
Citadel: Efficiently Protecting Stacked Memory from Large Granularity Failures
Prashant J. Nair† David A. Roberts‡ Moinuddin K. Qureshi†

†School of Electrical and Computer Engineering
Georgia Institute of Technology

{pnair6,moin}@ece.gatech.edu

‡AMD Research
Advanced Micro Devices Inc.
david.roberts@amd.com

Abstract—Stacked memory modules are likely to be tightly
integrated with the processor. It is vital that these memory
modules operate reliably, as memory failure can require the
replacement of the entire socket. To make matters worse,
stacked memory designs are susceptible to newer failure modes
(for example, due to faulty through-silicon vias, or TSVs) that
can cause large portions of memory, such as a bank, to become
faulty. To avoid data loss from large-granularity failures, the
memory system may use symbol-based codes that stripe the
data for a cache line across several banks (or channels). Unfor-
tunately, such data-striping reduces memory level parallelism
causing significant slowdown and higher power consumption.

This paper proposes Citadel, a robust memory architecture
that allows the memory system to retain each cache line within
one bank, thus allowing high performance, lower power and
efficiently protects the stacked memory from large-granularity
failures. Citadel consists of three components; TSV-Swap, which
can tolerate both faulty data-TSVs and faulty address-TSVs;
Tri Dimensional Parity (3DP), which can tolerate column
failures, row failures, and bank failures; and Dynamic Dual-
Granularity Sparing (DDS), which can mitigate permanent
faults by dynamically sparing faulty memory regions either at a
row granularity or at a bank granularity. Our evaluations with
real-world data for DRAM failures show that Citadel provides
performance and power similar to maintaining the entire cache
line in the same bank, and yet provides 700x higher reliability
than ChipKill-like ECC codes.

Keywords-DRAM, Stacked Memory, Faults, Through Silicon
Vias, Error Correcting Code, Resilience

I. INTRODUCTION

The emerging 3D stacked DRAM technology can help

with the challenges of power consumption, bandwidth de-

mands and reduced footprint. One of the key enablers of

stacked memory is the through-silicon via (TSV) technology,

which makes it possible to cost-effectively stack multi-

ple memory dies on top of each other [1]. The shorter

internal data paths afforded by TSVs reduce capacitance

and active power. By exploiting wide buses [2] or high-

frequency SerDes interfaces [3] and higher levels of internal

parallelism, both bandwidth and random-access latency are

improved. It is anticipated that high-performance stacked

memories often will be permanently attached to host pro-

cessors via direct stacking, silicon interposers or other

hard-wired interconnects. In such a system, memories that

develop permanent faults must continue to work, in order

to avoid replacement of multiple chips when tends to be

expensive. These factors motivate the adoption of a fail-in-
place philosophy for designing stacked memory systems [4].

Recent work on DRAM reliability [5] showed that large-

granularity DRAM chip failures, such as bank failures, occur

nearly as frequently as single-bit failures in commodity

DIMMs. Stacked memory designs would not only be sub-

jected to these failures but also to newer fault models, such

as arising from faulty TSVs, which can cause failures of sev-

eral dies, or column failures or bank failures. Thus, stacked

memory systems will be significantly more vulnerable to

large-granularity failures. Unfortunately, conventional error

correction schemes such as ECC DIMMs [6] are targeted

towards correcting random bit errors and are ineffective

at tolerating large-granularity faults. Memory systems can

tolerate large granularity failures using symbol-based coding

schemes like ChipKill [7]. However, this increases the

number of activated chips and total power consumption.
To optimize performance and power for stacked memory,

we want to retain the data for a cache line within a single

bank. However, a bank failure would then cause loss of

data for the whole cache line. One can adopt a philosophy

similar to ChipKill for tolerating large-granularity failures

for stacked DRAM. In such a design, the data for a cache

line would be striped across several banks (or channels), and

a symbol-based coding can be applied, in which the size of

each symbol would be equal to the amount of data stored

in each bank. Unfortunately, such a data mapping would re-

quire the memory system to activate several banks to service

a single request. This causes performance degradation (10%

to 25%) due to loss of bank(channel) level parallelism, and

power consumption (as high as 6x in our evaluations) due

to activation of several banks to service one request.

STRIPE

NoSTRIPE NoSTRIPE

IDEAL STRIPE

POWERPERFORMANCE

R
E

L
IA

B
IL

IT
Y

R
E

L
IA

B
IL

IT
Y

IDEAL

Figure 1. Striping enhances reliability but sacrifices performance and
power efficiency. Ideally, we want to tolerate large-granularity failures at
high performance and low power.

As shown in Figure 1, ideally we want a system that

has the performance and power efficiency of storing the

entire cache line in one bank (NoStripe), and yet maintains

robustness to large granularity faults (Stripe). To that end,

this paper proposes Citadel, a robust memory architecture

that allows the memory system to retain each cache line

within one bank (delivering high performance and low

power) and yet efficiently protects the stacked memory from

large-granularity failures.

2014 47th Annual IEEE/ACM International Symposium on Microarchitecture

1072-4451/14 $31.00 © 2014 IEEE

DOI 10.1109/MICRO.2014.57

51

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on December 28,2021 at 22:45:29 UTC from IEEE Xplore. Restrictions apply.

Row Decoder

2D MEMORY SYSTEM 3D STACKED MEMORY SYSTEM

Sub−Array n

DRAM Chip

Bank 7Bank 6

Bank 5Bank 4

Bank 3Bank 2

Bank 1Bank 0

Sub−Array 1
Sub−Array 0

ROW FAULT(S)BIT FAULT(S)

COLUMN FAULT(S)

An overview of DRAM Chip/Die Faults

Sense Amplifiers

Column Decoder

DRAM Cells

ERROR CORRECTIN
G CODE

DUAL IN
LIN

E M
EMORY M

ODULE (E
CC−DIM

M)

DRAM Die(s)

Logic Die

MULTI−BANK FAULT
(DUE TO FAILED DQ PINS)

(DQ Pins)
FAILED DATA PINS

SINGLE BANK FAULT

TSVs

THROUGH SILICON VIA (TSV) FAULTS

Figure 2. Granularity of faults that occur in a DRAM Chip/Die. Faults can be at granularities of bit, column, row, bank(s), TSVs and I/O links for stacked
memory systems. Common wiring faults within a chip can cause multiple banks to fail.

Like ECC DIMMs which have one additional chip per

8 chips, in our study, Citadel has one extra die ECC die

with smaller rows along with eight data dies. Similar to an

ECC-DIMM that provides 64 bits of ECC every 512 bits,

Citadel uses the 64 bits of metadata associated with each

512-bit cache line. Based on key insights, Citadel employs

three-pronged approach for fault tolerance.

Insight 1- Protect Against Runtime TSV Faults: As faulty

TSVs are a major cause of multi-bank failures in stacked

memory, our first idea, TSV-Swap, specifically targets TSV

faults that happen at runtime. Contrary to manufacture-level

spare TSVs [8], that are used to repair faulty TSVs at

design time, TSV-SWAP does not rely on any manufacturer-

provided spare TSVs. Instead, TSV-Swap dynamically ex-

changes faulty TSVs with non-faulty TSVs with a remapping

circuit. We found that while a data TSV typically affects

only one bit in a data line (albeit across many lines), a

failure of one of the address TSVs can make half of the

memory unreachable. Thus, address TSVs are much more

critical than data TSVs for system reliability. Our proposed

implementation of TSV-Swap can repair upto 8 faulty TSVs

which can be data, address or command TSVs.

Insight 2- Detect and Correct Large Granularity Failures:
Even after mitigation of TSV related faults, the stacked

memory is still vulnerable to internal DRAM die faults.

