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Improving the Performance of Computing Systems



MOORE’S LAW IN MEMORY SYSTEMS

Technology Scaling: A key driver for applications
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MOORE’S LAW IN MEMORY SYSTEMS

Technology Scaling: A key driver for applications

DRAM Chip

Moore’s Law is vital for High-Density Memories



MEMORY SCALING: VITAL FOR ALL DOMAINS
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Client, Server and loT devices = Scalable Memories




CHALLENGES IN MEMORY SCALING
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Per-core DRAM capacity reduces by 30% every 2 years
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Per-core DRAM capacity reduces by 30% every 2 years

Moore’s Law in Memory Systems = Scaling Wall



WHY IS DRAM SCALING DIFFICULT?
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WHY IS DRAM SCALING DIFFICULT?

DRAM Chip |
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High aspect ratio = Faulty cells (Scaling Faults)



RUNTIME FAULTS

Faults that happen while the machine is operating
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GRANULARITY OF FAULTS
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GRANULARITY OF FAULTS
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RUNTIME FAULTS ARE PERVASIVE

HPC-2012, SC-2013, ASPLOS 2015

New Mexico Alliance for
Computing at Extreme Scale
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Efficient solutions to mitigate runtime failures
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 Hurdles for Moore’s Law: Scaling & Runtime Faults

* Conventional techniques: Costly/Ineffective

Ultra low-cost solutions to sustain Moore’s Law in

memories using architecture-level approaches
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BROAD IMPACT AND SOLUTIONS

Low-cost architectural techniques to enable reliable

and scalable memory systems 2 Sustain Moore’s Law
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ArchShield: Architectural
Framework for Assisting

DRAM Scaling By Tolerating
High Error-Rates

ISCA-2013
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PROBLEM: RELIABLE TECHNOLOGY SCALING
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TERMINOLOGY: ROW, LINE, AND WORD

Activate a Row of 8KB
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TERMINOLOGY: ROW, LINE, AND WORD

Activate a Row of 8KB

7S

Access a Cacheline of 64B
<)

© ]

8 Bursts = 8 Words
8B each

Memory is accessed in 64B Cachelines = 8 Words



SCALING OPTION 1: ROW/COL SPARING
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SCALING OPTION 1: ROW/COL SPARING

DRAM Chip
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Enable Spare Rows and Columns

Entire row or column sacrificed for a few faulty cells
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SCALING OPTION 1: ROW/COL SPARING
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Enable Spare Rows and Columns

Error-Rate: 100ppm

Row/Column sparing has large area overheads




SCALING OPTION 2: ECC-DIMM

Single Error Correct Double Error Detect (SECDED)
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SCALING OPTION 2: ECC-DIMM

Single Error Correct Double Error Detect (SECDED)

Corrects single-bit fault in each word (8 Bytes)
For 8GB DIMM =» 1 Billion words
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SCALING OPTION 2: ECC-DIMM

Single Error Correct Double Error Detect (SECDED)

Examining all the words...
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ECC Chip

High chance of two faults in atleast one word
Birthday Paradox
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SCALING OPTION 2: ECC-DIMM

Single Error Correct Double Error Detect (SECDED)

High chance of two faults in atleast one word
Birthday Paradox

8GB DIMM =» 1 billion words = N
Expected faults till double-fault = 1.25*Sqrt(N) = 40K faults = 0.5 ppm

SECDED alone cannot protect against scaling faults




SCALING OPTION 3: STRONG ECC

Strong ECC are robust, but complex and costly
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Strong ECC are robust, but complex and costly
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Strong ECC
Encoder/Decoder

Memory requests incur encoding/decoding latency
Bit Error Rate (BER) of 100 ppm: ECC-4 =» 50% storage overhead

Strong ECC are inefficient for tolerating errors
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DISSECTING FAULT PROBABILITIES

At BER of 10 (100ppm)

99.24% ,
Proportion of Words (8 Bytes)
0.75% 0.01%
No Fault 1-Bit Fault  Multi-Bit Faults

