date: February 2014.

Refresh Pausing in DRAM Memory Systems 10:3

Fig. 1. Latency overheads of doing refresh are significant. Intelligent scheduling of refresh helps reduce this
latency overhead but is not sufficient. Refresh Pausing can avoid the latency penalty of refresh operations.

however, it may be able to reduce the penalty. Figure 1(c) shows the timing of our
system with intelligent refresh scheduling. Instead of scheduling a refresh after A0, it
waits until after B0 to get a longer idle time. However, this reduces the penalty by only
1 unit, and the entire sequence of request takes 24 units. Thus, refresh scheduling can
help, but it is not enough.

Traditional systems treat refresh as a noninterruptible operation. Once refresh is
scheduled, the memory gets committed for the time period equal to TRFC (8 units for our
example). Assume (for now) that refresh operation can be paused at arbitrary points.
Figure 1(d) shows the timing of our system with Pausable Refresh. Refresh operations
now occur only during periods of no activity, and as soon as a read request arrives,
they relinquish the memory for servicing the pending read. A given refresh operation
can be paused and resumed multiple times. With pausing, the entire sequence now
takes a time period of 18 units, similar to the system with no refresh penalty. Thus,
an interruptible and pausable refresh can reduce (or avoid) the latency penalty due to
refresh operations.

This article proposes Refresh Pausing, an interruptible and pausable refresh archi-
tecture. It exploits the behavior that for each pulse (every TREFI), a typical DRAM
device performs refresh of multiple rows in succession. To refresh a given row, that
row is activated and then precharged. After that, the next row is refreshed. We can
potentially Pause an ongoing refresh operation to service a pending read request. We
keep track of the address of rows undergoing refresh and store that address when the
refresh is paused. After the pending read operation finishes, the refresh of the group
is resumed using the row address information stored during pause. Thus, the number
of rows in a refresh group dictates the number of Refresh Pause Points (RPPs). For a
DRAM device containing 8 (or 16) rows, we have 7 (or 15) RPPs. Thus, although paus-
ing at an arbitrary point may not be practical, with our proposal it becomes possible to
pause at many well-defined RPPs.

Our evaluations with a detailed memory system simulator (USIMM) shows that, on
average, removing refresh-related penalties has the potential for 7.2% performance
improvement and Refresh Pausing provides 5.1% performance improvement. Our im-
plementation of Refresh Pausing avoids extra signal pins between the processor and

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 10, Publication date: February 2014.

10:4 P. J. Nair et al.

Fig. 2. Each DRAM chip is composed of several banks. Each bank can be composed of sub-banks that allow
for concurrent accesses. Each sub-bank is internally organized into subarrays that have mats of DRAM cells,
row and column decoders, and sense amplifiers.

memory interface, and incurs the hardware of only one AND gate and one byte per
rank. It reuses the existing pins to indicate pausing.

The article is organized as follows: Section 2 provides background and motivation,
Section 3 presents the design of Refresh Pausing, Section 4 reviews the methodol-
ogy, and Section 5 provides our results and analysis. We compare Refresh Pausing
with refresh scheduling in Section 6, Refresh Pausing in power-constrained systems in
Section 7, and discuss other related work in Section 8.

2. BACKGROUND AND MOTIVATION
2.1. DRAM Refresh: Background and Terminology
Figure 2 shows the internal organization of a DRAM chip. A DRAM chip is composed
of 8 to 16 banks. DRAM banks are organized into subarrays and sub-banks [Thoziyoor
et al. 2008a, 2008b; Huang et al. 2001]. A subarray contains DRAM cell arrays (rows),
row decoder, column decoder, and sense amplifiers. DRAM cells maintain data integrity
using refresh operations, a process whereby the data is rewritten to the cell periodically
using sense amplifiers. Although DRAM cells have varying retention time [Kim et al.
2011], the JEDEC standards specify a minimum of 64ms retention time (32ms for high
temperature), which means that all DRAM rows must be refreshed within this small
time period. Let’s call this time period DRAM Retention Time. Initially, DRAM systems
had relatively few rows, so the total time in performing refresh operations was small.
Therefore, it was acceptable to refresh all rows using one refresh pulse every DRAM
Retention Time. This is referred to as Burst Mode refresh.

As the number of rows in a typical DRAM system increased to a few (tens of)
thousands, the latency penalty of Burst Mode became unacceptable, as it tied up the
memory banks for a latency equivalent to tens of thousands of read operations. To
overcome this long latency, JEDEC [JEDEC Committee JC-42.3 2012] provided a Dis-
tributed Refresh mode, whereby a fraction of memory is refreshed at frequent intervals.

Refreshes are performed with some internal parallelism using subarrays. Banks can
also be divided into sub-banks. Sub-banking allows multiple portions of the bank to be
addressed consecutively. The number of sub-banks is usually small (2 to 4) due to the
overhead required for implementing circuits that allow for parallel sub-bank accesses
within the bank. Figure 2 shows the internal details of a bank and the organization of
subarrays and sub-banks within a bank.

When JEDEC standards were formed, memories typically had approximately 8K
rows per bank, so memory array was divided into 8K groups. For discussion, let’s

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 10, Publication date: February 2014.

Refresh Pausing in DRAM Memory Systems 10:5

Fig. 3. Timing parameters of distributed DRAM Refresh, the cluster of rows may be split across subarrays
or sub-banks and can be operated with some parallelism.

Table I. TRC and TRFC for Different DRAM
Densities [JEDEC Committee JC-42.3 2012]

Memory Density TRC TRFC RDC

1Gb 39ns 110ns 2.8%
2Gb 39ns 160ns 5.1%
4Gb 39ns 260ns 6.7%
8Gb 39ns 350ns 9.0%

call this group a Refresh Bundle. To ensure that all refresh bundles get refreshed in
the DRAM Retention Time, a refresh pulse is now required at a much smaller time
period, called Refresh Interval (TREFI). The time period for TREFI is simply DRAM
Retention Time divided by 8K groups, so it is 7.8µs (3.9µs for high temperature). The
TREFI remains constant across DRAM generations. A constant TREFI across generations
means that a system can mix and match different DRAM DIMMs, or upgrade to a
different DIMM while still using the same refresh infrastructure that sends one refresh
pulse every TREFI interval. The refresh activity is handled entirely inside the DRAM
chip and is triggered by the refresh pulse.

The size of DRAM memory has continued to increase, which means that current
DRAM banks have more than 8K rows. This is simply handled by refreshing multiple
rows for each refresh pulse. For example, for the 8Gb device that we consider, there are
8 rows per Refresh Bundle. When the DRAM array gets a refresh pulse, it refreshes
8 rows, one after another. Thus, the time incurred to perform a refresh operation for
each refresh pulse is a function of number of rows per refresh bundle. This time is
referred to as Refresh Cycle Time (TRFC).

The time taken to refresh one row is bounded by the Row Cycle Time (TRC), which
is the time to activate and precharge one row. TRFC may be greater or less than the
number of rows in a refresh bundle multiplied by the TRC [Micron 2009; Jacob et al.
2008] and is accounted to the internal parallelism of the refresh operation. Figure 3
illustrates the DRAM refresh performed in distributed refresh mode.

2.2. The Latency Wall of Refresh
When the DRAM array receives a refresh pulse, the memory gets tied up and then
released only after the refresh operation is completed. Thus, the memory is unavailable
during refresh period. Lets, define Refresh Duty Cycle (RDC) as the percentage of time
that the memory is doing refresh. RDC can be computed as the ratio of TRFC to TREFI.
Ideally, we want a small RDC so that the memory is available for servicing demand
requests. Unfortunately, RDC is increasing.

