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Citadel: Efficiently Protecting Stacked Memory from TSV and Large
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Stacked memory modules are likely to be tightly integrated with the processor. It is vital that these memory
modules operate reliably, as memory failure can require the replacement of the entire socket. To make
matters worse, stacked memory designs are susceptible to newer failure modes (e.g., due to faulty through-
silicon vias, or TSVs) that can cause large portions of memory, such as a bank, to become faulty. To avoid data
loss from large-granularity failures, the memory system may use symbol-based codes that stripe the data
for a cache line across several banks (or channels). Unfortunately, such data-striping reduces memory-level
parallelism, causing significant slowdown and higher power consumption.

This article proposes Citadel, a robust memory architecture that allows the memory system to retain each
cache line within one bank. By retaining cache lines within banks, Citadel enables a high-performance and
low-power memory system and also efficiently protects the stacked memory system from large-granularity
failures. Citadel consists of three components; TSV-Swap, which can tolerate both faulty data-TSVs and
faulty address-TSVs; Tri-Dimensional Parity (3DP), which can tolerate column failures, row failures, and
bank failures; and Dynamic Dual-Granularity Sparing (DDS), which can mitigate permanent faults by
dynamically sparing faulty memory regions either at a row granularity or at a bank granularity. Our
evaluations with real-world data for DRAM failures show that Citadel provides performance and power
similar to maintaining the entire cache line in the same bank, and yet provides 700× higher reliability than
ChipKill-like ECC codes.

Extension of Conference Paper: The paper is an extension of “Citadel: Efficiently Protecting Stacked
Memory from Large Granularity Failures” [Nair et al. 2014]. This submission adds the following items that
are not present in the original paper:

—Section 5.5 describes TSV SWAP for Alternate Memory Organizations (HMC-Like and Tezzaron-Like).
—Section 5.6 describes a bucket and balls analysis for SET-based structure design TSV SWAP.
—Section 6 evaluates single-bit ECC such as SECDED with TSV SWAP.
—Section 7.5.4 describes the additional traffic behavior for workloads using 3DP with caching.
—Section 9 proposes a SEC-based optimization to reduce correction latency in the common case of single-bit

errors.

These add more than 30% newer material in terms of giving greater insight into different stacked memory
organizations, optimizing design of TSV SWAP, single-bit ECC schemes with TSV SWAP, analysis of memory
traffic intensity for 3DP, and also proposes a novel technique to optimize correction latency of Citadel for
the common case of single bit errors. We have also expanded all graphs in the Results section to include per
workload results.
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1. INTRODUCTION
The emerging 3D stacked DRAM technology can help with the challenges of power
consumption, bandwidth demands and reduced footprint. One of the key enablers of
stacked memory is the through-silicon via (TSV) technology, which makes it possi-
ble to cost-effectively stack multiple memory dies on top of each other [Kang et al.
2009]. The shorter internal data paths afforded by TSVs reduce capacitance and active
power. By exploiting wide buses [Consortium 2013] or high-frequency SerDes inter-
faces [Standard 2013] and higher levels of internal parallelism, both bandwidth and
random-access latency are improved. It is anticipated that high-performance stacked
memories often will be permanently attached to host processors via direct stacking,
silicon interposers, or other hard-wired interconnects. In such a system, memories
that develop permanent faults must continue to work in order to avoid replacement of
multiple chips which tends to be expensive. These factors motivate the adoption of a
fail-in-place philosophy for designing stacked memory systems [Dubash 2004].

Recent work on DRAM reliability [Sridharan and Liberty 2012] showed that large-
granularity DRAM chip failures, such as bank failures, occur nearly as frequently
as single-bit failures in commodity DIMMs. Stacked memory designs would not only
be subject to these failures but also to newer fault models, such as arising from faulty
TSVs. TSV faults can cause failures of several dies, often manifested as column failures
or bank failures. Thus, stacked memory systems will be more vulnerable to large-
granularity failures. Unfortunately, conventional error correction schemes such as ECC
DIMMs [Silicon Power 2010] are targeted toward correcting random bit errors and
are ineffective at tolerating large-granularity faults. Memory systems can tolerate
large granularity failures using symbol-based coding schemes like ChipKill [Dell 1997].
However, this increases the number of activated chips and total power consumption.

To optimize performance and power for stacked memory, we want to retain the data
for a cache line within a single bank. However, a bank failure would then cause loss
of data for the whole cache line. One can adopt a philosophy similar to ChipKill for
tolerating large-granularity failures for stacked DRAM. In such a design, the data
for a cache line would be striped across several banks (or channels), and a symbol-
based coding can be applied, in which the size of each symbol would be equal to the
amount of data stored in each bank. Unfortunately, such a data mapping would require
the memory system to activate several banks to service a single request. This causes
performance degradation (10% to 25%) due to loss of bank(channel)-level parallelism,
and power consumption (as high as 6× in our evaluations) due to activation of several
banks to service one request.

As shown in Figure 1, ideally we want a system that has the performance and power
efficiency of storing the entire cache line in one bank (NoStripe), and yet maintains
robustness to large granularity faults (Stripe). To that end, this article proposes Citadel,
a robust memory architecture that allows the memory system to retain each cache
line within one bank (delivering high performance and low power) and yet efficiently
protects the stacked memory from large-granularity failures.
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Fig. 1. Striping enhances reliability but sacrifices performance and power efficiency. Ideally, we want to
tolerate large-granularity failures at high performance and low power.

Like ECC DIMMs, which have one additional chip per eight chips, in our study,
Citadel has one extra die (ECC die) with smaller rows along with eight data dies.
Similar to an ECC-DIMM that provides 64 bits of ECC for every 512-bit cache line,
Citadel uses the 64 bits of metadata associated with each 512-bit cache line. Based on
key insights, Citadel employs a three-pronged approach for fault tolerance.

Insight 1—Protect Against Runtime TSV Faults. As faulty TSVs tend to be a major
cause of multi-bank failures in stacked memories, our first idea, TSV-Swap, specifically
targets TSV faults that happen at runtime. DRAM vendors can use manufacture-level
spare TSVs [Hsieh et al. 2010] to repair faulty TSVs at design time. Unfortunately,
manufacture-level sparing does not protect against runtime failures. Citadel proposes
TSV-SWAP, a technique that does not rely on any manufacturer-provided spare TSVs.
Instead, TSV-Swap dynamically exchanges faulty TSVs with non-faulty TSVs with a
remapping circuit. We found that while a data TSV typically affects only 1 bit in a data
line (albeit across many lines), a failure of one of the address TSVs can make half of the
memory unreachable. Thus, address TSVs are much more critical than data TSVs for
system reliability. Our proposal, TSV-Swap, can repair up to eight faulty TSVs, which
can be data, address, or command TSVs.

