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* Limited Endurance (10-100M writes/cell)
— Wear Leveling, Error correction, Graceful degradation

* High Write Latency (4X-8X higher than PCM read)
— PreSET, Write Cancellation, Write Pausing

* High Read Latency (2X of DRAM) .
PCM

— Hybrid Memory, combining PCM and DRAM

DRAM
Cache

Hybrid Memory
Goal = Reduce the high read latency of PCM
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STORING DATA IN PCM CELLS

* Low (SET) and High (RESET) resistance states

Rref
SET RESET

Prob. Of Cell

Resistance
* Cell states are compared to reference resistance

* The states correspond to binary values of 0 and 1

PCM stores binary values by varying resistance of cells
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Three step process to read a PCM cell
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READ PROCESS IN PCM

Three step process to read a PCM cell

Precharge Wordline Sense Amplifier
Enable Enable Enable
Voo 7< -----
0 >
time
A

V
i i Sense

time

Sense Amplifiers

The discharging time determines the sensing time
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SENSING DATA FOR READ

S4 SET  ResET
O ‘
Qo
O
o

time Senset Resistance

» Capacitive Discharge and compare against Vg
« Variation in SET and RESET distributions

Sensing time is determined by worst case cells
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REDUCE READ LATENCY : SENSE EARLIER

* Sense data earlier than the provisioned time
* Lower Resistance = Lower RC time to discharge

- RESET N
V

SET
time Sensef

\ )

Reduce time to sense by lowering the RC time
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EFFECT OF SENSING EARLIER

Prob. Of Cell

SET Errors

Resistance

Sensing earlier causes errors while reading
higher resistances

36



REDUCE READ LATENCY: HIGHER VOLTAGE

Increase bitline voltage more than the provisioned value

2 N
Vv

39



REDUCE READ LATENCY: HIGHER VOLTAGE

Increase bitline voltage more than the provisioned value

@ RESET N

T

39



REDUCE READ LATENCY: HIGHER VOLTAGE

Increase bitline voltage more than the provisioned value
Higher Voltage =» Higher Current = Low Read Latency
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REDUCE READ LATENCY: HIGHER VOLTAGE

Increase bitline voltage more than the provisioned value
Higher Voltage =» Higher Current = Low Read Latency

@ RESET N

T

SET

_ time Sense 1 .

Increase bitline voltage and reduce sensing time
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EFFECT OF HIGH BITLINE VOLTAGE

2 N

SET  RESET

AA

Resistance

Prob. Of Cell

38



EFFECT OF HIGH BITLINE VOLTAGE

6; RESET N

1

SET  RESET

AA

Resistance

Prob. Of Cell




EFFECT OF HIGH BITLINE VOLTAGE
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EFFECT OF HIGH BITLINE VOLTAGE

[ RESET
V*

1

SET

_ time Senset

~

/

Prob. Of Cell

Errors
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Increasing bitline voltage causes errors
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GOAL

Reduce read latency by
1. Exploiting variability in PCM cells =» Early Read
2. Higher voltage to read PCM cells =» Turbo Read
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SENSING EARLY: OBSERVATION
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Sense Amplifiers

1. Sensing early causes errors in sense amplifiers
2. The cells in PCM substrate have no error
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ECC TO CORRECT LATCHING ERRORS
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Sense Amplifiers ECC
Lower sensing time =» more errors = stronger ECC

Strong ECC =» Huge area overheads
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INSIGHT: USE RETRY FOR CORRECTION
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2. Read Line

INSIGHT: USE RETRY FOR CORRECTION

1. Sense Data Early
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1. Sense Data Early
2. Read Line
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INSIGHT: USE RETRY FOR CORRECTION

1.

Sense Data Early

2. Read Line 9000000000 (00
3— Correcterrors
4. Detect errors 90000008001100

5. Retry with normal Iatency mmp QQ
0000000000
0

on error detection

e

Memory Controller Sense Amplifiers

Early Read =» detect and retry to read correctly at
lower latency
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INSIGHT: ERRORS ARE UNIDIRECTIONAL
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Sensing errors=» Unidirectional=»SET classified as RESET




UNIDIRECTIONAL ERROR DETECTION

* All unidirectional errors
can be detected using
Berger Code
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UNIDIRECTIONAL ERROR DETECTION

* All unidirectional errors
can be detected using
Berger Code

* For a 512 bit cache
line, only 10 bits are

needed
- Sense Amplifiers Berger Code

(512 bits) (10 bits)

Berger Code detects unidirectional errors with low cost
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Sum the number of 1’s in data, invert and store

Dataﬁ_ Berger Code

Berger code provides guaranteed detection of all
unidirectional errors
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25% reduction in read latency using Early Read
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READING WITH HIGHER VOLTAGE