The increase in TRFC across technology generations is shown in Table I. The
row cycle time has largely remained unchanged; however, the TRFC has increased

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 10, Publication date: February 2014.

10:6 P. J. Nair et al.

Fig. 4. Variation and projection for TRFC for various densities [JEDEC Committee JC-42.3 2012].

considerably. For high-temperature server operation, TREFI is 3,900ns, so for 8Gb1

memories available currently [Micron 2010], RDC is 350ns/3900ns = 9%.
Manufacturers implementing these DRAMs also project their timings accordingly for

various density of memories. Figure 4 portrays the deviation of the timings of TRC with
the value of TRFC for MicronTM DDR3-800 for 1Gb, 2Gb, and 4Gb chips. The projections
as per these trends as well as JEDEC predictions are plotted for an 8Gb DRAM chip.
One key point to note is that despite the increase in TRFC, the value of TRC remains
constant, as it does not depend on the memory density and rather depends on address
decoding and precharging latency, making this a key advantage for Refresh Pausing.

Although RDC has been increasing at almost an exponential rate (theoretically about
2x every DRAM generation) in the past, it is expected to increase at an even higher
rate in the future because of the combination of the following reasons:

(1) High Density: As the number of rows in the DRAM array increases, so does the
number of rows in a refresh bundle. TRFC can be expected to increase linearly with
memory capacity. Thus, RDC would increase in proportion to memory capacity.

(2) High-Temperature Operation: At higher temperature, DRAM cells leak at a
faster rate. Therefore, JEDEC specifications dictate that at above 85◦C, memories
should be refreshed at 2x the rate at normal temperature. This reduces the TREFI
from 64ms to 32ms. A 2x reduction in TREFI corresponds to doubling of RDC.

(3) Increasing Device Variability: As DRAM devices get pushed into smaller ge-
ometries, the variability in per-cell behavior increases and a larger number of weak
bits gets placed into the array. To handle such weak bits, the typical refresh rate
of DRAM devices could be reduced to 32ms, reducing TREFI by 2x, and increasing
RDC by 2x.

(4) Reduction in Row Buffer Size: The energy efficiency of DRAM memories can
be improved by making the row buffer smaller to reduce overfetch [Udipi et al.
2010]. Such optimizations increase the total number of rows in memory, and hence
the number of rows in a refresh bundle. As TRC remains unaffected, TRFC would
increase in proportion to the number of rows and increase RDC proportionally.

For our studies, we use a refresh rate of 32ms, similar to prior work [Stuecheli et al.
2010]. This value corresponds to a high-temperature operation, typical for dense server
environments [Stuecheli et al. 2010]. It also reflects future technologies where vari-
ability in devices may dictate a shorter refresh interval even at room temperature.

1For meeting the JEDEC specifications of TRFC of 350ns for 8Gb chips, some designs have adopted TwinDie
technology [Micron 2010], which combines two 4Gb dies to create one 8Gb chip. Thus, meeting the JEDEC
specifications of TRFC may necessitate significant changes to the DRAM chip architecture.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 10, Publication date: February 2014.

Refresh Pausing in DRAM Memory Systems 10:7

Fig. 5. Impact of refresh on read latency.

Thus, whereas current DRAM systems spend about 7% to 9% of the time performing
refreshes, future systems can be expected to spend an even more time. This high RDC
makes the memory unavailable for a longer time and is the impending Latency Wall of
refresh.

2.3. Latency Impact of Refresh
Our baseline assumes that 8Gb chips with TRFC equals to 350ns and TREFI of 3,900ns,
so the memory system spends 9% of the time doing refresh operations. Figure 5 shows
the average latency of baseline as well as if all refresh operations are removed (No
Refresh). (Detailed methodology is described later in Section 4, in which Table IV
gives the classification of benchmarks.) The bar labeled AMEAN represents arithmetic
mean over all 18 workloads. The average latency for reads in the baseline system is
234 processor cycles. However, if the contention from refresh operations is removed,
then the average read latency would get reduced to 215 cycles.2

2.4. Mitigating Latency Impact via Refresh Scheduling
Refresh operations have a significant impact on read latency of memory system. Re-
ducing this impact can improve read latency and thereby system performance. One
potential option to alleviate the latency impact of refresh is exploiting the flexibility
in scheduling refresh operations. JEDEC standards provide the ability to postpone
refresh operations for up to eight TREFI cycles. The work most related to our work was
on scheduling refresh operations called Elastic Refresh (ER) [Stuecheli et al. 2010].
Instead of scheduling a pending refresh operation as soon as the memory becomes idle,
this scheme delays the pending refresh for some time. This time is determined based
on average time duration of idle periods of the memory queues.

Refresh scheduling schemes, including ER, are unlikely to give significant benefit,
as they need to frequently accommodate a very long latency operation. Finding the
memory idle for that long on a regular basis is difficult for memory-intensive workloads.

2One may simplistically estimate the latency impact from refresh as a product of collision probability and
average delay under collision. Collision probability is related to RDC (thus, it will get approximated as 9%),
and average delay under collision is half of TRFC, so 175ns). Therefore, one may estimate that the average
delay due to refresh as 0.09 × 175ns = 15.75ns, or 63 processor cycles. However, the implicit assumption
in such simple estimation is that a read request is equally likely to come during refresh, as during other
times. We found that this key assumption is invalid, as refresh delays the read, which stops or slows down
the subsequent read stream; hence, this method of estimating latency impact of refresh is incorrect.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 10, Publication date: February 2014.

10:8 P. J. Nair et al.

Fig. 6. Potential speedup from removing refresh is significant. However, Elastic Refresh degrades perfor-
mance (see detailed study in Section 6).

Furthermore, scheduling a refresh after a period of time has passed could increase the
waiting time for a later- arriving read request.

2.5. Performance Potential
Figure 6 shows the performance improvement over baseline if we remove all the re-
fresh operations (No Refresh) and if the baseline adopts ER. The bar labeled GMEAN
represents geometric mean over all 18 workloads throughout this paper.

The “No Refresh” system has potential for significant performance improvement,
7.2% compared to the baseline. Our baseline has read priority scheduling, so refreshes
are delayed in favor of reads and get done in a forced manner if there are eight pending
refreshes. Compared to this simple refresh scheduling scheme, ER ends up degrading
performance. Section 6 will analyze the inefficacy of refresh scheduling algorithms
(including ER) in detail.

We need a practical solution that can reduce the latency impact of refreshes. The
next section presents a scheme that greatly reduces the contention from refreshes and
easily scales to future technologies/situations when RDC will be quite high.

3. REFRESH PAUSING IN DRAM SYSTEMS
Traditionally, refresh operations are considered uninterruptible; therefore, once a re-
fresh is scheduled, later-arriving demand requests must wait until the refresh gets
completed. The longer the refresh operation, the longer is the expected waiting time
for a pending demand request. We avoid this latency penalty due to refresh by making
refresh operations interruptible and propose Refresh Pausing for DRAM memory sys-
tems. With an interruptible refresh, the refresh can be paused to service a pending read
request and then resumed once the read request gets serviced. This section describes
the concept, implementation, and implications of Refresh Pausing.

3.1. Refresh Pausing: Concept
Although it may not be possible to Pause a refresh at an arbitrary point, there are
some well-defined points during refresh, where it can potentially be paused in order
to service a pending read request. Consider the refresh operation done in traditional
DRAM systems, as shown in Figure 7(a). In a time interval of TRFC, the DRAM array
refreshes say 8 rows, numbered R0 to R7. To refresh a row, the given row is activated
and then the bank waits for a time period equal to TRAS, then precharges the row. This

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 10, Publication date: February 2014.