Insight 2—Detect and Correct Large-Granularity Failure. Even after mitigation of
TSV related faults, the stacked memory is still vulnerable to internal DRAM die faults.
We want to protect stacked memory not only from small-granularity failures (such as
bit-fault or word-fault) but also from large granularity faults such as column-fault,
row-faults, or even complete bank failures. Our second idea, Tri-Dimensional Parity
(3DP), provides highly effective and storage efficient correction for both small and large
granularity failures. The 3DP proposal maintains parity in three dimensions: (1) across
all banks and dies for individual rows, (2) across all rows in all banks within a die, and
(3) Across all rows in single bank across all dies. Each line is equipped with CRC-32
[Peterson and Brown 1961] to detect data errors. If any error is detected, it is corrected
using the parity information of 3DP. 3DP provides 130× higher resilience than just
applying 2D-ECC. 3DP achieves this with only 1.6% storage overhead, compared to the
25% storage required for prior 2D schemes.

Insight 3—Isolate Faulty Memories with Efficient Sparing. When a fault is detected,
data is restored using the correction capability of 3DP. However, modules with perma-
nent faults would incur the correction overheads frequently. To avoid such frequent cor-
rection, we would like to redirect a faulty memory unit to a spare area. Unfortunately,
if the sparing granularity is too fine, then it incurs significant tracking overheads (e.g.,
if a bank fails then thousands of rows get spared to the spare area). If the sparing
granularity is too coarse, then it results in significant wasted space (e.g., sparing at a
bank granularity would be wasteful if only one row is faulty). We make a key observa-
tion that a bank typically has either one or two row failures, or has thousands of row
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Fig. 2. Granularity of faults that occur in a DRAM Chip/Die. Faults can be at granularities of bit, column,
row, bank(s), TSVs, and I/O links for stacked memory systems. Common wiring faults within a chip can
cause multiple banks to fail.

failures (due to a sub-array or bank failure). Our third idea, Dynamic Dual-Grained
Sparing (DDS), exploits the bimodal behavior of faulty units and efficiently spares
either at a row or bank granularity. Our proposed design of DDS can spare two faulty
banks along with several row failures.

We perform reliability studies using real field data and perform sensitivity studies
when field data is unavailable (e.g., for TSVs). Our evaluations, with an industry-
grade fault simulator [David and Prashant 2014], shows that Citadel provides 100×
to 1,000× higher reliability while still retaining power and performance similar to a
system that maps the entire cache line in the same bank. Citadel achieves this using
a storage overhead similar to ECC DIMMs (14% vs. 12.5%).

2. BACKGROUND AND MOTIVATION
Stacked memory systems have lower energy per bit and higher bandwidth when
compared to their 2D counterparts. However, to obtain the power-efficiency and high
bandwidth of stacked memory, the system must first address reliability challenges. As
shown in Figure 2, failures can occur in a memory system at different granularities
[Sridharan and Liberty 2012; Schroeder et al. 2009; Schroeder and Gibson 2010;
Sridharan et al. 2013].

2.1. Memory Faults for Traditional Systems
A memory DIMM consists of multiple DRAM chips. A DRAM chip is organized into
banks, where all banks share a common data bus. These banks are composed of rows
and columns and are divided into sub-arrays. The banks contain row and column
decoders that activate the word lines or select bit lines associated with the memory
request. Faults at the DIMM level can affect all DRAM chips within a DIMM. However,
the faults in individual chips are largely independent of each other. In this paper, the
definitions for the chip faults follow that of Sridharan et. al. [Sridharan and Liberty
2012] and are represented in Figure 2. We note that banks are operated almost inde-
pendently and share only wiring such as data, address, and command buses [Yoo et al.
1996; Shiratake et al. 1999]. Bank and rank faults occur mainly from faulty data or
address or command buses.

2.2. Transposing Faults onto 3D Stacked Memories
Layout of an individual die in 3D stacked memory systems shows that its internal
organization is very similar to that of a chip in conventional 2D memory systems [Kim
et al. 2011; Pawlowski 2011; Hollis 2012; Bolaria 2011]. To a first order, this article
transposes failure rates for all fault types except complete bank and complete rank for
current 2D memory system onto stacked memory systems. The key difference is the
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Fig. 3. HBM has a channel(s) per die and all banks in this channel are on the same die. HBM specification
includes separate Data and ECC lanes.

introduction of TSVs for connecting data and address lines [Kang et al. 2009]. Due to
this, complete bank faults and complete rank faults in any 3D stacked memory are now
influenced by TSV faults.

2.3. Stacked Memory: Organization and ECC Layout
There are several design prototypes of stacked memory, including the High-Bandwidth
Memory (HBM) [Standard 2013], Hybrid Memory Cube (HMC) [Hybrid Memory Cube
Consortium 2013; Pawlowski 2011], and Octopus from Tezzaron [Tezzaron Semicon-
ductor 2010]. These standards differ in their data organization and also share TSVs
differently. However, these stacked memory systems fundamentally have the same
layout. In our study, we perform comprehensive analysis on an HBM-like design. Sub-
sequently, we also extend our analysis for HMC and Tezzaron designs. Figure 3 shows
internal stack organizations of HBM. Each channel may be fully contained in each
DRAM die in the stack. A complete set of TSVs and buffers connect each channel to
the external interface.

The stacked memory consists of D data dies and E ECC dies (depending on value of
D and the ECC implementation). ECC can be stored in an additional space provided
by D dies or can be distributed across D + E dies. Similar to ECC-DIMMs, every data
request for a 512b data line also concurrently fetches its 64b ECC metadata through
dedicated ECC lanes [Standard 2013]. In our paper, we use an 8-die stack with one
additional ECC die for ECC or metadata information. Our organization has the same
storage overhead as incurred in ECC DIMMs (12.5%).

2.4. Data Striping in 3D Memory Systems
The way data is striped in the memory system has a significant impact not only on
power and performance but also reliability of the overall system. A conventional (2D)
DIMM stripes a cache line across several chips. Similarly, a stacked memory system
can place the cache line in one of three ways:

—Same Bank: Within a single bank in a single channel.
—Across Banks: Within a single die (channel) and striped across banks.
—Across Channels: Within multiple dies (channels) and striped across one bank in

each channel.

2.5. Impact of Data Striping
If we use an organization that places the entire cache line in the same bank, then a fail-
ure of the bank would cause data loss of the entire cache line. To protect stacked DRAM
from bank failures or channel failures, we can stripe data across banks or channels.
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Fig. 4. Impact of data striping on Reliability, Power, and Performance. Striping data across banks or channels
and using a strong 8-bit symbol-based code (similar to Chipkill) gives higher reliability. However, striping
data across banks or channels comes at a significant price in performance (11%–25%) and power (3.8× to
4.7×).