* PCM writes data by passing current through cell

* PCM reads data by passing current through cell
— Read current << Write current

* Higher read current can reduce read latency
* Read Disturb =» Causes PCM cells to accidently flip
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READING WITH HIGHER VOLTAGE

* PCM writes data by passing current through cell
* PCM reads data by passing current through cell
— Read current << Write current
* Higher read current can reduce read latency
* Read Disturb =» Causes PCM cells to accidently flip
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Read Current ./
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21



READING WITH HIGHER VOLTAGE

* PCM writes data by passing current through cell
* PCM reads data by passing current through cell
— Read current << Write current
* Higher read current can reduce read latency
* Read Disturb =» Causes PCM cells to accidently flip

¢ Write Current g SET RESET
E /‘ Y— Few
> | Read Current .~ O m
- O
& S
> al
Time Resistance

Higher bitline voltage causes Read Disturb




READ DISTURB: OBSERVATION
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READ DISTURB: OBSERVATION
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V*
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Reading with higher voltage =» Read Disturb =» causes
errors in PCM cells
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* Incorrect value may be read
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ECC FOR READ DISTURB ERRORS

* Incorrect value may be read

* Read disturb errors can be
corrected with Error
Correcting Codes (ECC)

Sense ECC
Amplifiers

Correcting read disturb with ECC allows low latency read
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TURBO READ

1. Read with higher
bitline voltage
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TURBO READ

1. Read with higher
bitline voltage

If read disturb errors
ECC to correct errors
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TURBO READ

w N

. Read with higher

bitline voltage
If read disturb errors
ECC to correct errors

_-

Memory Controller } Sense Amplifiers ECC

Turbo Read =» Read with higher bitline voltage and use
ECC to correct read disturb errors
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TURBO READ: DESIGN

* Systems are typically designed for failure rate < 10-1°
* Fix with a small amount of budget =» DECTED

BER Probability Line has 3 Errors| Latency
Read Disturb
109 <1019 57ns

* Probabilistic Scrub (PRS) to mitigate latent faults

ECC can mitigate read disturb errors in Turbo Read
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WHY COMBINE EARLY AND TURBO READ

Early read=>Error=>Retry
— Bimodal Read Latency

4 48ns

No Error
.

—
Provisioned Read Latency

Turbo read=>Error=»>No Retry
— Read Latency Fixed

No Error/Error

57ns

>
Provisioned Read Latency

Combine Early and Turbo Reads =» Get benefits of
both without bimodal latency
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Turbo Read=>PCM Cell Errors

Error Detection y

L Error Correction p

Early+Turbo Read will have PCM cell errors and
require Error Correcting Codes
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EARLY+TURBO READ

. Read with higher bitline
voltage + Sense early
If read disturb errors +
sensing errors

ECC to correct errors

_-

Memory Controller } Sense Amplifiers ECC

Early+Turbo Read = Read with higher bitline voltage and
sense early = Use ECC to correct errors
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EARLY+TURBO READ: DESIGN

Early Read Turbo Early+Turbo Read

Read
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Latency (Bimodal) (Fixed) (Fixed)
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Overhead
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EARLY+TURBO READ: DESIGN

Early Read Turbo Early+Turbo Read
Read

BER 10 10 2x10-9

Sensing ||48ns or 69ns 57ns 45ns
Latency (Bimodal) (Fixed) (Fixed)
Storage | 10 bits/line | 20 bits/line 20 bits/line
Overhead

« 2x10°° BER = DECTED =» System Failure Rate < 1019
* Sensing Latency Fixed =» 45ns

Early+Turbo Read reduces read latency by 30%
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SYSTEM CONFIGURATION

Parameter Configuration
Cores 8 cores @ 3Ghz
L1-L2-L3 Cache 32KB-256KB-1MB (Private)
L4 Cache 128MB (Shared) @ 15ns latency

PCM System
Channels 4 Channels @ 8GB/Channel
Read Latency 80ns =» 69ns sensing time*
Write Latency 250ns*
Spec Benchmarks with read MPKI from DRAM Cache > 1

* ISSCC 2012 [PCM-Samsung]
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Our proposals reduce energy by 7%

Our proposals reduce EDP by 28%
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Summary

 (Goal = Reduce the read latency of PCM

* Two low cost solutions

- Early Read: Better-than-worst-case sensing using
Berger Codes to detect errors and retry

« Turbo Read: Read with higher current and fix read
disturb errors with ECC

* Proposed solutions reduce read latency by 30%
=» Performance improves by 21%, EDP by 28%
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You could do N
so much more by
thinking of
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SENSITIVITY TO TARGET ERROR RATES
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Our proposals become even more effective at
higher target design error rates
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SENSITIVITY TO DRIFT
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Our proposals become even more effective when
drift margins are taken into account
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MLC PCM LATENCY
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Latency determined by highest resistance states
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* PCM stores values by varying resistance
* Higher resistance causes more read latency