We want to protect stacked memory not only from small

granulity failures (such as bit fault or word fault) but also

from large granularity faults such as column-fault, row-

faults or even complete bank failures. Our second idea,

Tri Dimensional Parity (3DP), provides highly effective

and storage efficient correction for both small and large

granularity failures. The 3DP proposal maintains parity in

three dimensions: 1) Across all banks and dies for individual

rows. 2) Across all rows in all banks within a die. 3)

Across all rows in single bank across all dies. Each line

is equipped with CRC-32 [9] to detect data errors. If any

error is detected, it is corrected using the parity information

of 3DP. 3DP design provides 130x higher resilience than

just applying 2D-ECC. To achieve this, it incurs only 1.6%

storage overhead, compared to the 25% storage required for

the prior 2D schemes.

Insight 3- Isolate Faulty Memories with Efficient Sparing:
When a fault is detected, data is restored using the correction

capability of 3DP. However, modules with permanent faults

would incur the correction overheads frequently. To avoid

such frequent correction, we would like to redirect a faulty

memory unit to a spare area. Unfortunately, if the sparing

granularity is too fine, then it incurs significant tracking

overheads (for example, if a bank fails then thousands of

rows get spared to the spare area). If the sparing granularity

is too coarse the it results in significant wasted space (for

example, sparing at a bank granularity would be wasteful

if only one row is faulty). We make a key observation

that a bank typically has either one or two row failures,

or has thousands of row failures (due to a sub-array or bank

failure). Our third idea, Dynamic Dual-Grained Sparing
(DDS), exploits the bimodal behavior of faulty units and

efficiently spares either at a row or bank granularity. Our

proposed design of DDS can spare two faulty banks along

with several row failures.

We perform reliability studies using real field data and

perform sensitivity studies when field data is unavailable

(e.g. for TSVs). Our evaluations, with an industry-grade

fault simulator [10], shows that Citadel provides 100x-1000x

higher reliability while still retaining power and performance

similar to a system that maps the entire cache line in

the same bank. To achieve this, Citadel requires a storage

overhead similar to that of ECC DIMMs (14% vs. 12.5%).

II. BACKGROUND AND MOTIVATION

Stacked memory systems have lower energy per bit and

higher bandwidth when compared to their 2D counterparts.

However, to obtain the power-efficiency and high bandwidth

of stacked memory, the system must first address reliability

challenges. As shown in Figure 2, failures can occur in a

memory system at different granularities [5, 11, 12, 13].

52

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on December 28,2021 at 22:45:29 UTC from IEEE Xplore. Restrictions apply.

A. Memory Faults for Traditional Systems

A memory DIMM consists of multiple DRAM chips. A

DRAM chip is organized into banks, where all banks share

a common data bus. These banks are composed of rows

and columns and are divided into sub-arrays. The banks

contain row and column decoders that activate the wordlines

or select bitlines associated with the memory request. Faults

at the DIMM level can affect all DRAM chips within a

DIMM. However, the faults in individual chips are largely

independent of each other. In this paper, the definitions for

the chip faults follow that of Sridharan et. al. [5] and are

represented in Figure 2. We note that banks are operated

almost independently and share only wiring such as data,

address and command buses [14, 15]. Bank and rank faults

occur mainly from faulty data or address or command buses.

B. Transposing Faults onto 3D Stacked Memories

Layout of an individual die in 3D stacked memory sys-

tems shows that its internal organization is very similar to

that of a chip in conventional 2D memory systems [16,

17, 18, 19]. To a first order, this paper transposes failure

rates for all fault types except complete bank and complete

rank for current 2D memory system onto stacked memory

systems. The key difference is the introduction of TSVs for

connecting data and address lines [1]. Due to this, complete

bank faults and complete rank faults in any 3D stacked

memory are now influenced by TSV faults.

C. Stacked Memory: Organization and ECC Layout

There are several design prototypes of stacked memory,

including the High Bandwidth Memory (HBM) [3], Hybrid

Memory Cube (HMC) [2, 17] and Octopus from Tez-

zaron [20]. These standards differ in their data organization

and also share TSVs differently. However, these stacked

memory systems fundamentally have the same layout. In

our study, we analyze an HBM like design (however we

found that the reliability improvement with our proposal is

equally high for the HMC and Tezzaron designs). Figure 3

shows internal stack organizations of HBM. Each channel

may be fully contained in each DRAM die in the stack. A

complete set of TSVs and buffers connect each channel to

the external interface.

����

���	
�
����	
�
 ����

�������
�

�������
�
�
����
�����
�����

���
�����

Figure 3. High Bandwidth Memory has a channel(s) per die and all banks
in this channel are on the same die. HBM specification includes separate
Data and ECC lanes

The stacked memory consists of D data dies and E ECC

dies (depending on value of D and the ECC implementa-

tion). ECC can be stored in an additional space provided

by D dies or can be distributed across D+E dies. Similar

to ECC-DIMMs, every data request for a 512b data line

also concurrently fetches its 64b ECC metadata through

dedicated ECC lanes [3]. In our paper, we use an 8-die

stack with one additional ECC die for ECC or metadata

information. Our organization has the same storage overhead

as incurred in ECC DIMMs (12.5%).

D. Data Striping in 3D Memory Systems

The way data is striped in the memory system has a

significant impact not only on power and performance but

also reliability of the overall system. A conventional (2D)

DIMM stripes a cache line across several chips. Similarly, a

stacked memory system can place the cache line in one of

three ways:

• Same Bank: Within a single bank in a single channel.

• Across Banks: Within a single die (channel) and

striped across banks.

• Across Channels: Within multiple dies (channels) and

striped across one bank in each channel.

E. Impact of Data Striping

If we use an organization that places the entire cache

line in the same bank, then a failure of the bank would

cause data loss of the entire cache line. To protect stacked

DRAM from bank failures or channel failures, we can

stripe data across banks or channels. In such a case, each

bank/channel would be responsible for only a portion of the

data for the cache line, and a correction mechanism (possibly

ECC scheme) can be used to fix the sub-line-granularity

fault. This organization requires the activation of multiple

banks/channels to satisfy each memory request, thereby

reducing bank-level parallelism and consuming much higher

power by activating multiple banks for every request.

Figure 4 compares the reliability for three data mapping

schemes for strong 8-bit symbol based ECC (similar to

ChipKill) for different TSV FIT rates (other parameters are

described in Section III). System failure is the occurrence of

an uncorrectable fault within a seven-year lifetime. Across-

Channels configuration provides the highest reliability.

��

��

��

��

��

��

��

��

�	
� �	� ������ �	�� ������ ��	�������

��
��
	�
���

��
��
��
��
�

�	
���
��

 !
�"
��
	�
�#

$�%&�'$&(&����
$�%&�'$&(&���
$�%&�'$&(&��
)�&$�%&�	����

Figure 4. Impact of data striping on Reliability using strong 8-bit symbol
based code (similar to Chipkill). Striping data across banks or channels
gives higher reliability

53

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on December 28,2021 at 22:45:29 UTC from IEEE Xplore. Restrictions apply.

Unfortunately, the reliability benefits of Across-Banks

and Across-Channels come at a significant price in terms

of performance and power. Figure 5 shows that striping

data Across-Banks causes a slowdown of approximately

10%, and Across-Channels causes a slowdown of approx-

imately 25%. Furthermore, Across-Channels and Across-

Banks consumes 3.8-4.7x more active power than the Same-

Bank mapping (Across-Channels takes longer to execute,

consuming energy over a longer time, hence the relative

reduction in power compared to Across-Banks).