Table I. Stacked Memory Failure Rates (8Gb Dies)

Fault Rate (FIT)
DRAM Die Failure Mode Transient Permanent
Single bit 113.6 148.8
Single word 11.2 2.4
Single column 2.6 10.5
Single row 0.8 32.8
Single bank 6.4 80

TSV(Complete Bank/Channel)
TSV (Address and Data) Sweep: 14–1,430 FIT

In such a case, each bank/channel would be responsible for only a portion of the data
for the cache line, and a correction mechanism (possibly ECC scheme) can be used to
fix the sub-line-granularity fault. This organization activates multiple banks/channels
to satisfy each memory request and reduces bank-level parallelism. Subsequently,
stacked DRAM consumes much higher power, as it activates multiple banks.

Figure 4 compares the reliability for three data mapping schemes for strong 8-bit
symbol-based ECC (similar to ChipKill) for different TSV FIT rates (other parame-
ters are described in Section 3). System failure is the occurrence of an uncorrectable
fault within a seven-year lifetime. Across-Channels configuration provides the highest
reliability.

Unfortunately, the reliability benefits of Across-Banks and Across-Channels come at
a significant price in terms of performance and power. Figure 4 shows that striping data
Across-Banks causes a slowdown of approximately 10%, and Across-Channels causes
a slowdown of approximately 25%. Furthermore, Across-Channels and Across-Banks
consumes 3.8× to 4.7× more active power than the Same-Bank mapping (Across-
Channels takes longer to execute, consuming energy over a longer time, hence the
relative reduction in power compared to Across-Banks).

Our Goal: The goal of this article is to obtain high performance and power-efficiency
by maintaining the data mapping of a Same-Bank configuration while still making
stacked memory robust to large granularity faults. We describe our methodology before
describing our solutions.

3. EXPERIMENTAL METHODOLOGY
3.1. Fault Models and Failure Rates
Real-world field data from Sridharan and Liberty [2012] provides failure rates as
Failures In Time (FIT) for DRAM chips. As TSV failure data is not publicly available,
we perform a sensitivity study for TSV device FITs. We assume 0.01 to 1 device failures
in 7 years (translating to Device FIT of 14 to 1,430) due to TSV faults. Table I shows
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Table II. Baseline System Configuration

Processors
Number of cores 8
Processor clock speed 3.2GHz

Last-level Cache
L3 (shared) 8MB, 8-way, 24 cycles
Cache-line size 64B

DRAM 2×8GB 3D stacks
Memory bus speed 800MHz (DDR3 1.6GHz)
Memory channels 8/Stack
Capacity per channel 1GB
Banks per channel 8
Row-buffer size 2KB
Data TSVs 256/Channel
Addr TSVs 24/Channel
tWT R-tC AS-tRC D-tRP -tRAS 7-9-9-9-36

the failure rates per billion hours (FIT) and the failure sensitivity for our evaluations
(from Nair et al. [2014]).

3.2. Simulation Infrastructure
Reliability. To evaluate reliability of different schemes, we use a industry-grade fault
and repair simulator FaultSim [David and Prashant 2014]. We configure a scrubbing
interval of 12 hours. After intervals of 12 hours, correctable transient faults are re-
moved due to the scrubbing mechanism. We conduct the Monte Carlo simulations for
105to 106 trials (more trails for schemes that show lower failure rates, to improve
accuracy) for lifetime of 7 years and report an average.

Performance. The baseline configuration is described in Table II. The in-house system
simulator uses 8 cores which share an 8MB LLC. The memory system uses 3D stacks
with eight 8Gb dies for data and one additional die for ECC or metadata in the case of
Citadel. Virtual-to-physical translation uses a first-touch policy with a 4KB page size.

For our evaluations, we chose all 29 benchmarks from the SPECCPU 2006 [Henning
2006] suite. We also used memory-intensive benchmarks from the PARSEC [Bienia
et al. 2008] suite, such as black, face, ferret, fluid, freq, stream and swapt. From the
BioBench [Albayraktaroglu et al. 2005] suite, we used tigr and mummer. We generated
a representative slice of 1 billion instructions using Pinpoints [Patil et al. 2004].

Our evaluations execute the benchmark in rate mode, in which all eight cores execute
the same benchmark. We perform timing simulation until all the benchmarks in the
workload finish execution, and we measure the execution time as the average execution
time of all eight cores.

Power. We measure active (read, write, refresh, and activation) power using the
equations from the Micron Memory System Power Technical Note for 8Gb chip [Micron
2007, 2010]. As per HBM, the refresh interval is set to 32ms [Standard 2013; JEDEC
2011].

4. CITADEL: AN OVERVIEW
We propose Citadel, a robust memory architecture that can tolerate both small- and
large-granularity faults effectively. Figure 5 shows an overview of Citadel. HBM pro-
visions 64 bits of ECC for every 64 bytes, possibly in a separate ECC die [Standard
2013]. Similarly, Citadel provisions each 64B cache line with 64 bits of metadata.
However, Citadel uses the ECC die to store different types of metadata information,
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Fig. 5. Overview of Citadel.

each geared toward tolerating different types of faults. Each 64B (512b) transaction
fetches 40bits of metadata over ECC lanes. The remaining 24 bits are used to provision
sparing of faulty blocks. Citadel consists of three component schemes: TSV-SWAP, Tri
Dimensional Parity (3DP) and Dynamic Dual-Granularity Sparing (DDS).

Citadel differentiates faults in memory elements from faults in TSVs. The TSV-
SWAP technique of Citadel can tolerate TSV faults by dynamically identifying the
faulty TSVs and decommissioning such TSVs. The data of faulty TSVs is replicated in
the metadata (up to 8 bits). TSV-SWAP protects against faulty data TSVs as well as
faulty address TSVs, which tend to be even more severe in practice. Thus, TSV-Swap
provides resilience to TSV faults at runtime without relying on manufacturer provided
spare TSVs.

Citadel relies on CRC to detect data errors. Once an error is detected, it is corrected
using the 3DP scheme, which maintains parity in three dimensions: across banks,
across rows within one die, and across rows of different dies. 3DP can not only tolerate
small-granularity failures such as bit and word failures but also large-granularity
failures such as row and bank failures. 3DP uses one of the data banks to implement
bank-level parity (storage overhead of 1.6%).

Citadel employs data sparing to avoid frequent correction of faulty data. This not
only prevents the performance overheads of error correction but also makes the system
more robust, as otherwise permanent faults gets accumulated over time. The DDS
sparing scheme of Citadel exploits the observation that a bank either has a few small
granularity faults (less than 4) or many (more than 1,000) faults; DDS spares at either
a row granularity or a bank granularity. DDS uses three out of eight banks of the
metadata die for sparing.