Refresh Pausing in DRAM Memory Systems 10:9

Fig. 7. Enabling Refresh Pausing in DRAM systems. (a) Refresh operation in traditional DRAM memories.
(b) Identifying potential pause points (RPPs) for Refresh Pausing. (c) How Refresh Pausing can quickly
service pending requests (for simplicity, in this figure we assume that refreshes are performed sequentially
on a row-by-row basis and do not account for some internal parallelism).

cycling takes a time equal to TRC. Subsequently, the next row is refreshed, and so on,
until all rows R0–R7 are refreshed.

When one row is refreshed, we can potentially pause the refresh operation and
relinquish the DRAM array for servicing some other operation, as shown in Figure 7(b).
Each such potential point of pausing is an RPP. For a memory with N rows in a refresh
bundle, there would be (N-1) RPP. In practice, the time interval of TRFC is longer than
simply the sum of row cycle times because of recovery time. DRAM vendors do not
typically provide details about how the recovery time is calculated or provisioned. In
our work, we assume that the recovery time is spread out over all rows. Therefore, we
divide the time TRFC into eight (in general N) equal time quanta and call this duration
Refresh Pause Cycle (TRPC).3 A memory array that supports Pausing can potentially
Pause at an interval of every TRPC .

Figure 7(c) shows the working of memory system with Refresh Pausing. Let’s say
that a read request for Row A arrives while Row R2 is being refreshed. The memory
controller signals the device to pause, and the device pauses refresh at the next RPP,
which is RPP3. The memory then services A and then the memory controller can signal
the refresh circuit to RESUME the refresh operation. A refresh operation can be paused
and resumed multiple times, as shown for a request for Row B, which arrives while
refreshing Row R4.

Refresh operations cannot be paused indefinitely if there is a heavy read traffic.
When the refresh operation is done because it has reached the refresh deadline (8 ×
TREFI), then it cannot be paused. We refer to such refresh operations as Forced Refresh.
To maintain data integrity, and to confirm to JEDEC standards, Refresh Pausing is
disallowed for forced refresh.

3.2. Refresh Pausing: Implementation
To facilitate Refresh Pausing, we need to make minor changes to the memory controller
and the DRAM devices. The task of the memory controller is to decide if and when to
PAUSE an on-going refresh, and when to RESUME a paused refresh, depending on the
occupancy of the memory queues. The task of the DRAM refresh circuit is to PAUSE the
ongoing refresh operation at the next RPP, if the pause signal is received. To RESUME

3We make the assumption of equal time quanta only for simplicity. DRAM vendors can adapt the definition
of TRPC and placement of RPP, depending on their specific implementation of recovery time management.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 10, Publication date: February 2014.

10:10 P. J. Nair et al.

Fig. 8. Implementing Refresh Pausing with (1) reusing the REFRESH ENABLE signal to indicate
REFRESH, PAUSE, and RESUME, (2) an AND gate in DRAM refresh circuit to check for RE during refresh,
and (3) a one-byte timer in the memory controller.

from the check-pointed state, a paused refresh gets resumed. Figure 8 shows the system
that implements Refresh Pausing. Our implementation is geared toward keeping the
hardware modifications to minimum.

Signaling REFRESH, PAUSE, and RESUME: A naive implementation may pro-
vision additional signal pins for PAUSE and RESUME. However, extra signal pins are
costly and a deterrent for adoption in standards, so we simply reuse the existing signal
REFRESH ENABLE (RE). A DRAM refresh circuitry starts the refresh procedure once
RE gets asserted. The role of RE during the refresh is unimportant for traditional sys-
tems. To facilitate Refresh Pausing, we simply require that RE must remain asserted
during the entire refresh period for an uninterruptible refresh. A deassertion of RE
indicates a request for PAUSE. A RESUME is treated same as REFRESH, in that it
starts a regular REFRESH operation but only refreshes the rows remaining in the
refresh bundle.

Changes to DRAM Refresh Circuit: When the RE signal gets asserted, the refresh
circuitry probes a register called Row Address Counter (RAC) that points to the next
row to be refreshed. During every iteration of refresh, the row pointed to by the RAC
gets refreshed and the RAC is incremented. This is done until the number of rows
in a refresh bundle gets refreshed. Thus, after the refresh for one pulse is done, the
RAC stores the row address for the next refresh pulse. To support PAUSE, the refresh
circuitry simply checks if the RE remains asserted at each RPP. If not, the refresh
operation gets stalled. On RESUME, the refresh operation gets performed until RAC
reaches the end of the refresh bundle. Thus, to support Refresh Pausing, we need only
one additional AND gate in the DRAM refresh circuitry.

Changes to Memory Controller: The memory controller needs to keep track of
the amount of time that a refresh has completed to remove it from the Refresh Queue
(REFQ) as well as to schedule a PAUSE. A PAUSE must be sent at least one cycle

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 10, Publication date: February 2014.

Refresh Pausing in DRAM Memory Systems 10:11

before the RPP point. To enable such time tracking, we keep a one-byte timer for each
rank. For the refresh operation in service or paused, this timer indicates the time
spent in doing refresh. Thus, even with Refresh Pausing, the direction of signals is still
from memory controller to DRAM circuits, and the operation of DRAM still remains
deterministic.

3.3. Summary of Hardware/Interface Support
Our implementation of Refresh Pausing avoids extra pins or signals. However, it relies
on modifying the specification of the RE signal during ongoing refresh operation. The
DRAM refresh circuitry needs one AND gate. In addition, the memory controller needs
one byte for time keeping. The hardware for AND gate and time keeping is incurred
per rank, as refresh is typically done on a per-rank basis. Thus, implementing Refresh
Pausing requires negligible support in terms of hardware and interfaces.

3.4. Implication on Reducing Latency Overhead
With Refresh Pausing, the maximum time that a later-arriving read request has to wait
gets shortened from TRFC to TRPC , about 8x if we have 8 rows in the refresh bundle.
The average waiting time can be expected to reduce by 8x as well, assuming that the
refresh is not done in Forced mode. Such a significant reduction in waiting time greatly
reduces the latency impact of refresh and improves system performance.

3.5. Implication on Scalability to Future Technologies
As the density of DRAM memories increases and more and more rows get packed into
a DRAM array, the specified TRFC is expected to increase at an alarming rate. This
would make traditional memory designs unavailable for significant periods of time
and increase latency greatly. However, with Refresh Pausing, the contention remains
bounded to TRPC , almost independent of TRFC and memory size. Thus, Refresh Pausing
can enable future memory designs to overcome the latency wall due to refresh induced
memory unavailability.

4. EXPERIMENTAL METHODOLOGY
4.1. System Configuration
We use the memory system simulator USIMM [Chatterjee et al. 2012] from the recently
conducted Memory Scheduling Championship (MSC) [MSC 2012]. USIMM models the
DRAM system in detail, enforcing the various timing constraints. We modified USIMM
to conduct a detailed study for refresh operations. We added an REFQ in addition to the
existing Read Queue (RDQ) and Write Queue (WRQ). Refresh operations thus become
part of scheduling decisions. The REFQ is incremented every TREFI. The scheduler for
a channel can issue a read, a write, or a refresh to a rank every memory cycle.