* With Technology Scaling:
Resistance 4= (Resistivity x Length J J/Area § §
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LATENCY TREND WITH SCALING

* PCM stores values by varying resistance
* Higher resistance causes more read latency

* With Technology Scaling:
Resistance 4= (Resistivity x Length J J/Area § §
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PCM read latency increases with scaling



REDUCING READ LATENCY MATTERS

* Read requests tend to halt execution
* Write requests can be buffered/paused/cancelled



REDUCING READ LATENCY MATTERS

* Read requests tend to halt execution
* Write requests can be buffered/paused/cancelled

Phase Change Memory System

______ Write Queue/Buffer

Write A

time




REDUCING READ LATENCY MATTERS

* Read requests tend to halt execution

* Write requests can be buffered/paused/cancelled

Phase Change Memory System

Write A Read B

Write Queue/Buffer

time



REDUCING READ LATENCY MATTERS

* Read requests tend to halt execution
* Write requests can be buffered/paused/cancelled

Phase Change Memory System

Write Cancellation/Write Pausing T
A

______ Write Queue/Buffer

Write A Read B

time




REDUCING READ LATENCY MATTERS

* Read requests tend to halt execution
* Write requests can be buffered/paused/cancelled

Phase Change Memory System

Write Cancellation/Write Pausing T
A

______ Write Queue/Buffer

Write A Read B B

time




REDUCING READ LATENCY MATTERS

* Read requests tend to halt execution
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Phase Change Memory System
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Read Latency =1.5X to 2.5X DRAM Latency
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* Read requests tend to halt execution
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REDUCING READ LATENCY MATTERS

* Read requests tend to halt execution

* Write requests can be buffered/paused/cancelled

Phase Change Memory System

Write Cancellation/Write Pausing T
A

Write A Read B B

Write Queue/Buffer

g E time

| 4

Read Latency = DRAM Latency

Low read latency improves performance directly
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LATENT FAULTS FROM READ DISTURB

* Adversarial read sequences can cause latent
faults

PCM Row II!I

Latent Faults

Read Line B

v,

4 Errors! time
System Failure

Need a low cost solution to mitigate latent faults



OUR SOLUTION: PROBABILISTIC SCRUB

* Scrub the entire row with low probability (say 1%)

PCM Row

time



OUR SOLUTION: PROBABILISTIC SCRUB

* Scrub the entire row with low probability (say 1%)

PCM Row Line A

Read Line A

Vi

time



OUR SOLUTION: PROBABILISTIC SCRUB

* Scrub the entire row with low probability (say 1%)

PCM Row I Line A

Read Line A

time

Don’t scrub!



OUR SOLUTION: PROBABILISTIC SCRUB

* Scrub the entire row with low probability (say 1%)

PCM Row I

time



OUR SOLUTION: PROBABILISTIC SCRUB

* Scrub the entire row with low probability (say 1%)

PCM Row I Line A

Read Line A

V.

time



OUR SOLUTION: PROBABILISTIC SCRUB

* Scrub the entire row with low probability (say 1%)

PCM Row I I Line A

Read Line A

time




OUR SOLUTION: PROBABILISTIC SCRUB

* Scrub the entire row with low probability (say 1%)

PCM Row

time



OUR SOLUTION: PROBABILISTIC SCRUB

* Scrub the entire row with low probability (say 1%)

PCM Row Line A

Read Line A

Vs

time



OUR SOLUTION: PROBABILISTIC SCRUB

* Scrub the entire row with low probability (say 1%)

PCM Row Line A
Read Line A
%} time

Don’t scrub!



OUR SOLUTION: PROBABILISTIC SCRUB

* Scrub the entire row with low probability (say 1%)

PCM Row J I

_atent Faults

time



OUR SOLUTION: PROBABILISTIC SCRUB

* Scrub the entire row with low probability (say 1%)

PCM Row |-ine I

Latent Faults Read Line B

v,

time




OUR SOLUTION: PROBABILISTIC SCRUB

* Scrub the entire row with low probability (say 1%)

PCM Row |-ine I

Latent Faults Read Line B

v,

time

(&

Don’t scrub!



OUR SOLUTION: PROBABILISTIC SCRUB

* Scrub the entire row with low probability (say 1%)

PCM Row |-ine I

Latent Faults Read Line B

v,

2 Errors! time
Can be corrected

@/5)

(&

Don’t scrub!



OUR SOLUTION: PROBABILISTIC SCRUB

* Scrub the entire row with low probability (say 1%)

PCM Row I-ine l

Latent Faults

Read Line B
‘ %) 2 Errors! time
m& Can be corrected
Don’t scrub!

Probabilistic Scrub improves reliability by 10°times
with negligible impact on performance
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