When combined, the three techniques of Citadel can tolerate TSV and multi-
granularity granularity faults while consuming a storage overhead similar to an ECC
DIMM (14% for Citadel versus 12.5% for ECC DIMM) and allowing the data of the cache
line to be resident in the same bank. The next sections describe the three techniques
in detail.

5. MITIGATING TSV FAULTS WITH TSV-SWAP
Stacked memory systems use TSVs to connect data, address, and command links be-
tween the logic die and DRAM dies. Without loss of generality, this section explains
the working of TSVs, fault models, and our solution.

5.1. Background on TSV
The HBM system in this article consists of 8 channels of 256 Data TSVs (DTSV)
with 24 address/command TSVs (ATSV). A memory request presents an address and
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Fig. 6. Faults in Data TSV (DTSV) and Address TSV (ATSV). TSV-SWAP creates standby TSVs from existing
TSVs to tolerate TSV faults (such as DTSV-1 and ATSV-0).

commands over external address/command links. Internally, TSVs transfer the address
and command information for the channel to the corresponding die. For a read request
for one cache line, the entire 2KB of data for the row (called a DRAM page) is addressed
and brought into the sense amplifiers. From the 2KB (16Kb) page, 64B (512 bits) of
data are multiplexed and transferred via the TSVs. Because there are only 256 DTSVs,
each TSV will transfer data in two DDR cycles. The DRAM row (2KB) contains data
for 32 cache lines. Each of these 32 cache lines is multiplexed to the same set of TSVs.
Furthermore, all banks within the same die share the TSVs, which means a fault in
the TSV causes multi-bank failures.

5.2. Severity of TSV Faults: DTSV vs. ATSV
The vulnerability of the system to TSV faults depends on whether the fault happens
in DTSV or ATSV, as shown in Figure 6. Because the burst size for the HBM design is
2, each DTSV fault will cause 2 bits to fail in every cache line. For example, a failure
of DTSV-1 will cause bit[1] and bit[257] of each cache line to fail. Faults in ATSV are
even more severe; a single fault can make half of the memory unreachable, because
the decoder is unable to address half of the memory space. For example, a failure of
ATSV-0 makes half of the rows (Row-0 to Row-3) unreachable.

5.3. Efficient Runtime TSV Sparing with TSV-SWAP
TSV faults at manufacturing time are typically mitigated by spare TSVs provisioned
for enhancing yield [Hsieh et al. 2010]. Such spare TSVs may or may not be available to
the user to tolerate faulty TSVs that happen at runtime. Our proposal, TSV-Swap, can
mitigate TSV faults at runtime without relying on manufacturer-provided spare TSVs
and distinguishes between the severity of faults in address and data TSVs. TSV-SWAP
differentiates between address and data TSVs with the help of a built-in test logic.
Instead of relying on spare TSVs, it creates a pool of standby TSVs from the available
DTSVs and uses these standby TSVs to repair the faulty DTSV and ATSV. TSV-SWAP
consists of three steps, which are described as follows.

5.3.1. Creating Standby TSVs. TSV-SWAP creates stand-by TSVs by duplicating the data
of predefined TSV locations into the 8-bit swap data provided by metadata in Citadel
(see Figure 5). Our design designates four TSVs as standby TSVs from a pool of 256
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Fig. 7. TSV-SWAP is effective at mitigating TSV faults and provides almost similar performance to an ideal
ChipKill system.

DTSV (DTSV-0, DTSV-64, DTSV-128, and DTSV-192). As each DTSV bursts two bits
of data for each cache line, 8 bits from each cache line are replicated in the metadata
(bit[0], bit[64], . . . , bit[448]). The four standby TSVs that are created are used to repair
any faulty TSVs that occur at runtime.

5.3.2. Detecting Faulty TSV. Citadel computes CRC-32 using address and data informa-
tion. A TSV error will result in an incorrect checksum. To differentiate between TSV
faults and data faults, TSV-SWAP employs two additional rows (row1-fixed and row2-
fixed) per die that stores a fixed sequence of data. These rows are at locations where
each bit of addresses are the inverse of each other (e.g., address 0x0000 and 0xFFFF).
On detecting a CRC mismatch, data from these fixed rows are read and compared
against the predecided sequence. If there is a mismatch between the compared values,
the error is highly likely (but not always) due to a TSV fault. The memory system now
invokes the BIST logic, which checks for TSV faults.

5.3.3. Redirecting Faulty TSV. TSV-SWAP provisions both the DTSV and ATSV with a
redirection circuit that can replace a faulty TSV with one of the standby TSVs. The
redirection circuit is simply a multiplexer and a register. On detecting a TSV fault,
the BIST circuitry enables the TSV redirection circuit as a corrective action against
the faulty TSV. The BIST circuitry then connects one of the standby TSVs to replace the
faulty DTSV or ATSV.

5.4. Result: TSV-SWAP with ChipKill
We analyze the effectiveness of TSV-Swap at mitigating TSV faults for a system employ-
ing ChipKill. Unfortunately, the FIT rate data for TSV faults is not available publicly,
so for this section, we assume a high TSV fault rate (1,430 FIT, corresponding to one
TSV-caused die failure every 7 years) to assess the effectiveness of TSV-Swap at high
TSV fault rate. Figure 7 shows the probability of system failure for the three configura-
tions (No TSV-Swap, With TSV-Swap, and No TSV Faults) for the three data mappings.
For all systems, TSV-SWAP achieves a resilience similar to that of not having any TSV
faults, even with the assumed high failure rate for TSVs. We conclude that TSV-SWAP
is highly effective at mitigating TSV failures.

5.5. TSV-SWAP for Alternate Stacked Memory Organizations
Until now we have evaluated our design of TSV SWAP for an HBM-like organization.
However, stacked memories can have alternate organizations in the placement of TSVs.
Figure 8 shows two alternate organizations of stacked memory systems that reorganize
channels and banks by changing the placement of TSVs.

The first organization of stacked memory, Organization-A, is an HMC-like organi-
zation. In Organization-A, the channel(s) are organized vertically across dies. Every
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Fig. 8. Alternate 3D stacked memory organizations. Organization-A has channels across dies (vertically)
and all banks in this channel are in different dies and is similar to an HMC system. Organization-B has
channels across dies (vertically) and is similar to a Tezzaron stacked memory system. In this case, each die
has a portion of all banks in that channel.

Fig. 9. Organization-A (HMC-like) and Organization-B (Tezzaron-like) can be more sensitive to TSV faults
when compared to an HBM-like organization. TSV Swap mitigates almost all TSV faults.

die contributes a single bank to each channel. The TSVs are distributed across dies
and every channel in every die requires individual buffers. The second organization,
Organization-B, of stacked memory is a Tezzaron-like organization. In Organization-
B, the channel(s) that are organized vertically across dies. However, every die holds a
portion of multiple banks for a channel. Because of this, the number of address and
data TSVs per channel per die increases.