Normalized Active Power

1

3

Normalized Execution Time

Same Bank Across Banks Across Channels

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

N
or

m
al

iz
ed

 A
ct

iv
e

Po
w

er

1.0

1.1

1.2

1.3 8

7

5

4

2

Figure 5. Impact of data striping on Power-Performance. Striping data
across banks or channels comes at a significant price in performance (11%-
25%) and power (3.8X-4.7X)

Our Goal: The goal of this paper is to obtain high

performance and power-efficiency by maintaining the data

mapping of a Same-Bank configuration while still making

stacked memory robust to large granularity faults. We de-

scribe our methodology before describing our solutions.

III. EXPERIMENTAL METHODOLOGY

A. Fault Models and Failure Rates

Real-world field data from Sridharan et al. [5] provides

DRAM failure rates as Failures In Time (FIT) for 1 Gb

DRAM chips. As the technology matures, stacked memory

systems will use a much higher density per die (we assume

8 Gb per die, in line with industry projections). We scale the

FIT rates based on a proportional increase in the number of

common elements determining failure granularity type when

going from a 1 Gb to 8 Gb die. An 8 Gb chip will have eight

times the number of bits and words in total. Because future

standards specify a row buffer size [2, 3] of 2KB, our 8Gb

chip with 8 banks would have 64K rows per bank. Sridharn

et al. study [5] uses 16K rows in a 1Gb die, we scale the FIT

rate for row by 4x for 8Gb dies. Column faults are assumed

to originate at the column decoder and scale with the size

of the decoder. By our estimates, the number of logic gates

in the decoder increases by 1.9x. The bank failure rate is

multiplied by 8, since we assume that sub-array size remains

roughly constant (to maintain bit line capacitance) [21]. As

TSV failure data is not publicly available, we perform a

sensitivity study for TSV device FITs. We assume 0.01 to

1 device failures in 7 years (translating to Device FIT of

14 to 1,430) due to TSV faults. Table I shows the failure

rates per billion hours (FIT) and the failure sensitivity that

we consider for our evaluations.

Table I
STACKED MEMORY FAILURE RATES (8GB DIES)

Fault Rate (FIT)
DRAM Die Failure Mode Transient Permanent

Single bit 113.6 148.8
Single word 11.2 2.4

Single column 2.6 10.5
Single row 0.8 32.8
Single bank 6.4 80

TSV(Complete Bank/Channel)
TSV (Address and Data) Sweep:14 FIT - 1,430 FIT

B. Simulation Infrastructure

Reliability: To evaluate reliability of different schemes,

we use a industry-grade fault and repair simulator Fault-
Sim [10]. We configure a scrubbing interval of 12 hours.

After intervals of 12 hours, correctable transient faults are

removed due to the scrubbing mechanism. We conduct the

Monte Carlo simulations for 105−106 trials (more trails for

schemes that show lower failure rates, to improve accuracy)

for lifetime of 7 years and report an average.

Performance: The baseline configuration is described in

Table II. The in-house system simulator uses 8 cores which

share an 8 MB LLC. The memory system uses 3D stacks

with eight 8 Gb dies for data and one additional die for

ECC or metadata in the case of Citadel. Virtual-to-physical

translation uses a first-touch policy with a 4KB page size.

Table II
BASELINE SYSTEM CONFIGURATION

Processors
Number of cores 8

Processor clock speed 3.2 GHz
Last-level Cache

L3 (shared) 8MB, 8-way, 24 cycles
Cache-line size 64Bytes

DRAM 2x8GB 3D stacks
Memory bus speed 800MHz (DDR3 1.6GHz)
Memory channels 8/Stack

Capacity per channel 1GB
Banks per channel 8

Row-buffer size 2KB
Data TSVs 256/Channel
Addr TSVs 24/Channel

tWTR-tCAS -tRCD-tRP -tRAS 7-9-9-9-36

For our evaluations, we chose all 29 benchmarks from

the SPECCPU 2006 [22] suite. We also used memory-

intensive benchmarks from the PARSEC [23] suite, such as

black, face, ferret, fluid, freq, stream and swapt. From the

BioBench [24] suite, we used tigr and mummer. We use a

representative slice of 1 billion instructions.

Our evaluations execute the benchmark in rate mode,

in which all eight cores execute the same benchmark. We

perform timing simulation until all the benchmarks in the

workload finish execution, and measure the execution time

as the average execution time of all eight cores.

Power: We measure active (read, write, refresh and acti-

vation) power using the equations from the Micron Memory

System Power Technical Note for 8Gb chip [25, 26]. As per

HBM, the refresh interval is set to 32 ms [3, 27].

54

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on December 28,2021 at 22:45:29 UTC from IEEE Xplore. Restrictions apply.

IV. CITADEL: AN OVERVIEW

We propose Citadel, a robust memory architecture that can

tolerate both small- and large-granularity faults effectively.

Figure 6 shows an overview of Citadel. HBM provisions 64

bits of ECC for every 64 Bytes, possibly in a separate ECC

die [3]. Similarly, Citadel provisions each 64B cache line

with 64 bits of metadata. However, Citadel uses the ECC die

to store different types of metadata information, each geared

towards tolerating different types of faults. Each 64B (512b)

transaction fetches 40bits of metadata over ECC lanes. The

remaining 24 bits are used to provision sparing of faulty

blocks. Citadel consists of three component schemes: TSV-
SWAP, Tri Dimensional Parity (3DP) and Dynamic Dual-
Granularity Sparing (DDS).

Data (512b)
Cache Line

Data Lanes
(40b per 512b Data)

Redirect Faulty
Areas (DDS)

Fix Faulty TSVs
with TSV−SWAP

Error Detection: CRC−32
Correction: 3D−Parity (3DP)

SparingSwap Data

3DP

ECC Lanes

24 bits8−bits

CRC−32

32−bits

Metadata (64b)

Figure 6. Overview of Citadel

Citadel differentiates faults in memory elements from

faults in TSVs. The TSV-SWAP technique of Citadel can

tolerate TSV faults by dynamically identifying the faulty

TSVs and decommissioning such TSVs. The data of faulty

TSVs is replicated in the metadata (up to 8 bits). TSV-SWAP

protects against faulty data TSVs as well as faulty address

TSVs, which tend to be even more severe in practice. Thus,

TSV-Swap provides resilience to TSV faults at runtime,

without relying on manufacturer provided spare TSVs.

Citadel relies on CRC to detect data errors. Once an error

is detected, it is corrected using the 3DP scheme, which

maintains parity in three dimensions: across banks, across

rows within one die, and across rows of different dies. 3DP

can not only tolerate small-granularity failures such as bit

and word failures as well as large-granularity failures such

as row and bank failures. 3DP uses one of the data banks

to implement bank-level parity (storage overhead of 1.6%).

Citadel employs data sparing to avoid frequent correction

of faulty data. This not only prevents the performance

overheads of error correction, but also makes the system

more robust, as otherwise permanent faults gets accumulated

over time. The DDS sparing scheme of Citadel exploits the

observation that a bank either has a few small granularity

faults (less than 4) or many (more than 1,000) faults; DDS

spares at either a row granularity or a bank granularity. DDS

uses three out of eight banks of the metadata die for sparing.

When combined, the three techniques of Citadel can

tolerate TSV and multi-granularity granularity faults while

consuming a storage overhead similar to an ECC DIMM

(14% for Citadel versus 12.5% for ECC DIMM) and allow-

ing the data of the cache line to be resident in the same bank.

The next sections describe the three techniques in detail.