The parameters of system configuration are shown in Table II. We model a quad-core
system operating at 3.2GHz. The memory system is configured as a 4-channel design
operating at 800MHz. The memory system is composed of channels, ranks, and banks.
The RDQ and WRQ are on a channel basis, and the REFQ is provisioned on a rank
basis. We use the default write scheduling policy of USIMM that services writes at
the lowest priority, using high and low watermarks to decide when to drain the WRQ.
To schedule memory requests, we adopt close-page policy, which is known as a better
scheduling policy in multiprogram platform.

The refresh scheduling policy in our baseline favors reads over refresh requests un-
less the REFQ becomes full (eight pending requests). Refresh operation takes TRFC cy-
cles to complete. In all scheduling policies, the number of refreshes can be accumulated

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 10, Publication date: February 2014.

10:12 P. J. Nair et al.

Table II. Baseline System Configuration
(Default USIMM)

Number of cores 4
Processor clock speed 3.2GHz
Processor ROB size 160
Processor retire width 4
Processor fetch width 4
Processor pipeline depth 10
Last-level cache (private) 1MB per core
Cache line size 64 byte
Memory bus speed 800MHz
DDR3 memory channels 4
Ranks per channel 2
Banks per rank 8
Rows per bank 128K/256K
Columns (cache lines) per row 128
Write queue capacity 64
Write queue high watermark 40
Write queue low watermark 20

Table III. DRAM Timing Parameters for Our
Memory System

Timing DRAM Cycles Processor Cycles
Parameters (at 800MHz) (at 3.2GHz)
TRCD 11 44
TRP 11 44
TCAS 11 44
TRC 39 156
TRAS 28 112
TFAW 32 128
TRFC 280 1,120
TREFI 3,120 12,480

Table IV. Workload Characteristics (Suite from MSC [MSC 2012])

Suites Workloads MPKI Read Latency IPC

comm1 6.6 186 1.73
comm2 7.5 221 1.30

COMMERCIAL comm3 3.2 186 2.28
comm4 2.2 195 2.63
comm5 1.4 195 2.89

SPEC leslie 6.4 313 1.15
libq 13.6 191 0.94

black 2.8 252 2.27
face 6.0 455 1.66

ferret 4.8 305 1.98
fluid 2.4 246 2.46

PARSEC freq 2.7 226 2.53
stream 3.4 232 2.25
swapt 2.9 229 2.35

MT-canneal 13.2 215 2.88
MT-fluid 1.4 539 0.97

BIOBENCH mummer 19.3 187 0.81
tigr 26.9 184 0.79

up to eight without breaking the rules specified by JEDEC standards. We use 8Gb
devices for our study, the timing parameters for which are shown in Table III. TRFC is
280 DRAM cycles (350ns [JEDEC Committee JC-42.3 2012]). We use a TREFI of 3.9µs,
which translates to 3,120 DRAM cycles.

4.2. Workloads
We use the workloads from the recently held MSC [MSC 2012], as it contains a wide
variety of applications. Table IV shows key characteristics of our workloads. The MSC
suite contains five commercial applications, comm1 to comm5. There are nine bench-
marks from the PARSEC suite, including two multithread versions of applications fluid

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 10, Publication date: February 2014.

Refresh Pausing in DRAM Memory Systems 10:13

Fig. 9. Average read latency for different systems.

and canneal (marked MT-fluid and MT-canneal). In addition, there are two benchmarks
each from the SPEC4 suite and the biobench suite.

We execute these benchmarks in rate mode on the quad-core processor. We compute
the execution time as the time to finish the last benchmark in the workload (as the
benchmarks are executed in rate mode, the variation in execution time of individual
benchmarks within the workload is negligible).

5. RESULTS AND ANALYSIS
In this section, we analyze the effectiveness of Refresh Pausing. For our baseline mem-
ory system with 8Gb chips, there are 8 rows in a refresh bundle (since they use twindie
technology with two independent dies, and this number is for a single die), so there
can potentially be 7 RPPs. However, for future memory systems, the number of rows
in a refresh bundle is expected to increase (both because of increase in capacity and
decrease in row buffer size). So, to indicate the effectiveness of Refresh Pausing for
future memory systems, we will also consider a version that has 16 rows in the refresh
bundle, therefore 15 RPPs. We will refer to the configuration that implements Refresh
Pausing with 7 pause points as RP-7 and the one with 15 pause points as RP-15. The
“Baseline Refresh” uses distributed refresh, segmented in time, and each distributed
refresh pulse operates on a channel as soon as it becomes available.

5.1. Impact on Read Latency
The read latency of a system is increased by contention due to refresh operations.
Figure 9 shows the read latency of our baseline system, the baseline system with Re-
fresh Pausing (RP-7 and RP-15), and the ideal-bound system with No Refresh. We
report latency in terms of processor cycles. The bar labeled Amean denotes the arith-
metic average over all 18 workloads. For the baseline system, the average read latency
is 234 cycles; for the system with No Refresh, it is 215 cycles. Thus, a significant frac-
tion of read latency (19 cycles) is due to contention from refresh. With Refresh Pausing,
this latency impact gets reduced to 7 cycles (RP-7) and 4 cycles (RP-15). Thus, Refresh
Pausing can remove about half to two-thirds of the delay induced by refresh operations.

5.2. Impact on Performance
The reduction in read latency with Refresh Pausing translates into performance im-
provement. Figure 10 shows the speedup from Refresh Pausing (RP-7 and RP-15) and
No Refresh. The bar labeled Gmean denotes the geometric mean over all 18 workloads.
For a system with No Refresh, there is a potential gain of approximately 7.2% on av-
erage. Refresh Pausing obtains 4.5% improvement with RP-7 and 5.1% improvement

4We also evaluated other memory intensive benchmarks from the SPEC suite and found that Refresh Pausing
provides similar performance improvement for memory-intensive SPEC workloads, as it does for the MSC
suite.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 10, Publication date: February 2014.

10:14 P. J. Nair et al.

Fig. 10. Performance improvement from Refresh Pausing.

Fig. 11. Scalability of Refresh Pausing with TRFC.

with RP-15. Thus, with Refresh Pausing, we can get about half to two-thirds of the po-
tential performance gains. Few workloads, such as comm1, MT-canneal, and mummer,
obtain significantly better performance improvement with RP-15 than with RP-7.

Our default configuration consists of 1MB per core LLC. We varied the LLC size
from 512KB per core to 2MB per core. For 512KB per core, RP-7 provides 4.7%, RP-15
provides 5.2%, and No Refresh provides 7.5% performance improvement, on average.
With 2MB per core, these become 4%, 4.6%, and 6.4%, respectively. The performance
benefit of Refresh Pausing is robust to cache size.

5.3. Scalability of Refresh Pausing
As memory technologies quest for higher densities and more capacity gets packed into
a single chip, the number of rows in the chip is likely to increase. This is expected to
increase TRFC. Figure 11 shows the effectiveness of Refresh Pausing as TRFC is varied.
The average performance improvement over all workloads is reported. For future 16Gb
devices, with similar internal parallelism as the current designs, we assume that they
will have a TRFC that is twice of 8Gb devices; hence, we evaluate data points for 700ns
and 1,100ns. The data point of 350ns represents the JEDEC specified TRFC of 350ns
for 8Gb devices.

If the memory system has a small TRFC, then the potential performance difference
from eliminating refresh penalties is small. Refresh Pausing (RP-7 and RP-15) gets
most of this potential. Note that maintaining low TRFC is technologically quite hard. As
designs move to the future, and TRFC increases, Refresh Pausing becomes even more
effective. For example, for a 16Gb memory with TRFC of 1,100ns, there is a potential
32% performance improvement possible with No Refresh, and Refresh Pausing RP-15
gets 24% performance improvement. Although future chips strive toward increasing
internal parallelism, Refresh Pausing is robust to increasing device densities with or

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 10, Publication date: February 2014.