Most faults are 1-bit: Exploit skew in probability
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ARCHSHIELD: AN OVERVIEW

Inspired from SSDs to handle high rates of errors

Memory
Space SECDED

Replication
Area

Fault-Map

Use Replication Area and Fault-Map to handle faults




FAULTS: RUNTIME TESTING & CLASSIFICATION

During the first bootup, runtime testing is performed
Each 8B word gets classified into one of three types:
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FAULTS: RUNTIME TESTING & CLASSIFICATION

During the first bootup, runtime testing is performed
Each 8B word gets classified into one of three types:
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No Error 1-bit Error Multi-bit Error
/ N N 4 <
(Replication not SECDED can 4 Word gets A
needed) correct hard error decommissioned
SECDED can Need replication Only the replica
correct soft error for soft error '
\_ ) \_ Y, N is used )

Faulty cell information: Stored in hard drive for future use

ldentifies the faulty cells & decides type of correction



EXPOSE FAULTS USING A FAULT-MAP

A map to keep track of all words

Fault-Map
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EXPOSE FAULTS USING A FAULT-MAP

A map to keep track of all words

Fault-Map

Fault-Map identifies faulty vs non-faulty words




FAULT-MAP: INFORMATION AND OVERHEAD

4bits (2-bits replicated) per 8B word

00 = No Fault
01 -2 Single Bit-Fault
11 =2 Multi-Bit Fault

X 64B line

Fault-Map
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FAULT-MAP: INFORMATION AND OVERHEAD

4bits (2-bits replicated) per 64B cacheline

00 = No Fault
01 -2 Single Bit-Fault
11 =2 Multi-Bit Fault

X 64B line

Fault-Map
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FAULT-MAP: INFORMATION AND OVERHEAD

4bits (2-bits replicated) per 64B cacheline

00 = No Fault
01 -2 Single Bit-Fault
11 =2 Multi-Bit Fault

X 64B line

Fault-Map

Per-line Fault-Map has an overhead of 0.8%



FAULT-MAP: OPERATION
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FAULT-MAP: OPERATION
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FAULT-MAP: OPERATION

Request 1
X 64B line
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FAULT-MAP: OPERATION

Request 1

X 64B line

4

_@ g

Remove two lookups
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FAULT-MAP: OPERATION

Caching Fault-Map for Performance

Request 1 mmm)
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FAULT-MAP: OPERATION

Caching Fault-Map for Performance

Request 1 mmm)

4 )
Last-Level Cache

Request 2

Cache Fault-Map line =2 Information of 128 lines



KEEP REPLICAS OF FAULTY WORDS

Valid data from faulty words are stored in replicas

48



KEEP REPLICAS OF FAULTY WORDS

Valid data from faulty words are stored in replicas

X

Memory
Space

Replication
Area

48



KEEP REPLICAS OF FAULTY WORDS

Valid data from faulty words are stored in replicas

X

Memory
Space

Replication
Area

Replication area stores valid data of faulty words




ARCHITECTING THE REPLICATION AREA

Replicas =2 Anywhere in a contiguous replication area

Replication
Area
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ARCHITECTING THE REPLICATION AREA

Replicas =2 Anywhere in a contiguous replication area

X —

X —

Replication
Area

I
Table

~8 Million Entries

Looking up a Large Table = High Latency




ARCHITECTING THE REPLICATION AREA

Replicas =2 Anywhere in a contiguous replication area

Fully Associative

Replication
Area
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ARCHITECTING THE REPLICATION AREA

Replicas =2 Anywhere in a contiguous replication area

Replication

Fully Associative
Area

Looking up the Replication Area = High Latency
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ARCHITECTING THE REPLICATION AREA

Taking inspiration from Hash-Tables

Replication

Buckets !
! Area

Hash-Table Lookup = Low Latency




ARCHITECTING THE REPLICATION AREA

A Set Associative Area (Like a Hash Table)