V. MITIGATING TSV FAULTS WITH TSV-SWAP

Stacked memory systems use TSVs to connect data, ad-

dress and command links between the logic die and DRAM

dies. Without loss of generality, this section explains the

working of TSVs, fault models, and our solution.

A. Background on TSV

The HBM system in this paper consists of 8 channels

of 256 Data TSVs (DTSV) with 24 address/command

TSVs (ATSV). A memory request presents an address and

commands over external address/command links. Internally,

TSVs transfer the address and command information for the

channel to the corresponding die. For a read request for

one cache line, the entire 2KB of data for the row (called

a DRAM page) is addressed and brought into the sense

amplifiers. From the 2KB (16Kb) page, 64B (512bits) of

data are multiplexed and transferred via the TSVs. Because

there are only 256 DTSVs, each TSV will transfer data in

two DDR cycles. The DRAM row (2KB) contains data for

32 cache lines. Each of these 32 cache lines is multiplexed

to the same set of TSVs. Furthermore, all banks within the

same die share the TSVs, which means a fault in the TSV

causes multi-bank failures.

Standby DTSV−0

2048:256 Multiplexer

3:
8

D
ec

od
er

Faulty ATSV−0

A
dd

re
ss

 T
S

V
s

Bitline Fault Due to DTSV−1

Faulty DTSV−1

DTSV−255

Row 7

Row 0

Row 4

Row 5

Row 6

Row 1

Row 2

Row 3

Due to Address TSV Fault

Rows 0−3 not accesible

Figure 7. Faults in Data TSV (DTSV) and Address TSV (ATSV). TSV-
SWAP creates stand-by TSVs from existing TSVs to tolerate TSV faults
(such as DTSV-1 and ATSV-0).

B. Severity of TSV Faults: DTSV vs. ATSV

The vulnerability of the system to TSV faults depends on

whether the fault happens in DTSV or ATSV, as shown in

Figure 7. Because the burst size for the HBM design is 2,

each DTSV fault will cause 2 bits to fail in every cache

line. For example, a failure of DTSV-1 will cause bit[1] and

55

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on December 28,2021 at 22:45:29 UTC from IEEE Xplore. Restrictions apply.

bit[257] of each cache line to fail. Faults in ATSV are even

more severe; a single fault can make half of the memory

unreachable, because the decoder is unable to address half

of the memory space. For example, a failure of ATSV-0

makes half of the rows (Row-0 to Row-3) unreachable.

C. Efficient Runtime TSV Sparing with TSV-SWAP

TSV faults at manufacturing time are typically mitigated

by spare TSVs provisioned for enhancing yield [8]. Such

spare TSVs may or may not be available to the user to

tolerate faulty TSVs that happen at runtime. Our proposal,

TSV-Swap can mitigate TSV faults at run-time without rely-

ing on manufacturer-provided spare TSVs and distinguishes

between the severity of faults in address and data TSVs.

Instead of relying on spare TSVs, it creates a pool of stand-

by TSVs from the available DTSVs, and uses these stand-by

TSVs to repair the faulty DTSV and ATSV. If manufacturer-

provided spare TSVs are available, then TSV-Swap is still

useful as it provides the framework for detecting the faulty

TSV at runtime, and repairing the faulty TSV dynamically

without data loss. TSV-SWAP consists of three steps and

which are described as follows.

1) Creating Stand-by TSVs: TSV-SWAP creates stand-by

TSVs by duplicating the data of predefined TSV locations

into the 8-bit swap data provided by metadata in Citadel

(see Figure 6). Our design designates four TSVs as stand-

by TSVs from a pool of 256 DTSV (DTSV-0, DTSV-64,

DTSV-128, and DTSV-192). As each DTSV bursts two bits

of data for each cache line, 8 bits from each cache line are

replicated in the metadata (bit[0], bit[64], ..., bit[448]). The

four stand-by TSVs which are created are used to repair any

faulty TSVs that occur at runtime.

2) Detecting Faulty TSV: Citadel computes CRC-32 us-

ing address and data information. A TSV error will result in

an incorrect checksum. To differentiate between TSV faults

and data faults, TSV-SWAP employs two additional rows

(row1-fixed and row2-fixed) per die that stores a fixed se-

quence of data. These rows are at locations where each bit of

addresses are the inverse of each other (for example, address

0x0000 and 0xFFFF). On detecting a CRC mismatch, data

from these fixed rows are read and compared against the

pre-decided sequence. If there is a mismatch between the

compared values, the error is highly likely (but not always)

due to a TSV fault. The memory system now invokes the

BIST logic which checks for TSV faults.

3) Redirecting Faulty TSV: TSV-SWAP provisions both

the DTSV and ATSV with a redirection circuit that can

replace a faulty TSV with one of the stand-by TSVs. The

redirection circuit is simply a multiplexer and a register. On

detecting a TSV fault, the BIST circuitry enables the TSV

redirection circuit as a corrective action against the faulty

TSV. The BIST circuitry then connects one of the stand-by

TSVs to replace the faulty DTSV or ATSV.

Standby
TSV

Standby−TSV Lane

TSV−m
LaneLane

TSV−0TSV REDIR REG (TRR)

(Connect Standby TSV, Enable TSV−SWAP=1)

Data TSV−Lane

Enable TSV−SWAP

TSV−m

10 1

TSV−0

Pass Transistors

Figure 8. Swap Logic Design for TSV-SWAP. The TRR redirects a faulty
TSV to a standy TSV.

TSV-SWAP requires control logic that activates a stand-

by TSV for a faulty TSV. Figure 8 shows the design of the

swap logic for a pool of data and address TSVs. The TSV
Redir Register (TRR) stores the sequence after identifying

the faulty TSV to be redirected and turns on the required

pass transistors. On activating the pass transistor, the TSV

lane associated with the faulty TSV gets connected to the

stand-by DTSV metal lane. At the same time, Enable TSV-
SWAP is also set to 1, thereby disconnecting the standby

DTSV from its metal lane.1

D. Results for TSV-SWAP

We analyze the effectiveness of TSV-Swap at mitigating

TSV faults. Unfortunately, the FIT rate data for TSV faults is

not available publicly, so for this section, we assume a high

TSV fault rate (1430 FIT, corresponding to one TSV-caused

die failure every seven years) to assess the effectiveness

of TSV-Swap at high TSV fault rate. Figure 9 shows the

probability of system failure for the three configurations (No

TSV-Swap, With TSV-Swap, and No TSV Faults) for the

three data mappings. For all systems, TSV-SWAP achieves

a resilience similar to that of not having any TSV faults,

even with the assumed high failure rate for TSVs. We

conclude that TSV-SWAP is highly effective at mitigating

TSV failures. We will assume that all systems employ TSV-

Swap for the remainder of the paper, so that we can focus

on faults from other sources.

��
��

����

��
��

��
��

��
��

	
���
��

���	��	�
�
�����	��	�
�
���	��
����

� !����
��� � !���"�
�����#!
�$

$
���
�%
�
&	

%�
��
�
�

�
��
!�

'
(�

)
	

�
�*

Figure 9. TSV-SWAP is effective at mitigating TSV faults.

1On detecting a TSV fault, the TRR gets serially loaded with the
information of the faulty TSV using two redundant control TSVs (the
chances of both the control TSVs failing is negligible).

56

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on December 28,2021 at 22:45:29 UTC from IEEE Xplore. Restrictions apply.

VI. TRI DIMENSIONAL PARITY (3DP)

Even after mitigation of TSV related faults, the stacked

memory is still vulnerable to internal DRAM die faults.