Refresh Pausing in DRAM Memory Systems 10:15

Fig. 12. Frequency of pauses for RP-7 and RP-15 schemes.

without increased parallelism. As device densities increase, so will the number of pause
points, which makes Refresh Pausing even more effective for future technologies.

5.4. Frequency of Pausing
With Refresh Pausing, a refresh operation can be paused (and resumed) multiple times.
During each pause interval, the memory can schedule many read requests. Once the
rank becomes idle, the refresh is resumed and then paused again later if a read arrives.
Thus, the breakdown of how many times a refresh is paused serves as a good indicator
both for having many pause points and for the inherent burstiness of read accesses.
Figure 12 shows such a breakdown. On average, 3.2 pauses and 4.5 pauses happen per
refresh in RP-7 and RP-15, respectively. For RP-7, most often the pause point occurs
between RPP2 and RPP4. RP-15 shows a drift in the most active pause points, as it has
much smaller TRPC than RP-7, so the distribution gets spread out. Figure 12 confirms
that Refresh Pausing will help lower contention, as less than 8% refreshes have no
pausing, and 92% of the refreshes do encounter a pending read.

5.5. Quantifying Forced Refresh
Table V shows that forced refreshes constitute a maximum of up to 0.02% of the
total number of refreshes in the baseline scheme for 4 channels. RP-7 and RP-15
schemes result in an increase in the percentage of forced refreshes of up to 0.06% and
0.08%, respectively. Increasing the read refresh contention by reducing the number of
memory channels increases the number of forced refreshes. Table VI shows that for
a single channel configuration, forced refreshes constitute a maximum of up to 0.3%.
RP-7 and RP-15 schemes result in an increase in the percentage of forced refreshes
of up to 3.6% and 8.1%, respectively. Since Refresh Pausing allows the RDQ to be
empty after the pause points are reached, delaying portions of refreshes. This increases
the probability of having refreshes spilling over into the Forced Refresh mode. This
behavior is consistent for RP-15 and RP-7, with RP-15 showing a higher percentage of
forced refreshes.

5.6. Refresh Pausing in Highly Utilized Systems
Refresh Pausing tries to exploit idle cycles in memory for doing refresh, and relinquish-
ing refresh as soon as memory is required for a demand read request. If the memory
is almost always busy with servicing reads and writes, then the refresh operations get
done in a forced manner. Since forced refreshes cannot be paused, there is little scope
for Refresh Pausing to improve performance. To analyze Refresh Pausing for highly
utilized systems, we reconfigured our baseline to have 1 channel instead of 4 channels.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 10, Publication date: February 2014.

10:16 P. J. Nair et al.

Table V. Percentage of Refreshes Issued in Forced
Mode for a 4-Channel Configuration

Benchmark Baseline RP-7 RP-15
black 1.821 1.853 1.908
face 0.009 0.358 2.164
ferret 0.011 1.109 1.176
fluid 0.009 0.009 0.009
freq 0.173 0.273 0.218
stream 0.961 0.969 0.986
swapt 1.583 1.435 1.685
MT-canneal 0.005 0.005 0.006
MT-fluid 0.015 0.475 0.583
mummer 0.005 0.005 0.005
tigr 0.004 0.005 0.005
comm1 0.009 0.011 0.009
comm2 0.007 0.009 0.007
comm3 0.011 0.012 0.011
comm4 0.013 0.014 0.105
comm5 0.016 0.017 0.016
leslie 0.006 0.007 0.007
libq 0.005 1.194 4.325
Gmean 0.023 0.065 0.083

Table VI. Percentage of Refreshes Issued in Forced
Mode for a 1-Channel Configuration

Benchmark Baseline RP-7 RP-15
black 5.177 6.167 7.699
face 16.359 21.505 32.041
ferret 1.287 1.275 1.427
fluid 0.013 0.614 1.515
freq 1.439 2.739 5.166
stream 2.5 4.103 4.398
swapt 3.632 6.852 6.717
MT-canneal 0.002 57.051 76.957
MT-fluid 0.083 6.513 3.222
mummer 0.002 41.188 78.59
tigr 0.099 74.534 91.479
comm1 0.004 0.45 9.568
comm2 0.098 0.176 4.976
comm3 0.011 0.025 0.477
comm4 0.32 0.684 2.087
comm5 0.944 0.322 1.097
leslie 12.88 33.481 35.365
libq 51.813 72.751 86.448
Gmean 0.307 3.589 8.111

Fig. 13. Performance impact of Refresh Pausing in a highly utilized memory system (number of channels
in baseline reduced from 4 to 1).

This increases memory utilization greatly and hence reduces the idle periods available
for doing refresh operations.

Figure 13 shows the performance improvement with Refresh Pausing (RP-7 and RP-
15) and with No Refresh. The potential performance improvement with No Refresh
is approximately 6.3%. However, the improvement with Refresh Pausing is reduced,
with RP-7 providing 2% performance improvement and RP-15 providing negligible
0.003% performance degradation, respectively. The RP-15 is less effective because it
gets paused often, and the refreshes eventually get done in Forced mode, which cannot
be paused. Figure 13 shows performance degradation of SPEC and PARSEC bench-
marks due to frequent forced refreshes. In the limit, if the memory is 100% utilized,

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 10, Publication date: February 2014.

Refresh Pausing in DRAM Memory Systems 10:17

Fig. 14. Speedup from Refresh Pausing on systems that employ open-page policy compared to close-page
baseline.

Table VII. Performance Improvement of Refresh Pausing
at Different Temperature Ranges and Densities

No Refresh Refresh Pausing
Density <85◦C >85◦C <85◦C >85◦C
8Gb 3.5% 7.2% 2.6 % 5.1 %
16Gb 9.7% 19% 5% 10.1%
32Gb 18.4% 35.3% 11.5% 22.3%

then all refreshes will be done as forced refreshes, leaving no scope for performance
improvement with Refresh Pausing.

5.7. Sensitivity to Page Closure Policy
A row buffer in a DRAM memory system is also called a DRAM Page. Closing a page
involves precharging the row. Two page management policies exist: close page and open
page. The close-page policy precharges the row soon after the transaction to the row
is complete. The open-page policy keeps the row active for subsequent transactions
and precharges only in case of a row conflict in a transaction. Similar to typical server
systems, our baseline employs a close-page policy, as we found that close-page policy
had better performance than open-page policy. However, our proposal is applicable to
open-page systems as well. Figure 14 shows the speedup from Refresh Pausing (RP-7
and RP-15) and No Refresh, all implemented on a system that employs open-page policy
(with row buffer friendly data mapping policy). No Refresh still gains approximately
5.9% on average and Refresh Pausing becomes even more effective, and RP-7 improves
performance by 5.5% and RP-15 by 6.8% over the open-page policy. A paused refresh
serves as an implicit page closure, so an access that would get a row-buffer conflict
with open page avoids the row-precharge latency. These results are consistent with the
evaluations reported in MSC [MSC 2012], which showed that the default close-page
policy was better than most of the open-page policies, due to contention in the memory
reference streams from different cores. Thus, the performance of RP-15 is found to
exceed that of No Refresh for a system that employs open-page policy.

5.8. Sensitivity to Temperature
Table VII shows the performance improvement with Refresh Pausing and No Re-
fresh for different operating temperature at different chip densities. Thus, even for
low operating temperature (<85◦C), Refresh Pausing provides 11.5% performance

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 10, Publication date: February 2014.

10:18 P. J. Nair et al.