Figure 9 shows the probability of system failure for two alternate stacked memory
configurations. Our evaluations show that Tezzaron-like designs are more prone to TSV
faults because higher density of TSVs for data and address. As every physical bank
is further divided into several logical banks, placing data across these logical banks
has the same effect as placing data in the same bank. Because of this, the across bank
data placement has the lowest reliability in a Tezzaron-like design. An HMC-like design
has similar trend to that of a HBM-like configuration. Even for alternate organizations,
TSV-SWAP achieves a resilience similar to that of not having any TSV faults.

5.6. Reducing the Complexity of TSV-SWAP
Architecting any Data TSV to swap between address, command and other data TSVs
increases the complexity of the swap logic. To overcome this, TSV-SWAP uses a set
structure for swapping TSVs. In this structure, a set of TSVs (address/control+data)
co-located with a fixed Standby Data-TSV (S-TSV). Only one TSV encountering a fault
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Fig. 10. Set-based TSV-SWAP can handle 10× more TSV failures before it causes system failure. In our
analysis, a set consists of 70 TSVs, 63 data+1 Data Swap-TSV+6 address/command TSVs.

Fig. 11. TSV-SWAP is effective at mitigating TSV faults and provides almost similar performance to an
ideal system employing SECDED codes.

can be swapped with its S-TSV in a set. In our analysis, a set consists of 70 TSVs, 63
data+1 Data Swap-TSV+6 address/command TSVs. We perform bucket and balls anal-
ysis to determine the probability of system failure for such set group. Figure 10 shows
that such set-based TSV-SWAP can handle 10× more TSV failures when compared
to a system that does not employ TSV-SWAP. An ideal fully associative (complex)
TSV-SWAP circuitry provides another 10× higher reliability when compared to the
SET-based scheme.

6. EFFECTIVENESS OF TSV SWAP FOR MEMORY SYSTEM EMPLOYING SINGLE ERROR
CORRECTION AND DOUBLE ERROR DETECTION (SECDED)

Until now, we have assumed a system that employs a symbol-based error correcting
code like ChipKill. These symbol-based codes can correct large-granularity faults and
single-bit errors. Fortunately single or multiple random-bit errors can be corrected
using Bose-Chaudhuri-Hocquenghem (BCH) codes, including Hamming Codes [Lin and
Costello 2004]. Hamming codes have a bit storage overhead of log2(Size of the Code
Word)+1 (including additional error detection). They provide single error correction,
double error detection (SECDED) computed over an 8B codeword requires 8 additional
bits for every 64 bits. Decoding and encoding complexity, check bit overhead and latency
increase with the strength of the ECC.

Figure 11 shows the effectiveness of TSV SWAP for a system that employs SECDED-
based ECC. SECDED provides lower reliability when compared to ChipKill; however,
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Fig. 12. Dimension 1 stripes parity across a single row in every bank for all dies and generates a row in
the parity bank. Dimension 2 stripes parity across all row in every bank within a die and generates a parity
row. Dimension 3 stripes parity across all rows in single bank across dies and generates a parity row.

TSV SWAP enables SECDED to overcome errors due to TSV faults and provides relia-
bility close to an ideal system that employs SECDED protection.

Furthermore, Figure 11 shows that Tezzaron-like designs are more vulnerable to
TSV faults because of their higher density of TSVs. Furthermore, since TSVs may
cause large-granularity failures, SECDED is ineffective in mitigating them. Subse-
quent sections assume that the system employs symbol-based ECC code (ChipKill
Like) and TSV faults are mitigated with TSV SWAP.

7. TRI-DIMENSIONAL PARITY (3DP)
The second component of Citadel targets efficient error detection and error correction of
data values. Several error detection codes such as SECDED, Checksums, and CRC-32
or CRC64 are used in commercial systems [Peterson and Brown 1961; Koopman 2002;
Li et al. 2011]. We found that CRC-32 has reasonable detection coverage and storage
efficiency. Citadel provisions each line with a 32-bit cyclic redundancy code (CRC-32),
which is highly effective1 at detecting data errors [Peterson and Brown 1961; Sim et al.
2013]. Citadel uses a novel scheme called Tri-Dimensional Parity (3DP) to correct data
errors at multiple granularities. In 3DP, even if one dimension encounters two faults,
they are highly unlikely to fall into the same block in the other two dimensions. On
detecting an error, the memory contents are read and the error gets corrected using
parity.2

7.1. Design of Dimension 1
Figure 12 shows the design of Dimension 1. It computes the parity for a row in every
bank across dies as specified in Equation (1). This requires dedicating a range of single
bank addresses as a parity bank for the entire stack (1.6% overhead, for our 8-channel

1The probability of overlapping CRC-32 checksum is 1
232 ≈ 10−10. For false negative, the failed element

should have an overlapped CRC-32. The probability that an element fails is less than 10−6. Thus, the
effective probability of an overlapping CRC-32 is negligibly small (% 10−16).
2Error correction may take 700ms; however, given that correction is invoked once every few months, this
results in negligible performance overheads. We discuss a scheme to avoid persistent errors in the next
section.
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system, with 8 banks for each channel).3 A parity bank helps mitigate single-bank
faults. However, a one-dimensional parity (1DP) scheme is intolerant of multiple faults.
Even if a single-bit failure occurs after a single-bank failure, it results in data loss.

ParityBank[rown] = Die0.Bank0[rown] ⊕ Die0.Bank1[rown] ⊕ · · · ⊕ Die7.Bank6[rown]
(1)

7.2. Design of Dimensions 2 and 3
Figure 12 shows the design of Dimensions 2 and 3. In Dimension 2, parity is taken
across all rows in all banks within a die. Equation (2) shows the computation Parity
Row in Dimension 2 for Die 0. Because there are 9 dies (including the metadata die),
the storage overhead is 9× the size of a DRAM row for each dimension.

ParityRowDim2Die0 = [Bank0[row0] ⊕ Bank0[row1] ⊕ · · · ⊕ Bank7[rown]]Die0 (2)

Dimension 3 computes parity across dies for all rows in a single bank. Equation (3)
shows the computation for Parity Row in Dimension 3 for Bank 0. Because there are 8
banks per die, the storage overhead of is 8×size of DRAM row. While Dimension 1 is
designed to tolerate bank failures, Dimensions 2 and 3 prevent independent row, word,
and bit failures. When used together, 3DP can correct multiple errors that occur at the
same time within a stack.