We want to protect stacked memory not only from small

granularity failures (such as bit fault or word fault) but also

from large-granularity faults such as column-fault, row-faults

or even complete bank failures. The second component of

Citadel targets efficient error detection and error correction

of data values. Citadel provisions each line with a 32-bit

cyclic redundancy code (CRC-32), which is highly effective2

at detecting data errors [9, 28]. Citadel uses a novel scheme,

called Tri Dimensional Parity (3DP), to correct data errors

at multiple granularities. In 3DP, even if one dimension

encounters two faults, they are highly unlikely to fall into

the same block in the other two dimensions. On detecting

an error, the memory contents are read and the error gets

corrected using parity.3

Parity Bank

Row n

Die 7

Die 0

Die 1

B
an

k
0

B
an

k
0

B
an

k
0

B
an

k
1

B
an

k
1

B
an

k
1

B
an

k
2

B
an

k
2

B
an

k
2

B
an

k
3

B
an

k
3

B
an

k
3

B
an

k
4

B
an

k
4

B
an

k
4

B
an

k
5

B
an

k
5

B
an

k
5

B
an

k
6

B
an

k
6

B
an

k
6

B
an

k
7

B
an

k
7

B
an

k
7

Figure 10. Dimension 1 stripes parity across a single row in every bank
for all dies and generates a row in the parity bank

A. Design of Dimension 1
Figure 10 shows the design of Dimension 1. It computes

the parity for a row in every bank across dies as specified
in equation (1). This requires dedicating a range of single
bank addresses as a parity bank for the entire stack (1.6%
overhead, for our 8 channel system, with 8 banks for
each channel)4. A parity bank helps mitigate single-bank
faults. However, a one-dimensional parity (1DP) scheme
is intolerant of multiple faults. Even if a single-bit failure
occurs after a single-bank failure, it results in data loss.

ParityBank[rown] = Die0.Bank0[rown]⊕Die0.Bank1[rown]⊕
· · ·⊕ Die7.Bank6[rown] (1)

2The probability of overlapping CRC-32 checksum is 1
232

≈ 10−10.
For false negative, the failed element should have an overlapped CRC-32.
The probability that an element fails is less than 10−4. Thus, the effective
probability of an overlapping CRC-32 is negligibly small (� 10−14).

3Error correction may take 700 milliseconds, however given that cor-
rection is invoked once every few months, this results in negligible
performance overheads. We discuss a scheme to avoid persistent errors
in the next section.

4Parity bank is an abstraction, such a bank can have addresses across
multiple physical banks in a stack. This can be done by swapping 2 bits
(one lower bank bit and one higher channel bit) while addressing the parity
bank. This prevents one physical bank from becoming a bottleneck.

B. Design of Dimensions 2 and 3
Figure 11 shows the design of Dimensions 2 and 3. In

Dimension 2, parity is taken across all rows in all banks
within a die. Equation (2) shows the computation Parity Row
in Dimension 2 for Die 0. Because there are 9 dies (including
the metadata die), the storage overhead is 9× the size of a
DRAM row for each dimension.

ParityRowDim2Die0 = [Bank0[row0]⊕Bank0[row1]⊕
· · ·⊕ Bank7[rown]]Die0 (2)

Die 0

Die 1

Die 7
Parity Row Dimension−3

Dimension−2Parity Row

B
an

k
0

B
an

k
0

B
an

k
0

B
an

k
1

B
an

k
1

B
an

k
1

B
an

k
2

B
an

k
2

B
an

k
2

B
an

k
3

B
an

k
3

B
an

k
3

B
an

k
4

B
an

k
4

B
an

k
4

B
an

k
5

B
an

k
5

B
an

k
5

B
an

k
6

B
an

k
6

B
an

k
6

B
an

k
7

B
an

k
7

B
an

k
7

Figure 11. Dimension 2 stripes parity across all row in every bank within
a die and generates a parity row. Dimension 3 stripes parity across all row
in single bank across dies and generates a parity row.

Dimension 3 computes parity across dies for all rows in a
single bank. Equation (3) shows the computation for Parity
Row in Dimension 3 for Bank 0. Because there are 8 banks
per die, the storage overhead of is 8×size of DRAM row.
While Dimension 1 is designed to tolerate bank failures,
Dimensions 2 and 3 prevent independent row, word and
bit failures. When used together, 3DP can correct multiple
errors that occur at the same time within a stack.

ParityRowDim3Bank0 = [Die0[row0]⊕Die0[row1]⊕
· · ·⊕ Die7[rown]]Bank0 (3)

C. Reducing Overheads for Parity Update

We avoid the performance overheads of updating the par-

ity for Dimensions 2 and 3 by keeping the parity information

on-chip. The size of the row buffer of the stacked DRAM

we simulate is 2KB [2, 3]. Thus, maintaining Dimensions 2

and 3 would require a storage overhead of 34 KB (9 rows

for Dimension 2 and 8 rows for Dimension 3), which can

be kept at the memory controller. Thus, updating the parity

for Dimensions 2 and 3 can be done on-chip with negligible

timing and power overheads.

The total size of parity for Dimension 1 is equal to 1

Gb (128 MB) which would be impractical to duplicate at

the memory controller side. To reduce the parity update

57

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on December 28,2021 at 22:45:29 UTC from IEEE Xplore. Restrictions apply.

overheads for Dimension 1, we employ parity caching within

the on-chip LLC. For Dimension 1, every parity cache line

is responsible for 63 data lines from 63 different banks.

Thus, we expect accesses to parity lines to have very high

temporal locality. Figure 12 shows the operation of a system

that implements on-demand parity caching within the LLC

for a writeback request to a data line (action 1).

(LLC hit 85%) ParityDimension 1
Dimension 1

Parity

128MB

Parity Update

Memory
Main 8GB

RBW RequestWriteback

Controller
MemoryCache

Last Level

Parity Fetch (15%)

2

3

4

1

Figure 12. Memory System employing on-demand parity caching for
Dimension 1 within the LLC (Figure not to scale)

To update the parity information, we need to get the

XOR of the old data and new data of the line for which

a writeback request is being made. The memory controller

performs such a Read Before Write (RBW) request to obtain

the old information of the line (action 2). The XOR forms

a parity update. The memory controller then checks the

LLC for the parity line associated for the address for which

writeback is being made. In the common case (85% of the

time, on average) the parity line is found in the LLC and

the parity is updated with the XOR value (action 3). In the

uncommon case that the parity information for Dimension 1

is not found in the LLC, then parity information is fetched

from the memory (action 4), installed in the LLC, and the

parity information is updated.

BIOBENCH GMEAN

Pe
rc

en
ta

ge
 H

it
R

at
e

 30

 40

 50

 60

 70

 80

 90

 100

SPEC−FP SPEC−INT PARSEC

Figure 13. Hit rate for parity caching of Dimension 1

Figure 13 shows the LLC hit-rate for parity update re-

quests. The data is averaged across all workload suites. On

average, the hit rate is 85%, showing that parity caching is

quite effective. The BIOBENCH workloads mostly perform

read operations, with writes sparsely distribute between a

large number of writes. Hence, read requests tend to evict

parity lines. However, since the frequency of writes for

BIOBENCH is less, a low hit rate for parity update results

in negligible performance loss.

D. Error Detection and Correction using 3DP

On every read request, 3DP works in two phases. The first

phase consists of fast error checking using CRC-32 code. For

most requests, this phase will report no errors. However in

the rare case of a reported error (once in a few months), the

second phase is activated and the whole memory is read.

3DP then isolates the fault(s) using all three dimensions of

parity across the stack. If it is a small granularity bit, word or

row fault, then dimensions 2 and 3 parity can fix such errors.