Fig. 15. Effectiveness of Refresh Pausing at high density.

improvement for 32Gb chips. As chip densities increase, future chips can use Refresh
Pausing to mitigate the latency impact of refresh across all operating temperatures.

5.9. Comparisons with Alternative Proposals for DDR4
As DRAM chips scale from 8Gb node to higher densities, JEDEC is updating the
DDR specifications from DDR3 to DDR4. One of the critical elements that is likely
to change in DDR4 is the refresh circuitry [JEDEC-DDR4 2011]. One of the refresh
proposals being considered for DDR4 is the fine-grained refresh scheme, which lowers
the refresh interval TREFI and TRFC both by a factor of either 2x or 4x, called Refresh
Rate Mode-x2 (RRMx2) or Refresh Rate Mode-x4 (RRMx4) [JEDEC-DDR4 2011].
Unfortunately, these proposals are not as effective at tolerating refresh latency as
Refresh Pausing. Furthermore, as memory capacity increases, the granularity of these
modes will need to be revised to tolerate longer refresh.

Figure 15 compares Refresh Pausing for High Density (16Gb and 32Gb) chips with
RRMx2 and RRMx4. Refresh Pausing gives significant performance gains of 10% for
16Gb and 22% for 32Gb. Comparatively, RRMx2 gives 1.2% for 16Gb and 2.8% for
32Gb. In addition, RRMx4 gives 3.4% for 16Gb and 6% for 32Gb. The limited effec-
tiveness of RRMx happens because it still incurs the penalty of locking up the rank
for long refresh periods more frequently. Thus, for high-density devices (say 32Gb),
Refresh Pausing provides more than double the performance improvement compared
to one of the aggressive proposal being considered by JEDEC (RRMx4). Given the low
implementation complexity (one AND gate in refresh controller) and high effectiveness,
Refresh Pausing is a strong candidate for future standards.

6. REFRESH PAUSING VERSUS REFRESH SCHEDULING
We proposed Refresh Pausing to mitigate refresh-related latency penalties. An alter-
native option to tolerate the delay from such long-latency refresh operations is to do
intelligent refresh scheduling. The scheduler can place the refresh operations in a time
period when memory is idle. A key prior work, ER [Stuecheli et al. 2010], performed
such refresh scheduling, and their study indicated that simply doing refresh scheduling
can mitigate almost all of the performance loss from refresh. Our evaluations, however,
show that this is unlikely to be the case for memory intensive workloads. The initial
set of results presented in Figure 6 showed that ER degrades performance compared
by 1.3% on average compared to our baseline refresh scheduling policy. In this section,

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 10, Publication date: February 2014.

Refresh Pausing in DRAM Memory Systems 10:19

we analyze ER, the requirements for ER to be effective, understand the reasons for
performance loss, place approximate bounds on intelligent refresh scheduling, and
compare Refresh Pausing and refresh scheduling for scaling to future technologies.

6.1. Elastic Refresh
A system can delay the servicing of a refresh request for a time period of up to 8
TREFI. Therefore, if the system is busy servicing reads, current systems would delay
the refresh until either the rank is idle or the refresh deadline approaches. The critical
idea behind ER is to not schedule a refresh even if the rank is idle but rather have a
wait-and-watch decision. After a rank becomes idle, ER waits for a given time period
(say tER) as determined by the average idle time of the rank and the number of pending
refreshes. If the rank does receive a demand request within tER, then the wait-and-
watch time gets reset. However, if the rank does not receive any request within tER, it
schedules the pending refresh. The key objective is to avoid a long latency of refresh
when a read is predicted to come within a short time period.

6.2. Requirements for Elastic Refresh to Be Effective
There are three key requirements for ER to be effective. First, there must be a large
number of idle periods with duration longer than TRFC. Otherwise, waiting for the
right time to schedule refresh will be rendered ineffective. Second, even if there are
a large number of long idle periods in a workload, these idle periods must be spread
throughout the program execution. More specifically, the idle period must be within
8 · TRFC of the refresh request time. Third, the hardware predictor should predict the
start of the long idle period correctly.

6.3. Influence of Forced Refreshes on Effectiveness of Elastic Refresh
Refresh Pausing reduces the average waiting time and thus improves the IPC. The
Read Priority waits for the RDQs to be empty and then issues the refresh, whereas
Elastic Refresh goes a step further and issues refreshes only after an idle wait period.
These two scheduling policies do not improve the IPC, because read latency of these
two are not reduced dramatically. Expected Delay is a product of two terms: Probcollision
and Average Waiting Time. Both scheduling policies, Read Priority and Elastic Refresh,
try to eliminate the read collision with refresh, but remaining the same long average
waiting time, which do not have positive impact on the read latency. Refresh Pausing
provides the advantages that the average waiting time is much smaller than these two
schemes and is able to reduce the read latency significantly.

We further extend the equation to a more generalized form, as shown in Equation (1).
A ForcedCollision refers to the collision with a refresh that is issued when the number
of pending refreshes exceeds eight, allowed by JEDEC standards. The other type of
collision is called NormalCollision. When the DRAM is in the ForcedRefresh mode, the
read latency is penalized heavily since it takes several TRFC cycles to drain out the
pending refreshes.

ExpectedDelay = (ProbNormalCollision × TNormalWaiting)
+ (ProbForcedCollision × TForcedWaiting) (1)

As we provide the detailed probability of collision and average waiting time of each
policy and configuration in Table VIII, it is clear that not only ProbNormalCollision but also
ProbForcedCollision should be taken into account to reduce the read latency effectively.
Elastic Refresh tried to reduce ProbNormalCollision to reach smaller read latency but
failed, because the average waiting time is dominating and the reduction of probability
do not contribute enough to reduce the read latency.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 10, Publication date: February 2014.

10:20 P. J. Nair et al.

Table VIII. Probability of Collision and Average Waiting Time for Baseline and Elastic Refresh
for Different Configurations

Configuration Policies PNormal TNormal PForced TForced Expected Delay (Cycles)
1 channel 8Gb Baseline 0.045 560 0.002 1,120 28

Elastic Refresh 0.043 560 0.003 1,120 28
4 channel 8Gb Baseline 0.034 560 0.000 1,120 19

Elastic Refresh 0.039 560 0.000 1,120 22
1 channel 16Gb Baseline 0.061 1,120 0.003 2,240 75

Elastic Refresh 0.058 1,120 0.005 2,240 76
4 channel 16Gb Baseline 0.043 1,120 0.000 2,240 48

Elastic Refresh 0.050 1,120 0.000 2,240 56

Fig. 16. Waiting time for a system with (a) No Refresh, (b) baseline scheduling, and (c) Elastic Refresh.

6.4. The Loss Scenarios for Elastic Refresh
ER does not schedule a pending refresh operation even if the rank is idle. This does have
a potential disadvantage compared to a simple scheme that schedules refresh operation
if no other requests are available. Consider the example shown in Figure 16 for a system
where read takes 1 unit of time and refresh 8 units of time. When A is serviced (at
time 1), the rank is idle. The simple policy will schedule refresh immediately. A later-
arriving read request B at time 7 would have to wait for 2 time units. However, with
ER, if we delay the start of refresh by, say, 3 time units and the read request B arrives
at time 7, it will have to wait for 5 time units. Thus, the wait-and-watch policy of ER
can degrade performance.

The implicit assumption in design of ER is that idle periods are either less than
average delay or longer than TRFC. If a request has an idle period within these two
values, it will result in higher latency with ER than with baseline scheduling, which
services a pending refresh operation as soon as the rank becomes idle.