Replication
Area
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ARCHITECTING THE REPLICATION AREA

A Set Associative Area (Like a Hash Table)

Replication
Area

Set-Associative Structure = Low Latency




ARCHITECTING THE REPLICATION AREA

Set Associative: May not handle all faulty words

Replication
Area
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Set Associative: May not handle all faulty words
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ARCHITECTING THE REPLICATION AREA

Set Associative: May not handle all faulty words

Replication
Area

Set-Associative Structure =2 Can Overflow




ARCHITECTING THE REPLICATION AREA

Taking inspiration from Hash-Tables with Chaining
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Buckets |Ove rflow

Buckets Area

54



ARCHITECTING THE REPLICATION AREA

Taking inspiration from Hash-Tables with Chaining

Replication
Buckets |Overflow
Buckets Area

Hash-Table with Chaining—=> Mitigates Overflows




HANDLE SKEWS IN THE REPLICATION AREA

Provision Overflow Sets

Replication
Area
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HANDLE SKEWS IN THE REPLICATION AREA

Provision Overflow Sets

Replication
Area

Overflow Sets handle skews in the Replication Area
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ARCHSHIELD: RESULTS
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0.8%

Tolerates 200x higher BER with only 1% slowdown



XED: Exposing On-Die Error
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ON-DIE ECC: MITIGATE SCALING FAULTS
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Vendors plan to use “On-Die ECC” /Q000000X
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ON-DIE ECC: MITIGATE SCALING FAULTS

0*4#0*

L% K XK S S 2
L PR S S S S A 2

L S SO S g
L 28 2C S S A 2
L% AR S S e 2
P R S S S A 4

Detect

(I O S S S 3
\_ >

k Correct

64-Bits Correct Data

v

59




ON-DIE ECC: MITIGATE SCALING FAULTS
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On-Die ECC fixes scaling faults invisibly



MITIGATING RUNTIME FAULTS

Runtime faults

Bit 14.2

18.6

ECC-DIMM
(9-Chips)
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MITIGATING RUNTIME FAULTS

Runtime faults

Chip faults common

Need strong ECC

B

Bit 14.2 18.6
Word 1.4 0.3
Column 1.4 5.6
Row 0.2 8.2
Bank 0.8 10
*Total 18 42.7

EHEEES

*Sridharan+ SC13
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MITIGATING RUNTIME FAULTS

Runtime chip faults > Chipkill (strong ECC)
18 DRAM Chips

I ]
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CHIP
ECC
Chip

Cost: 18 Chips, Performance and Power Inefficient




GOAL

* Get “Chipkill-level” reliability with only 9 Chips

* Use On-Die ECC to enable Low-Cost Chipkill



XED: RE-PROVISION ON-DIE

On-Die Error Correction Code

Chip Failures

Single-Bit Failures
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XED: RE-PROVISION ON-DIE

On-Die Error Strong Detection lelel0 0le’e!
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Correction Code 19,9,0,9,0 0
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Correct

Single-Bit Failures
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Chip Failures
CRC-8 ATM-code instead of Hamming-code
64-Bits
Data

On-Die ECC can detect chip-failures



XED: RE-PROVISION ON-DIE ECC > RAID-3

Expose On-Die Error Detection = Chipkill with 9 Chips
3
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XED: RE-PROVISION ON-DIE ECC > RAID-3

Expose On-Die Error Detection =2 Chipkill with 9 Chips
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XED: RE-PROVISION ON-DIE ECC - RAID-3

Expose On-Die Error Detection =2 Chipkill with 9 Chips
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EXPOSE ON-DIE ERROR INFORMATION

OPTION 1: Use additional wires

o
I

Memory Controller
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EXPOSE ON-DIE ERROR INFORMATION
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EXPOSE ON-DIE ERROR INFORMATION

OPTION 1: Use additional wires

Incompatible with DDR memory standards

Needs a nhew protocol

Worse for pin-constrained future systems!