However, large granularity faults such as column and bank

faults are corrected using dimension 1 parity. In the event

of simultaneous multi-granularity faults, dimensions 2 and

3 parity help isolate small granularity faults and dimension

1 parity helps isolate the large granularity fault.

E. Results for 3DP

The 3DP scheme allows the memory system to retain the

cache line within the same bank, and yet be able to correct

bit, word, row, column and bank failures. We compare the

resilience, performance, and power of the 3DP scheme to

a theoretical scheme that employs an 8-bit symbol-based

coding with data striping. For a fair comparison between

the two schemes, we assume that TSV-Swap is enabled for

both the 8-bit symbol based code and 3DP.

1) Resilience: Figure 14 compares the multi-dimensional

parity scheme with a very strong 8-bit symbol- correct-

ing code striped across channels. Enabling only a single

dimension of parity (at Bank Level) does not improve

resilience against multiple faults that occur concurrently.

A single dimensional parity scheme is unable to correct

these faults. Increasing the parity dimensions from one to

two improves resilience by 100x, because these two levels

of parity can isolate most of the faults. By enabling all

three dimensions, 3DP achieves a 1,000x improvement in

resilience. Furthermore, 3DP achieves 7x stronger resilience

than an 8-bit symbol-based ECC because it can handle

higher number of multiple concurrent faults.

����
����
����
����
���	
���

����
����
���

� �
 	 � � �

�
��

��
���
��

��
��

��
��

��
���

�

����

�������� !"� ��"#��� ��� "�
�������� !"� ��"#��� ��� �"�"� $"�
�������� !"���"
"#��� ��� �"%
#�&

��'��"������"'���$"())"%*�+�������&

���,"-�$�����

��,"-�$�����

Figure 14. 3DP has 7x more resilience than an 8-bit symbol-based ECC
code for tolerating large-granularity failures in stacked memory. 3DP has
10x more resilience than 2DP

58

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on December 28,2021 at 22:45:29 UTC from IEEE Xplore. Restrictions apply.

 1.0
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8

deal
II

gobmk
sje

ng
povray

fer
ret

sw
apt

3DP (with parity caching)
3DP (no parity caching)

Across Channels

soplex

bwaves

sphinx3
wrf

zeu
sm

p
bzip

2

xala
ncbmk

hmmer

perl
bench

h264refast
ar

gromacs tonto
nam

d

cal
culix

gam
ess

blac
k
fac

e
flu

idfre
q

str
eam

mummer tig
r

Cact
usA

DMmcf lbm milc

lib
quantum

omnetp
p gcc

les
lie

3d

Gem
sFDTDN

or
m

al
iz

ed
 E

xe
cu

tio
n

T
im

e

BIOBENCHPARSECSPEC2006 GMEAN

 Across Banks

2.23

Figure 15. Normalized execution time: 3DP has negligible slow-down, whereas data striping causes 10-25% slow-down.

2) Performance: Figure 15 compares the execution time

of 3DP to the organizations that stripe data either across a

bank or a channel. The execution time is normalized to a

baseline that retains the cache line within the same bank and

pays no overhead for error correction. The 3DP scheme with

caching has performance within 1% of the baseline, 3DP

without caching degrades performance by 4.5%. Thus, parity

caching is highly effective at mitigating the performance

impact of parity updates. Alternative schemes, that rely on

striping the data in different banks or channels, degrade

performance by as much as 10% to 25%, on average due

to the loss of bank/channel level parallelism. Thus, 3DP not

only improves the resilience of stacked memory compared to

data striping, but also helps brings the performance impact

of fault tolerance to a negligible level.

3) Power: Accessing multiple banks or channels to sat-

isfy every memory request also has the disadvantage that

it consumes significantly higher power. Our proposed 3DP

design allows Citadel to place the entire cache line in one

bank, and thus activate only one bank per read request. This

not only reduces the activation power but also improves

memory level parallelism, compared to the Across-Bank and

Across-Channel configuration. Figure 16 shows the active

power for 3DP, Across-Bank, and Across-Channel configu-

ration, normalized to the fault-free baseline that places the

cache line in the same bank. On average, 3DP increases

active power by only 4%, whereas Across-Bank and Across-

Channel configurations increase active power by almost 3X-

5X of higher bank/channel activations and row conflicts.

�
�
�
�
�
�
�
	

����� �������	 �
���� ������� ���
�

�
��

�
��
��
��

��
��

�
��

�
�� ���

��� ��!"

��� �#�!!��

Figure 16. Active power consumption: 3DP has negligible power over-
heads, whereas data striping incurs 3x-5x power.

VII. DYNAMIC DUAL-GRANULARITY SPARING (DDS)

The 3DP scheme performs error correction by recom-

puting the data based on parity information. However, this

can be a time-consuming process (recomputing parity and

isolating the fault in each dimension). Fortunately, faults

do not occur frequently, so employing a slow correction

mechanism is a viable option. However, if the faults are

permanent then the correction scheme will be invoked fre-

quently and cause unacceptable performance degradation.

Citadel avoids this by using dynamic sparing, whereby a data

item once corrected is redirected to an alternate location.

The key question in designing a data-sparing scheme is

the granularity of sparing. Sparing at row granularity would

be storage efficient, however it would be fairly complex to

tolerate bank failures, as the redirection structures associated

with row sparing would require several tens of thousands of

entries. We can implement sparing at a bank granularity,

but suffer significant under-utilization of spare area. Thus,

uniform sparing is either complex or inefficient. To address

this dichotomy, Citadel is provisioned with Dynamic Dual-
granularity Sparing (DDS). We present the key observation

that motivates DDS.

A. Key Observation: Failures Tend to be Bimodal

Only for the analysis in this section, we will classify all

faults that are smaller than or equal to a row fault as causing

a row failure. These faults will consume one entry for a

row-sparing architecture. A large-granularity fault would

consume many entries of row sparing. Figure 17 shows the

distribution of the number of rows that are used by a faulty

bank, on average. The number of failures show a bimodal

distribution. The smaller-granularity faults do not occur in

many multiples. In fact, in all our simulations, no more

than two rows per bank were affected by a small-granularity

fault within a scrubbing interval. However, there are two

peaks; one at 5,200 rows (most likely due to sub-arrays)

and another at 65K rows (size of a bank). A row-sparing

architecture would be not effective at tolerating 65K spare

rows for a failed bank, because the sparing associated table

would become impractically large to build and search on

every access. Therefore, DDS implements two granularities

of sparing: either a row or a bank.

59

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on December 28,2021 at 22:45:29 UTC from IEEE Xplore. Restrictions apply.

0.16%

3.82%

29%(5200 rows)

Coarse Grained
Sparing

Fine Grained
Sparing

1

0.001

0.01

0.1

10

100

(l
og

 1
0

sc
al

e)
Pe

rc
en

ta
ge

 o
f

Fa
ul

ts

1 256 4K

Number of rows required for sparing (log 2 scale)
164 64 1K 16K 64K

0.146%
(5201 rows)

66.84%

Figure 17. Permanent fault affects either very few (less than 4) rows or
large number of (> 1000) rows.

B. Budgeting Spare Rows and Spare Banks

DDS partitions faults into small- and large-granularity

faults, then replaces small-granularity faults with rows and

large-granularity faults with a bank. Based on the data shown

in Figure 17 we deem any bank having more than four faulty

rows as a bank failure and spare that bank. Given that a

bank can have at most four row failures before the bank

gets spared, the total number of spare rows required would

be equal to four times the number of banks (for 64 banks

there would be 256 spare rows).