ParityRowDim3Bank0 = [Die0[row0] ⊕ Die0[row1] ⊕ · · · ⊕ Die7[rown]]Bank0 (3)

7.3. Reducing Overheads for Parity Update
We avoid the performance overheads of updating the parity for Dimensions 2 and 3 by
keeping the parity information on-chip. The size of the row buffer of the stacked DRAM
we simulate is 2KB [Consortium 2013; Standard 2013]. Thus, maintaining Dimensions
2 and 3 would require a storage overhead of 34KB (9 rows for Dimension 2 and 8 rows
for Dimension 3), which can be kept at the memory controller. Thus, updating the
parity for Dimensions 2 and 3 can be done on-chip with negligible timing and power
overheads.

The total size of parity for Dimension 1 is equal to 1Gb (128MB), which would be
impractical to duplicate at the memory controller side. To reduce the parity update
overheads for Dimension 1, we employ parity caching within the on-chip LLC. For
Dimension 1, every parity cache line is responsible for 63 data lines from 63 different
banks. Thus, we expect accesses to parity lines to have very high temporal locality.
Figure 13 shows the operation of a system that implements on-demand parity caching
within the LLC for a writeback request to a data line (action ).

To update the parity information, we need to get the XOR of the old data and new
data of the line for which a writeback request is being made. The memory controller
performs such a Read Before Write (RBW) request to obtain the old information of
the line (action ). As the row was recently opened, RBW tends to be a row-buffer
hit. The XOR forms a parity update. The memory controller then checks the LLC for
the parity line associated for the address for which writeback is being made. In the

3Parity bank is an abstraction, and such a bank can have addresses across multiple physical banks in a
stack. This can be done by swapping 2 bits (1 lower bank bit and 1 higher channel bit) while addressing the
parity bank. This prevents one physical bank from becoming a bottleneck.
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Fig. 13. Memory system employing on-demand parity caching for Dimension 1 within the LLC (figure not
to scale).

Fig. 14. Hit rate for parity caching of Dimension 1.

common case (85% of the time, on average) the parity line is found in the LLC and
the parity is updated with the XOR value (action ). In the uncommon case that the
parity information for Dimension 1 is not found in the LLC, then parity information is
fetched from the memory (action ), installed in the LLC, and the parity information
is updated.

Figure 14 shows the LLC hit-rate for parity update requests. On average, the hit
rate is 85%, showing that parity caching is quite effective. The BIOBENCH work-
loads mostly perform read operations, with writes sparsely distribute between a large
number of writes. Hence, read requests tend to evict parity lines. However, since the
frequency of writes for BIOBENCH is less, a low hit rate for parity update results in
negligible performance loss.

7.4. Error Detection and Correction Using 3DP
On every read request, 3DP works in two phases. The first phase consists of fast
error checking using CRC-32 code. For most requests, this phase will report no errors.
However, in the rare case of a reported error (once in a few months), the second phase
is activated and the whole memory is read. 3DP then isolates the fault(s) using all
three dimensions of parity across the stack. If it is a small granularity bit, word, or row
fault, then Dimensions 2 and 3 parity can fix such errors. However, large-granularity
faults, such as column and bank faults, are corrected using Dimension 1 parity. In the
event of simultaneous multi-granularity faults, Dimensions 2 and 3 parity help isolate
small-granularity faults and Dimension 1 parity helps isolate the large-granularity
fault.

7.5. Results for 3DP
The 3DP scheme allows the memory system to retain the cache line within the same
bank, and yet be able to correct bit, word, row, column, and bank failures. We compare
the resilience, performance, and power of the 3DP scheme to a theoretical scheme that
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Fig. 15. 3DP has 7× more resilience than an 8-bit symbol-based ECC code for tolerating large-granularity
failures in stacked memory. 3DP has 10× more resilience than 2DP.

Fig. 16. Normalized execution time: 3DP has negligible slowdown, whereas data striping causes 10%–25%
slowdown.

employs an 8-bit symbol-based coding with data striping. For a fair comparison between
the two schemes, we assume that TSV-Swap is enabled for both the 8-bit symbol-based
code and 3DP.

7.5.1. Resilience. Figure 15 compares the multi-dimensional parity scheme with a very
strong 8-bit symbol-correcting code striped across channels. Enabling only a single di-
mension of parity (at Bank Level) does not improve resilience against multiple faults
that occur concurrently. A single-dimensional parity scheme is unable to correct these
faults. By enabling all three dimensions, 3DP achieves a 1,000× improvement in re-
silience. Furthermore, 3DP achieves 7× stronger resilience than an 8-bit symbol-based
ECC because it can handle higher number of multiple concurrent faults.

7.5.2. Performance. Figure 16 compares the execution time of 3DP to the organizations
that stripe data either across a bank or a channel. The execution time is normalized
to a baseline that retains the cache line within the same bank and pays no overhead
for error correction. The 3DP scheme with caching has performance within 1% of the
baseline, and 3DP without caching degrades performance by 4.5%. Thus, parity caching
is highly effective at mitigating the performance impact of parity updates. Alternative
schemes, that rely on striping the data in different banks or channels, degrade perfor-
mance by as much as 10% to 25%, on average, due to the loss of bank-/channel-level
parallelism. Thus, 3DP not only improves the resilience of stacked memory compared
to data striping but also helps brings the performance impact of fault tolerance to a
negligible level.

7.5.3. Power. Accessing multiple banks or channels to satisfy every memory request
also has the disadvantage that it consumes significantly higher power. Our proposed
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Fig. 17. Active power consumption: 3DP has negligible power overheads, whereas data striping has 3× to
5× greater overhead.

Fig. 18. Percentage of additional memory traffic: 3DP with Dimension 1 caching, on an average incurs only
8% with a maximum of 40% for workloads with low LLC dimension parity hit rate.

3DP design allows Citadel to place the entire cache line in one bank and thus activate
only one bank per read request. This not only reduces the activation power but also
improves memory-level parallelism, compared to the Across-Bank and Across-Channel
configuration. Figure 17 shows the active power for 3DP, Across-Bank, and Across-
Channel configuration, normalized to the fault-free baseline that places the cache line
in the same bank. On average, 3DP increases active power by only 4%, whereas Across-
Bank and Across-Channel configurations increase active power by almost 3× to 5× of
higher bank/channel activations and row conflicts.

7.5.4. Additional Memory Traffic. 3DP updates Dimension 1 parity for every write and
accesses this from memory. Because of this, there is additional traffic on every write.
To overcome this, 3DP uses parity caching of Dimension 1 parity. Figure 18 shows the
additional traffic after caching Dimension 1 parity. On average, dimension-1 caching
helps in reducing the average additional memory traffic to 8%. The additional memory
traffic is correlated to the hit rate of Dimension 1 parity in last-level cache. For instance,
omnetpp and sjeng have low Dimension 1 parity hit rates and, therefore, have up to
35% higher traffic. Since writes in BIOBENCH are sparsely distributed, additional
memory traffic does not have a significant impact on its performance.