EXPOSE ON-DIE ERROR INFORMATION

OPTION 2: Use additional burst/transaction
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Memory Controller




EXPOSE ON-DIE ERROR INFORMATION

OPTION 2: Use additional burst/transaction
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EXPOSE ON-DIE ERROR INFORMATION

OPTION 2: Use additional burst/transaction

Additional 12.5% to 100% bandwidth overheads

Performance and Power Inefficient




EXPOSE ON-DIE ERROR INFORMATION

OPTION 2: Use additional burst/transaction

Additional 12.5% to 100% bandwidth overheads

Performance and Power Inefficient

Expose On-Die error detection with minor changes




XED: ON-DIE ERROR INFORMATION FOR FREE

On detecting an error, the DRAM chip sends a 64-
bit “Catch-Word” (CW) instead of data
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XED: ON-DIE ERROR INFORMATION FOR FREE

On detecting an error, the DRAM chip sends a 64-
bit “Catch-Word” (CW) instead of data
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XED: ON-DIE ERROR INFORMATION FOR FREE

On detecting an error, the DRAM chip sends a 64-
bit “Catch-Word” (CW) instead of data

Chips provisioned with a unique Catch-Word

No additional wires/bandwidth overheads

Compatible with existing memory protocols

64-bit Catch-Words identify the faulty chip




WHY CATCH-WORDS WORK: SCENARIO-1

Catch Word (CW) # Valid Data (D2)

/
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WHY CATCH-WORDS WORK: SCENARIO-1

Catch Word (CW) # Valid Data (D2)
Then > PAzDOE@ D1 P CW D ... D D7

| T
|
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WHY CATCH-WORDS WORK: SCENARIO-1

Catch Word (CW) # Valid Data (D2)
Then > PAzDOE@ D1 P CW D ... D D7

- A
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WHY CATCH-WORDS WORK: SCENARIO-2

Catch Word (CW) = Valid Data (D2)
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WHY CATCH-WORDS WORK: SCENARIO-2

Catch Word (CW) = Valid Data (D2) [Collision]
Then 2> PA=DOE@ D1 P CW D ... © D7

| No Error as Parity Matches




WHY CATCH-WORDS WORK: SCENARIO-2

Catch Word (CW) = Valid Data (D2) [Collision]
Then 2> PA=DOE@ D1 P CW D ... © D7

No Error as Parity Matches

Catch-Word collision: Doesn’t affect correctness
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CATCH-WORD COLLISIONS: NOT A PROBLEM

* A chip stores 64 bits/cache-line = 2°* combinations
* Even a 16Gb chip has only 2?8 cachelines



CATCH-WORD COLLISIONS: NOT A PROBLEM

* A chip stores 64 bits/cache-line = 2°* combinations
* Even a 16Gb chip has only 2?8 cachelines
* Nearly 2392 data combinations free!



CATCH-WORD COLLISIONS: NOT A PROBLEM

* A chip stores 64 bits/cache-line = 2°* combinations
* Even a 16Gb chip has only 2?8 cachelines
* Nearly 253-%° data combinations free'

1.0 -
| x8 DRAM —5— |
=
.% 0.8
= 0.6 Probability of (olllsmn 0 5
S A R R R (R
= 0.4 1014 Seconds
§ (3.2 Million Years) f
2 02
(al /
0.0 -2 = = =

108 10° 0 10t 1mE WF 10 1P

Seconds (log scale)



CATCH-WORD COLLISIONS: NOT A PROBLEM

* A chip stores 64 bits/cache-line = 2°* combinations
* Even a 16Gb chip has only 2?8 cachelines
* Nearly 253-%° data combinations free|

1.0 -
| x8 DRAM —E— |

-
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= 04 10“ Seconds
§ (3.2 Million Years) f
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108 10° 0 10t 1mE WF 10 1P

Seconds (log scale)