The number of spare banks depends on the bank failure

rate. Table III shows the distribution of faulty banks for a

system that has at least one failed bank (more than four

row faults). Even under our conservative definition of bank

failure, we need at most two spare banks to handle 99.96%

of the systems that have a bank failure, so we employ two

spare banks in our design.

Table III
NUM. FAILED BANKS (FOR SYSTEM WITH ≥1 BANK FAIL)

Num Faulty Banks 1 2 3+

Probability 66.98% 32.98% 0.04%

C. Design of Dynamic Dual-granularity Sparing

DDS has two components; the spare area and the redirec-

tion table. Because we employ two granularities of sparing

we have two redirection tables; one at row granularity and

the other one at a bank granularity.

1) Spare Area: The metadata die in Citadel has 8 banks.

TSV and 3DP use 5 banks within the metadata die for

storing CRC-32 and TSV-SWAP related information. DDS

uses the three remaining banks for sparing. These 3 banks

are partitioned into coarse-granularity sparing banks (spare
bank-0 and spare bank-1) and a fine granularity bank (spare
bank-2) that provides space for row-based sparing.

2) Row Remap Table (RRT): DDS uses RRT to associate

faulty row addresses with spare row addresses. Each RRT

entry contains a valid bit (1), the source row ID (16 bits)

and a destination row ID (16 bits). Each fault is tagged with

a faulty row address and its corresponding spare address.

Because DDS supports at most 4 spare rows for each bank,

each bank has 4 entries in RRT. The overhead of RRT for

our 8 die (8 banks per die) system is approximately 1 KB

and the RRT is stored on-chip. A memory access will check

the 4 RRT entries of the given bank for a valid row ID

match. On a valid match, the spare row is accessed.

3) Bank Remap Table (BRT): If all four spare rows

dedicated to a bank get exhausted, and a new fault appears,

then the fault is treated like a large-granularity (bank) failure

and coarse-granularity sparing is invoked. The data from the

failed bank is repaired and relocated to the spare bank. A

two-entry Bank Remap Table (BRT) provides redirection for

faulty banks. Each BRT entry contains a valid bit, the ID of

the failed bank (6 bit ID), and ID of the spare bank (1 bit

spare bank ID, to select one of two spare banks). The BRT

is located on chip, and is probed on every memory access

for a match, prior to looking up the RRT. On a BRT hit, the

spare bank is accessed.

D. Overall Results: Tying it All Together

Figure 18 compares the effectiveness of 3DP with DDS

to an 8-bit symbol correcting code. For all systems, we

assume that TSV-SWAP is enabled. DDS when applied with

3DP delivers a 700x improvement in resilience compared

to the baseline strong 8-bit symbol-based ECC code. DDS

removes 99.995% of all transient faults and 99.996% of all

the permanent faults with a 12-hour scrubbing interval and

thus prevents the accumulation of faults. Therefore, DDS can

protect against multiple faults if they occur during different

scrub intervals. Overall, these results show that Citadel can

provide a reliability improvement of almost three orders of

magnitude. It does so without requiring the system to stripe

data for a cache line across banks.

$%&�

$%&'

$%&(

$%&)

$%&*

$%&

$ �
 *) ('

�
��
��
���
��

��
��
��
��

��
���

�

����

�&��� ������ ������ !!�"#�$�%��%��&

'�

'�(''�

')�*���%���+

$%%)�*���%���+

Figure 18. Resilience: 3DP+DDS provides 700x more resilience than
symbol-based codes that rely on data striping

E. Overall Storage Overhead of Citadel

Citadel relies on having an extra die for storing metadata

for the eight data dies (12.5% overhead). In addition, bank-

level parity requires dedicating one of the data bank for

storing parity (1.6% overhead, one bank out of 64 banks).

For 3DP, we keep parity for Dimensions 2 and 3 on-chip

(34 KB overhead), and the redirection tables of DDS incur

about 1KB overhead, for a total SRAM overhead of only

60

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on December 28,2021 at 22:45:29 UTC from IEEE Xplore. Restrictions apply.

35KB. Thus, Citadel provides 700x better reliability while

requiring a storage overhead of 14% which is similar to the

overhead of ECC DIMM (12.5%).

VIII. RELATED WORK

Memory reliability for emerging memory technologies

and existing DRAM systems is an important field. We

describe the schemes that are most relevant to our proposal.

A. TSV Reliability using Redundancy

Citadel employs TSV-SWAP to mitigate faulty TSVs.

Faulty TSVs can be avoided at manufacturing time using

spare TSVs. Several techniques have been proposed for

“swapping in” such redundant TSVs to replace faulty TSVs

in a 3D die stack [29]. To the best of our knowledge, this

paper is the first to address run-time mitigation of TSVs and

without relying on manufacturer-provided spare TSVs.

B. Reliability for Stacked DRAM Cache

The work that is most closely related to our work is on

reliably architecting stacked DRAM as caches [28]. It uses

CRC-32 to detect errors in caches. However, correction is

performed simply by disabling clean lines and replicating

dirty lines. While such correction can be useful for caches,

disabling random locations of lines is an impractical option

for main memory. Furthermore, replicating all the data

for main memory leads to a capacity loss of 50% and

doubles the memory activity. Our work provides low-cost

and effective fault tolerance for using stacked DRAM as

main memory.

C. Virtual and Flexible Tiered ECC

Yoon et al. [30] proposed Virtual and Flexible ECC.

Rather than using uniform error correction across the entire

memory space, it allows the user to specify stronger levels of

ECC for high-priority applications and weaker levels of ECC

for low-priority applications. Citadel uses multi-dimensional

parity rather than multi-tiered ECC. Citadel is more area-

efficient and does not require any support from the OS.

D. Repairing Bit Faults and Uniform Sparing

Efficient memory repair for bit-level faults has been

proposed for both SRAM [31][32] and DRAM [33]. How-

ever, such techniques are effective only for random bit

errors, and become ineffective at tolerating large-granularity

faults. Erasure Codes can identify faulty chips to be dis-

abled [34, 35, 36]. However, they can operate only at

one granularity. Unlike erasure codes, DDS enables flexible

granularity sparing.

E. Prior Work on Parity Based ECC

Parity based schemes such as LOT-ECC and 2D-ECC pro-

tect against multi-bit faults [37, 38]. 2D-ECC only protects

against small granularity faults (32x32 cells). LOT-ECC has

a parity tier, but encounters upto 25% area overhead. On

the contrary, 3DP is not a natural extension to 2D-ECC.

3DP stripes data across row buffers and uses a parity bank

to protect against large-granularity faults. 3DP is geared

towards large-granularity faults and leverages on the physical

organization of stacked memories. 3DP has significantly

reduced storage(1.6%) and achieves more resilience (∼130X

higher) when compared to 2D-ECC.

F. RAID and Stronger BCH Codes

RAID also uses parity for error correction [39]. BCH

codes can provide protection for multiple-bit errors (e.g. 6

or more bits) [40][41]. Figure 19 compares the resilience

of Citadel with a strong ECC scheme (6EC7ED) and with

RAID-5 in a memory system with no TSV faults. Even

after discounting for TSV faults, these schemes end up

having orders of magnitude higher failure rates than Citadel.

6EC7ED-based codes cannot correct large-granularity faults.

A RAID-5 scheme provides 89x improvement in resilience

compared to 6EC7ED. Citadel provides 1000x more re-

silience than a RAID-5 scheme.

$%&�

����
����
����
���	
���

����
����
����

� � �
 	 � �

�
��
��
���
��
��
��
��
��

��
���
��

�����

������ !"��	 ����#��

��$& �#�%���&

����$& �#�%���&

Figure 19. Comparing resilience of Citadel to 6EC7ED code and RAID-5.