Figure 17 shows the Cumulative Density Function (CDF) of idle periods in cycles.
The maximum value in the x axis is 1,120 processor cycles at 3.2GHz (280 DRAM cycles
at 800MHz), same as TRFC (350ns). The vertical dotted line indicates the average idle
time of the rank, one of the parameters used by ER. Note that idle periods longer than
TRFC are very few. In addition, about 20% of idle periods are between average idle
period and TRFC, which represents a loss scenario for ER. Thus, for our workloads, the
loss scenarios with ER are quite common, hence the performance loss.

6.5. Mitigating Loss of Elastic Refresh with Oracle Information
To validate our hypothesis that the performance degradation of ER is indeed due to the
wait-and-watch policy of ER based on average idle time, we conducted the following
study. We assumed that ER is extended to have oracle information, such that when

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 10, Publication date: February 2014.

Refresh Pausing in DRAM Memory Systems 10:21

Fig. 17. Cumulative density function of idle periods of a rank in processor cycles. The percentage of execution
time that the rank is idle is specified within the figure. The vertical line represents the average length of
an idle period. The maximum value of the x axis is 1,120 processor cycles at 3.2 GHz (280 DRAM cycles at
800MHz), similar to TRFC. The average length of idle period for MT-Fluid is 1,330.

Fig. 18. Speedup for Elastic Refresh and Elastic Refresh with Oracle-Based Loss Mitigation.

ER decides to schedule a refresh after a time period tER, we give ER prior credit and
schedule the refresh operation as if it was scheduled as soon as the idle period began.
Note this is not for practical implementation but only a study to gain insights. With
such an Oracle-Based Loss Mitigation (OBLM), ER would avoid the loss scenario.

Figure 18 shows the speedup of ER and ER with OBLM. ER degrades performance
by 1.3% on average; however, with OBLM, it improves performance by 2.0%. Thus, the
wait-and-watch based on average delay is costing ER a performance loss of about 3.3%.

6.6. Potential Performance of Refresh Scheduling
With ER+OBLM, the decision of whether to schedule a refresh or not is still with the
ER scheduler, which makes this decision based on average idle period. We also tried
to estimate the performance potential of intelligent refresh scheduling without regard
to hardware implementation. At the end of each idle period, we decide whether or not
refresh should have been scheduled at the start of the idle period. If the idle period

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 10, Publication date: February 2014.

10:22 P. J. Nair et al.

is greater than a threshold, we assume that the pending refresh was issued at the
beginning of the idle period. We reduce this threshold linearly with the number of
pending refreshes. Figure 18 also shows the performance of such Oracle-Based Linear
Refresh Scheduling. We observe that with perfect information about the future, we
can get approximately 3.7% performance improvement on average. Although this is
smaller than what we get with Refresh Pausing, it still indicates a good opportunity
for future research to develop effective refresh scheduling algorithms.

6.7. Scaling to Future Technologies
As devices move to higher densities, TRFC will become longer, which means that refresh
scheduling will have to accommodate even longer refresh operations. Finding larger idle
periods is harder than finding smaller ones. On the other hand, Refresh Pausing would
require accommodating only a delay of TRPC (similar to row cycle time). Therefore,
Refresh Pausing is more scalable and effective at higher densities. However, both
techniques are orthogonal and can be combined.

7. REFRESH PAUSING IN POWER-CONSTRAINED SYSTEMS
Refresh operations consume power, and the number of rows refreshed has increased
over time. Future low-power DRAM systems may have power constraints for refresh
operations involving a large number of rows. During a refresh operation, sense ampli-
fiers activate and precharge bit lines, consuming power and leading to current spikes.
This limits the number of banks that can be activated in a power-constrained system.
To mitigate this, we assume that future low-power systems follow the JEDEC-imposed
restriction that limits activations of up to 4 banks in a time window TFAW (32 DRAM
cycles for 8KB row buffer size). DRAM chips have to wait for TFAW period to end before
resuming the activation of additional banks.

Refreshes activate up to 8 banks in the TRFC time period for 8Gb chips. The power-
constrained system will have to ensure that every bank can refresh multiple rows
within TRFC while tolerating the overhead of current draw. For a 8Gb chip, 8 rows
per bank may need to refreshed. These 8 rows can lie in a single subarray in a single
sub-bank or can be distributed across several subarrays and lie in separate sub-banks
within the same bank. We explore ways in which refresh for such system could poten-
tially be performed while adhering to the current consumption limit for a DRAM chip.
We evaluate the applicability of Refresh Pausing in such power-constrained system.
We discuss two cases based on concurrent sub-bank activations during the refresh pe-
riod for each bank. The first method, called Two Sub-bank Concurrent Refresh (TSCR),
activates 2 sub-banks and multiple subarrays in each sub-bank during every refresh
pulse. The second one, called Four Sub-bank Concurrent Refresh (FSCR), activates up
to 4 sub-banks and multiple subarrays in each sub-bank during every refresh pulse.
Figure 19 shows the implementations of these two cases.

Refresh Pausing is still applicable for both TSCR and FSCR, with TSDR allowing
us to have 3 pause points (RP-3) and FSCR having 1 pause point (RP-1) for current
8Gb chips. For TSCR, when a read request comes in before 2 × TFAW , then refresh
can be paused at RPP-1; however, if the read request comes in between TFAW and
RPP1, the refresh can only be paused at the next pause point. FSCR allows more
time to pause a refresh. Figure 20 shows the potential impact of refresh pausing
on speedup for TSCR and FSCR for current 8Gb chips when normalized to a base-
line refresh scheme. FSCR shows a speedup of 1.1% due to Refresh Pausing. This
increases to 2.7% for a TSCR scheme. As the chip densities increase, the number of
pause points for TSCR and FSCR will also increase. DRAM chips having higher density

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 10, Publication date: February 2014.

Refresh Pausing in DRAM Memory Systems 10:23

Fig. 19. The two sub-bank concurrent refresh scheme allows for up to 3 possible pause points. The four
sub-bank concurrent refresh scheme allows for a single pause point.

Fig. 20. Speedup from Refresh Pausing for two and four sub-bank concurrent refresh schemes normalized
to baseline refresh.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 10, Publication date: February 2014.

10:24 P. J. Nair et al.

will use higher number of sub-banks or form bank groups that will allow concurrent
refreshing.

8. OTHER RELATED WORK
Having more banks and thus doing more refreshes in parallel can reduce the latency
of refresh operations. However, refresh is already a current limited operation, so in-
creasing parallel refresh operations may not be practical.

Another option is to tune the refresh operations based on the DRAM retention char-
acteristics. Such schemes can either decommission high refresh pages [Venkatesan
et al. 2006] or use multirate refresh where high-retention pages (rows) are refreshed
infrequently [Kim and Papaefthymiou 2001; Liu et al. 2012; Venkatesan et al. 2006].
These approaches rely on having retention characteristics of DRAM cells available and
that these characteristics do not change. Unfortunately, such an assumption can result
in data loss in practice, as captured in the book on Memory System (Anecdote IV) by
Jacon et al. [2008]: “The problem is that these [proposals to exploit variability in cell
leakage] ignore another, less well-known phenomenon of DRAM cell variability, namely
that a cell with a long retention time can suddenly (in the frame of second) exhibit a
short retention time.” As such, Variable Retention Time (VRT) would render these
proposals functionally erroneous. Avoiding refresh operations may still be possible in
specific scenarios—for example, when the row has recently been accessed [Ghosh and
Lee 2007], when the data is not critical [Isen and John 2009; Liu et al. 2011], or when
the system provisions ECC to tolerate data errors [Wilkerson et al. 2010].