8. DYNAMIC DUAL-GRANULARITY SPARING (DDS)
The 3DP scheme performs error correction by recomputing the data based on parity
information. However, this can be a time-consuming process (recomputing parity and
isolating the fault in each dimension). Fortunately, faults do not occur frequently, so
employing a slow correction mechanism is a viable option. However, if the faults are
permanent, then the correction scheme will be invoked frequently and cause unaccept-
able performance degradation. Citadel avoids this by using dynamic sparing, whereby
a data item once corrected is redirected to an alternate location. The key question in
designing a data-sparing scheme is the granularity of sparing. Sparing at row granu-
larity would be storage efficient; however, it would be fairly complex to tolerate bank
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Fig. 19. Permanent fault affects either very few (<4) rows or large number of (>1,000) rows.

Table III. Number of Failed Banks
(for a System with ≥1 Bank Fail)

Num Faulty Banks 1 2 3+

Probability 66.98% 32.98% 0.04%

failures, as the redirection structures associated with row sparing would require sev-
eral tens of thousands of entries. We can implement sparing at a bank granularity
but suffer significant underutilization of spare area. Thus, uniform sparing is either
complex or inefficient. To address this dichotomy, Citadel is provisioned with Dynamic
Dual-granularity Sparing (DDS). We present the key observation that motivates DDS.

8.1. Key Observation: Failures Tend to be Bimodal
Only for the analysis in this section, we will classify all faults that are smaller than or
equal to a row fault as causing a row failure. These faults will consume one entry for
a row-sparing architecture. A large-granularity fault would consume many entries of
row sparing. Figure 19 shows the distribution of the number of rows that are used by
a faulty bank, on average, based on Monte Carlo simulations using FaultSim [David
and Prashant 2014].

The number of failures show a bimodal distribution. The smaller-granularity faults
do not occur in many multiples. In fact, in all our simulations, no more than two
rows per bank were affected by a small-granularity fault within a scrubbing interval.
However, there are two peaks; one at 5,200 rows (most likely due to sub-arrays) and
another at 65K rows (size of a bank). A row-sparing architecture would be not effective
at tolerating 65K spare rows for a failed bank, because the sparing-associated table
would become impractically large to build and search on every access. Therefore, DDS
implements two granularities of sparing: either a row or a bank.

8.2. Budgeting Spare Rows and Spare Banks
DDS partitions faults into small- and large-granularity faults and then replaces small-
granularity faults with rows and large-granularity faults with a bank. Based on the
data shown in Figure 19, we deem any bank having more than four faulty rows as a
bank failure and spare that bank. Given that a bank can have at most four row failures
before the bank gets spared, the number of spare rows required would be equal to four
times the number of banks (64 banks will have 256 spare rows).

The number of spare banks depends on the bank failure rate. Table III shows the
distribution of faulty banks for a system that has at least one failed bank (more than
four row faults), derived using Monte Carlo simulations with FaultSim [David and
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Prashant 2014]. Even under our conservative definition of bank failure, we need at
most two spare banks to handle 99.96% of the systems that have a bank failure, so we
employ two spare banks in our design.

8.3. Design of Dynamic Dual-Granularity Sparing
DDS has two components;: the spare area and the redirection table. Because we employ
two granularities of sparing, we have two redirection tables: one at row granularity
and the other one at a bank granularity.

8.3.1. Spare Area. The metadata die in Citadel has eight banks. TSV and 3DP use five
banks within the metadata die for storing CRC-32 and TSV-SWAP–related information.
DDS uses the three remaining banks for sparing. These three banks are partitioned
into coarse-granularity sparing banks (spare bank-0 and spare bank-1) and a fine-
granularity bank (spare bank-2) for row-based sparing.

8.3.2. Row Remap Table (RRT). DDS uses RRT to associate faulty row addresses with
spare row addresses. Each RRT entry contains a valid bit (1), the source row ID (16 bits),
and a destination row ID (16 bits). Each fault is tagged with a faulty row address and
its corresponding spare address. Because DDS supports at most four spare rows for
each bank, each bank has four entries in RRT. The overhead of RRT for our 8-die (eight
banks per die) system is approximately 1KB and the RRT is stored on-chip. A memory
access will check the four RRT entries of the given bank for a valid row ID match. On
a valid match, the spare row is accessed.

8.3.3. Bank Remap Table (BRT). If all four spare rows dedicated to a bank get exhausted,
and a new fault appears, then the fault is treated like a large-granularity (bank) fail-
ure and coarse-granularity sparing is invoked. The data from the failed bank is re-
paired and relocated to the spare bank. A two-entry Bank Remap Table (BRT) provides
redirection for faulty banks. Each BRT entry contains a valid bit, the ID of the failed
bank (6-bit ID), and ID of the spare bank (1-bit spare bank ID, to select one of two
spare banks). Prior to looking up the RRT, the BRT is located on-chip and is probed on
every memory access for a match. On a BRT hit, the spare bank is accessed.

9. SINGLE ERROR CORRECTION (SEC) TO MITIGATE CORRECTION LATENCY
Several studies have shown that soft errors (α particle strikes), scaling errors, and
retention errors are usually manifested as single bit errors. Unfortunately, Citadel, in
a worst case, can take up to 700ms to correct such errors. We propose using Single
Error Correction (SEC) to optimize Citadel for the common case of single bit errors.
Single Bit Error Correction using Hamming Code for a 512-bit cache line requires an
additional 10 bits.

We propose two techniques to implement SEC in Citadel without using additional
area:

—First, we do not use an additional bank for sparing small granularity failures. We
propose using the LLC to store values from these failed rows persistently. This will
reduce the capacity of LLC by only 256KB (3.3% for an 8MB LLC).

—Second, since SEC uses 10 bits, we need space to store these additional 10 bits. To do
this, we employ the recently unused additional bank (previously used to spare small
granularity faults) to store 8 bits per cache line (1 bank every 64 banks). To accomo-
date additional two bits, we downgrade CRC-32 (32bits) into CRC-30 (30 bits).4 We
use these additional bits to store the 9th and 10th bits for SEC.

4CRC-30 is already used in CDMA technology.
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Fig. 20. Resilience: 3DP+DDS provid es 700× more resilience than symbol-based codes.

9.1. Quantifying the Effect of Using CRC-30 Checksum Against a CRC-32 Checksum

The chance of a CRC-32 checksum overlapping is 1
232 (≈10−10). The baseline design

uses CRC-32 to maximize the bandwidth used on the ECC lanes. In the SEC-based
optimization for soft errors, the CRC-30 checksum will have an overlapping probability
of 1

230 (≈10−9). Since the probability that an element fails is much less than 10−6, the
CRC-30 checksum has a detection probability of %10−15, as compared to CRC-32
checksum with a detection probability of %10−16.