IX. CONCLUSION

memory stacking introduces new multi-bit failure modes,

exacerbating the large-granularity faults identified by recent

DRAM field studies. Typical approaches to memory fault

tolerance tolerate only random-bit failures. Tolerating large-

granularity failures (such as tolerating chip failures using

ChipKill) typically relies on striping data to multiple chips.

Transposing such data striping to stacked memory systems

causes significant slowdown and 3-5x power overheads. This

paper proposes Citadel to tolerate large-granularity faults

efficiently, and makes the following contributions:

1) TSV-SWAP, which mitigates TSV faults at run-time,

without relying on manufacturer-provided spare TSVs.

It remains effective even at high TSV failure rates.

61

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on December 28,2021 at 22:45:29 UTC from IEEE Xplore. Restrictions apply.

2) Tri-Dimensional Parity (3DP) which can correct a

wide variety of multi-granularity faults.

3) Dynamic Dual-granularity sparing (DDS) which can

spare faulty data blocks either at a row granularity

or at a bank granularity to avoid the accumulation of

permanent faults and frequent error correction.

Our evaluations with real-world fault data for DRAM

chips shows that combining these three schemes is highly

effective for tolerating high rate of TSV failures and memory

failures. We show that 3DP improves reliability of stacked

memory by 7x, and when combined with DDS by 700x,

compared to a symbol-based code that stripes data across

banks or channels. Citadel provides high reliability while

maintaining high performance and low power, requiring a

storage overhead close to ECC DIMMs (14% vs. 12.5%).

ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable

comments and feedback. We also thank Vilas Sridharan

for his comments on DRAM scaling and FIT rates, and

the members of our research group at Georgia Tech and

AMD Research for providing insightful feedback. This work

was supported in part by Center for Future Architectures

Research (C-FAR), one of the six SRC STARnet Centers,

sponsored by MARCO and DARPA.

REFERENCES

[1] U. Kang et al., “8gb 3d ddr3 dram using through-silicon-via
technology,” in ISSCC, 2009.

[2] H. M. C. Consortium, “Hybrid memory cube specification
1.0,” 2013. [Online]. Available: hybridmemorycube.org

[3] J. Standard, “High bandwidth memory (hbm) dram,” in
JESD235, 2013.

[4] M. Dubash, “Not hot swap but ’fail in
place’,” in TechWorld, 2004. [Online]. Avail-
able: http://features.techworld.com/storage/960/not-hot-swap-
but-fail-in-place/

[5] V. Sridharan and D. Liberty, “A study of dram failures in the
field,” in SC-2012.

[6] DDR3 ECC Unbuffered DIMM Spec Sheet, Silicon Power,
2010.

[7] T. J. Dell, “A white paper on the benefits of chipkillcorrect
ecc for pc server main memory,” IBM, Tech. Rep. 11/19/97,
1997.

[8] A.-C. Hsieh et al., “Tsv redundancy: Architecture and design
issues in 3d ic,” in DATE 2010.

[9] W. Peterson and D. Brown, “Cyclic codes for error detection,”
Proceedings of the IRE, vol. 49, no. 1, pp. 228–235, 1961.

[10] D. Roberts and P. Nair, “Faultsim: A fast, configurable
memory-resilience simulator,” in The Memory Forum: ISCA-
41.

[11] B. Schroeder et al., “Dram errors in the wild: a large-scale
field study,” SIGMETRICS Perform. Eval. Rev.

[12] B. Schroeder and G. Gibson, “A large-scale study of failures
in high-performance computing systems,” Dependable and
Secure Computing, IEEE Transactions on, 2010.

[13] V. Sridharan et al., “Feng shui of supercomputer memory:
Positional effects in dram and sram faults,” in SC, 2013.

[14] J.-H. Yoo et al., “A 32-bank 1 gb self-strobing synchronous
dram with 1 gbyte/s bandwidth,” JSSCC, vol. 31, no. 11, pp.
1635–1644, 1996.

[15] S. Shiratake et al., “A pseudo multi-bank dram with catego-
rized access sequence,” in VLSI, 1999.

[16] J.-S. Kim et al., “A 1.2v 12.8gb/s 2gb mobile wide-i/o dram
with 4x128 i/os using tsv-based stacking,” in ISSCC, 2011.

[17] J. T. Pawlowski, “Hybrid memory cube (hmc),” in HOT-
CHIPS, 2011.

[18] T. Hollis, “Modeling and simulation challenges in 3d memo-
ries,” in DesignCon, 2012.

[19] J. Bolaria, “Micron reinvents dram memory,” in Microproces-
sor Report (MPR), 2011.

[20] Octopus 8-Port DRAM for Die-Stack Applications:
TSC100801/2/4, Tezzaron Semiconductor, 2010.

[21] Y. Kim et al., “A case for exploiting subarray-level parallelism
(salp) in dram,” in ISCA-39.

[22] “Spec cpu2006 benchmark suite,” in Standard Per-
formance Evaluation Corporation. [Online]. Available:
http://www.spec.org/cpu2006/

[23] C. Bienia, “Benchmarking modern multiprocessors,” in Ph.D.
Thesis, Princeton University, 2011.

[24] K. Albayraktaroglu et al., “Biobench: A benchmark suite of
bioinformatics applications.”

[25] Calculating Memory System Power for DDR3, Micron, 2007.
[26] MT41J512M4:8Gb QuadDie DDR3 SDRAM Rev. A 03/11,

Micron, 2010.
[27] (2011) Jang seok choi in the ddr4 mini work-

shop. [Online]. Available: http://jedec.org/sites/default/files/
JS Choi DDR4 miniWorkshop.pdf

[28] J. Sim et al., “Resilient die-stacked dram caches,” in ISCA-40.
[29] L. Jiang, Q. Xu, and B. Eklow, “On effective tsv repair for

3d-stacked ics,” in DATE-2012.
[30] D. H. Yoon and M. Erez, “Virtualized and flexible ecc for

main memory,” in ASPLOS-15.
[31] D. Roberts et al., “On-chip cache device scaling limits and

effective fault repair techniques in future nanoscale technol-
ogy,” in DSD-10.

[32] C. Wilkerson and othes, “Trading off cache capacity for
reliability to enable low voltage operation,” in ISCA-35.

[33] P. J. Nair et al., “Archshield: architectural framework for
assisting dram scaling by tolerating high error rates,” in ISCA-
40.

[34] J. Nerl et al., “System and method for controlling application
of an error correction code (ecc) algorithm in a memory
subsystem,” Patent US 7 437 651 B2.

[35] D. H. Yoon et al., “Boom: Enabling mobile memory based
low-power server dimms,” in ISCA-39.

[36] J. Nerl et al., “System and method for applying error cor-
rection code (ecc) erasure mode and clearing recorded infor-
mation from a page deallocation table,” Patent US 7 313 749
B2.

[37] A. Udipi et al., “Lot-ecc: Localized and tiered reliability
mechanisms for commodity memory systems,” in ISCA-39.

[38] J. Kim et al., “Multi-bit error tolerant caches using two-
dimensional error coding,” in MICRO-40.

[39] A. Thomasian and J. Menon, “Raid5 performance with dis-
tributed sparing,” Parallel and Distributed Systems, IEEE
Transactions on, vol. 8, no. 6, pp. 640–657, 1997.

[40] S. Li et al., “System implications of memory reliability in
exascale computing,” in SC, 2011.

[41] C. Wilkerson et al., “Reducing cache power with low-cost,
multi-bit error-correcting codes,” in ISCA-37.

62

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on December 28,2021 at 22:45:29 UTC from IEEE Xplore. Restrictions apply.