Refresh operations can also be done at a finer granularity, such as on a per-bank
basis instead of a per-rank basis [Cuppu et al. 1999]. This would enable better refresh
scheduling, exploiting the time periods when the bank is idle (while the rank may
still be busy). Our proposal is applicable to (and remains effective for) such per-bank
implementations as well.

9. SUMMARY
DRAM is one of the most forgetful memory technologies, with retention time in the
range of few milliseconds. It relies on frequent refresh operations to maintain data
integrity. The time required to do refresh is proportional to the number of rows in
memory array; therefore, this time has been increasing steadily. Current high-density
8Gb DRAM chips spend 9% of the time doing refresh operations, and this fraction is
expected to increase for future technologies.

Refresh operations are blocking, which increases the wait time for read opera-
tions, thus increasing effective read latency and causing performance degradation.
We mitigate this latency problem from long-latency refresh operations by breaking
the notion that refresh needs to be an uninterruptible operation and make following
contributions:

(1) We propose Refresh Pausing, a highly effective solution that significantly reduces
the latency penalty due to refresh. Refresh Pausing simply pauses an ongoing
refresh operation to serve a pending read request.

(2) We show that Refresh Pausing is scalable to future technologies, such as DDR4,
which will have very high TRFC. With Refresh Pausing, the latency impact of refresh
is determined less by TRFC and is simply a function of row cycle time TRC, which
tends to remain unchanged.

(3) We show that Refresh Pausing is much more effective than simply relying on
Refresh Scheduling. Refresh Pausing not only significantly outperforms refresh
scheduling algorithms, but it becomes even more attractive as a design move to
future technology nodes.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 10, Publication date: February 2014.

Refresh Pausing in DRAM Memory Systems 10:25

Our evaluations, for current 8Gb chips, using a detailed memory system simula-
tor, show that removing refresh can provide 7.2% performance improvement and that
Refresh Pausing can provide 4.5% to 5.1% performance improvement. Implementing
Refresh Pausing entails negligible changes to the DRAM circuitry (one AND gate),
reusing existing signal, and a one-byte timer in memory controller. Given the im-
pending latency wall of refresh, the simplicity of our proposal makes it appealing for
adoption in future systems and standards.

REFERENCES
Niladrish Chatterjee, Rajeev Balasubramonian, Manjunath Shevgoor, Seth H. Pugsley, Aniruddha N. Udipi,

Ali Shafiee, Kshitij Sudan, Manu Awasthi, and Zeshan Chishti. 2012. USIMM: The Utah SImulated
Memory Module. Technical Report. University of Utah. UUCS-12-002.

Vinodh Cuppu, Bruce Jacob, Brian Davis, and Trevor Mudge. 1999. A performance comparison of contempo-
rary DRAM architectures. In ISCA-26.

Mrinmoy Ghosh and Hsien-Hsin S. Lee. 2007. Smart refresh: An enhanced memory controller design for
reducing energy in conventional and 3D die-stacked DRAMs. In MICRO-40.

Michael Huang, Jose Renau, Seung-Moon Yoo, and Josep Torrellas. 2001. Energy/Performance design of
memory hierarchies for processor-in-memory chips. In Revised Papers from the 2nd International Work-
shop on Intelligent Memory Systems (IMS’00). Springer-Verlag, London, UK, 152–159. http://dl.acm.org/
citation.cfm?id=648002.743089

Ciji Isen and Lizy John. 2009. ESKIMO: Energy savings using Semantic Knowledge of Inconsequential
Memory Occupancy for DRAM subsystem. In MICRO-42.

Bruce L. Jacob, Spencer W. Ng, and David T. Wang. 2008. Memory Systems: Cache, DRAM, Disk. Morgan
Kaufmann.

JEDEC Committee JC-42.3 2012. JESD79-3F. JEDEC Committee JC-42.3, Arlington, VA.
JEDEC-DDR4. 2011. JS Choi DDR4 Mini Workshop. http://jedec.org/sites/default/files/JS_Choi_DDR4_

miniWorkshop.pdf.
Heesang Kim, Byoungchan Oh, Younghwan Son, Kyungdo Kim, Seon-Yong Cha, Jae-Goan Jeong, Sung-Joo

Hong, and Hyungcheol Shin. 2011. Characterization of the variable retention time in dynamic random
access memory. IEEE Transactions on Electron Devices 58, 9, 2952–2958. DOI: http://dx.doi.org/10.1109/
TED.2011.2160066

Joohee Kim and M. C. Papaefthymiou. 2001. Block-based multi-period refresh for energy efficient dynamic
memory. In Proceedings of the 14th Annual IEEE International ASIC/SOC Conference. 193–197. DOI:
http://dx.doi.org/10.1109/ASIC.2001.954696

Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu. 2012. RAIDR: Retention-Aware Intelligent DRAM
Refresh. In ISCA. 1–12.

Song Liu, Karthik Pattabiraman, Thomas Moscibroda, and Ben Zorn. 2011. Flikker: Saving DRAM refresh-
power through critical data partitioning. In ASPLOS-XVI.

Micron. 2009. TN-47-16 Designing for High-Density DDR2 Memory. Micron.
Micron. 2010. MT41J512M4:8Gb QuadDie DDR3 SDRAM Rev. A 03/11. Micron.
MSC. 2012. Memory Scheduling Championship (MSC). http://www.cs.utah.edu/∼rajeev/jwac12/.
Prashant Nair, Chia-Chen Chou, and Moinuddin K. Qureshi. 2013. A case for Refresh Pausing in

DRAM memory systems. In Proceedings of the 2013 IEEE 19th International Symposium on High
Performance Computer Architecture (HPCA’13). 627–638. DOI: http://dx.doi.org/10.1109/HPCA.2013.
6522355

Jeffrey Stuecheli, Dimitris Kaseridis, Hillery C. Hunter, and Lizy K. John. 2010. Elastic refresh: Techniques
to mitigate refresh penalties in high density memory. In MICRO-43.

Shyamkumar Thoziyoor, Jung Ho Ahn, Matteo Monchiero, Jay B. Brockman, and Norman P. Jouppi. 2008a.
A comprehensive memory modeling tool and its application to the design and analysis of future mem-
ory hierarchies. In Proceedings of the 35th Annual International Symposium on Computer Architec-
ture (ISCA’08). IEEE Computer Society, Washington, DC, 51–62. DOI: http://dx.doi.org/10.1109/ISCA.
2008.16

Shyamkumar Thoziyoor, Naveen Muralimanohar, Jung Ho Ahn, and Norman P. Jouppi. 2008b. Cacti 5.1.
Technical Report. HP Laboratories, Palo Alto. HPL-2008-20.

Aniruddha N. Udipi, Naveen Muralimanohar, Niladrish Chatterjee, Rajeev Balasubramonian, Al Davis, and
Norman J. Jouppi. 2010. Rethinking DRAM design and organization for energy-constrained multi-cores.
In ISCA-37.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 10, Publication date: February 2014.

10:26 P. J. Nair et al.

Ravi K. Venkatesan, Stephen Herr, and Eric Rotenberg. 2006. Retention-Aware Placement in DRAM
(RAPID): Software methods for quasi-non-volatile DRAM. In HPCA-12.

Chris Wilkerson, Alaa R. Alameldeen, Zeshan Chishti, Wei Wu, Dinesh Somasekhar, and Shih-lien Lu. 2010.
Reducing cache power with low-cost, multi-bit error-correcting codes. In ISCA-37.

Received June 2013; revised October 2013; accepted November 2013

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 10, Publication date: February 2014.