9.2. Operation
For every access, we will update these 10 bits every cache line using the ECC lanes.
SEC-based correction works in three steps. On detecting a CRC error, the stacked
memory system uses SEC to correct errors. Unfortunately, in case of multi-bit errors,
SEC may not be able to correct the error. To avoid this, on correcting an error using
SEC, Citadel recomputes the CRC again. In the common case of single-bit errors, this
will usually result in a CRC match. On a CRC match, Citadel infers that the error is
corrected. In case of a CRC mismatch, Citadel denotes this as a multi-bit error and
employs the longer latency error correcting of 3DP.

10. OVERALL RESULTS
This section explains the impact of tying together TSV Swap, 3DP, and DDS and
explains the overheads in implementing Citadel.

10.1. Tying It Together
Figure 20 compares the effectiveness of 3DP with DDS to an 8-bit symbol correcting
code. For all systems, we assume that TSV-SWAP is enabled. When applied with 3DP,
DDS delivers a 700× improvement in resilience compared to the baseline strong 8-bit
symbol-based ECC code. DDS removes 99.995% of all transient faults and 99.996%
of all the permanent faults with a 12-hour scrubbing interval and thus prevents the
accumulation of faults. Therefore, DDS can protect against multiple faults if they occur
during different scrub intervals. Overall, these results show that Citadel can provide a
reliability improvement of almost 3 orders of magnitude. It does so without requiring
the system to stripe data for a cache line across banks.
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10.2. Storage Overhead of Citadel
Citadel relies on having an extra die for storing metadata for the eight data dies (12.5%
overhead). In addition, bank-level parity requires dedicating one of the data bank for
storing parity (1.6% overhead, 1 bank out of 64 banks). For 3DP, we keep parity for
Dimensions 2 and 3 on-chip (34KB overhead), and the redirection tables of DDS incur
about 1KB overhead, for a total SRAM overhead of only 35KB. Thus, Citadel provides
700× better reliability while requiring a storage overhead of 14%, which is similar to
the overhead of ECC DIMM (12.5%).

11. RELATED WORK
Memory reliability for emerging memory technologies and existing DRAM systems
has become an important topic. We describe the schemes that are most relevant to our
proposal.

Citadel employs TSV-SWAP to mitigate faulty TSVs. Faulty TSVs can be avoided
at manufacturing time using spare TSVs. Several techniques have been proposed for
“swapping in” such redundant TSVs to replace faulty TSVs in a 3D die stack [Jiang
et al. 2012]. To the best of our knowledge, this article is the first to address runtime
mitigation of TSVs and without relying on manufacturer-provided spare TSVs.

Two prior works are closely related to our work. The first prior work proposes tech-
niques to reliably architect stacked DRAM caches [Sim et al. 2013]. It uses CRC-32 to
detect errors in caches. However, correction is performed simply by disabling clean lines
and replicating dirty lines. While such correction can be useful for caches, disabling
random locations of lines is an impractical option for main memory. Furthermore, repli-
cating all the data for main memory leads to a capacity loss of 50% and doubles the
memory activity. Our work provides low-cost and effective fault tolerance for using
stacked DRAM as main memory. The second prior work proposes a low overhead Chip-
Kill code that can be used with current ECC-DIMMs without using additional DIMMs
[Jian et al. 2013]. This work also uses a combination of error detection and correction
codes but does not talk about TSV failures and efficient dual grain sparing.

Yoon and Erez [2010] proposed Virtual and Flexible ECC. Rather than using uni-
form error correction across the entire memory space, it allows the user to specify
stronger levels of ECC for high-priority applications and weaker levels of ECC for low-
priority applications. Citadel uses multi-dimensional parity rather than multi-tiered
ECC. Citadel is more area-efficient and does not require any support from the OS.

Efficient memory repair for bit-level faults has been proposed for both SRAM [Roberts
et al. 2007; Wilkerson et al. 2008] and DRAM [Nair et al. 2013]. However, such tech-
niques are effective only for random bit errors and cannot tolerate large-granularity
faults. Erasure Codes can identify faulty chips to be disabled [Nerl et al. 2007, 2008;
Yoon et al. 2012]. However, they operate only at one granularity. Unlike erasure codes,
DDS enables flexible granularity sparing.

Citadel uses parity for error correction, as do other schemes, such as
RAID [Thomasian and Menon 1997]. BCH codes can be used to provide protection
for multiple-bit errors (e.g., 6 or more bits) [Li et al. 2011; Wilkerson et al. 2010].
Unfortunately, strong BCH codes cannot handle large-granularity faults without sig-
nificant overheads. Figure 21 compares the resilience of Citadel with a strong ECC
scheme (6EC7ED) and with RAID-5. Because these schemes are not resilient to TSV
faults, we assume a memory system with no TSV faults. Even after discounting for
TSV faults, these schemes end up having orders of magnitude higher failure rates
than Citadel. A RAID-5 scheme provides 89× improvement in resilience compared to
6EC7ED. Citadel provides 1,000× more resilience than a RAID-5 scheme.
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Fig. 21. Comparing resilience of Citadel to strong ECC codes (6EC7ED) and RAID-5.

12. CONCLUSION
Memory stacking introduces new multi-bit failure modes, exacerbating the large-
granularity faults identified by DRAM field studies. Typical approaches tolerate only
random-bit failures and tolerating large-granularity failures (such as tolerating chip
failures using ChipKill) typically relies on striping data to multiple chips. Transposing
such data striping to stacked memory systems causes significant slowdown and 3× to
5× power overheads. This article proposes Citadel to tolerate large-granularity faults
efficiently and makes the following contributions:

(1) TSV-SWAP, which mitigates TSV faults at runtime, without relying on
manufacturer-provided spare TSVs. It remains effective even at high TSV failure
rates.

(2) Tri-Dimensional Parity (3DP), which can correct a wide variety of multi-granularity
faults.

(3) Dynamic Dual-granularity sparing (DDS), which can spare faulty data blocks ei-
ther at a row granularity or at a bank granularity to avoid the accumulation of
permanent faults and frequent error correction.

Our evaluations with real-world fault data for DRAM chips shows that combining
these three schemes is highly effective for tolerating high rate of TSV failures and
memory failures. We show that 3DP improves reliability of stacked memory by 7×,
and when combined with DDS by 700×, compared to a symbol-based code that stripes
data across banks or channels. Citadel provides high reliability while maintaining high
performance and low power, requiring a storage overhead close to ECC DIMMs (14%
vs. 12.5%).
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