The catch-word will most likely not collide



EVALUATION

USIMM : 8 Cores, 4 Channels, 2 Ranks, 8 Banks

FaultSim*: Memory Reliability Simulator
 Real World Fault Data

e 7 year system lifetime,

* Billion Monte-Carlo Trials

* Metric: Probability of System Failure

e Scaling Fault-Rate: 10*

* Nair et. al. HIPEAC 2016



RESULTS: RELIABILITY

XED vs Commercial ECC schemes
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RESULTS: RELIABILITY

XED vs Commercial ECC schemes

SECDED: ECC-DIMM ——— ChipKill (18 Chips) —&—
(9 Chips) XED (9 Chips) —H—
o 107 e
) :
= |
E |
-2
=50 | | | |
= i | 43x |
> O | |
B ® f
22
< |
FQ :
@) |
S ;
~ 10 ‘
1 2 3 4 5 6 7
Years

XED provides 172x higher reliability



RESULTS: PERFORMANCE AND EDP

o
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W
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“10.9 | - 800.8
SECDED XED CHIPKILL f;j SECDED CHIPKILL
Lower the better Lower the better

XED enables Chipkill with a single DIMM

Significant performance & power benefits



SUMMARY
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MEMORY SYSTEMS AND MOORE’S LAW

* Hurdles for Moore’s Law: Scaling & Runtime Faults

* Current techniques are costly/ineffective

Low-cost architectural techniques can enable reliable
and scalable memory systems 2 Sustain Moore’s Law

* 100-1000x higher reliability with minimal overheads
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AREAS INVESTIGATED

Published in ISCA, MICRO, ASPLOS, HPCA, DSN, HIPEAC and CAL

TACO-2015 ISCA-2013 SRR HPCA-2015
Low-Latency

‘}’\ ‘ PCM memories
Bl Reliability 1]
l{ q il ISCA 2017

MICRO-2014

m Rl Sl
& i‘

Low-Latency DRAM
HPCA-2016 | DRAM Cache Compression

ISCA-201

HPCA 2013 and
DSN 2015

Optimize DRAM Refresh

Power
Low-Power

DSN-2015
Mobile Memories

ASPLOS-2015

Efficient Non-Volatile Memory Encryption

CAL-2015 Row-Hammer
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FUTURE RESEARCH VECTORS



RESEARCH VECTOR: HYBRID MEMORY SYSTEM

Reliability and Performance Optimizations

Low-Latency
PCM memories

Ml Performance

i
il !

T |
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L
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il i
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i i

Low-Latency DRAM
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RESEARCH VECTOR: RELIABILITY + SECURITY

Low-cost reliability for memory systems that implement security

Reliability




RESEARCH VECTOR: OPTIMIZED loT

loT optimizations by using codes to save power and provide security

. Power Security
5

Low-Power
Mobile Memories
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RESEARCH VECTOR: CROSS-STACK STRATEGIES

Programming
Languages

Algorithms

Compilers

Operating Systems

Architecture

Devices
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RESEARCH VECTOR: CROSS-STACK STRATEGIES

Programming
Languages
Algorithms 100-1000x
Compilers Benefits
Operating Systems
Architecture a’

JLow-Latency DRAM

HPCA-2016 | DRAM Cache Compression

Devices

HPCA 2013 and
DSN 2015 “
efresh

-
Hh

Mobile Memories
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RESEARCH VECTOR: CROSS-STACK STRATEGIES

Programming
Languages

1. PL support for efficient
check-pointing

Algorithms

Compilers

Operating Systems
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RESEARCH VECTOR: CROSS-STACK STRATEGIES

Programming
Languages

Algorithms

Compilers

Operating Systems

Architecture

Devices

PL support for efficient
check-pointing

Better Fault Resilient
Algorithms
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RESEARCH VECTOR: CROSS-STACK STRATEGIES

1. PL support for efficient
check-pointing

2. Better Fault Resilient

Algorithms

Strong systems with

OS-level reliability

Programming
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RESEARCH VECTOR: CROSS-STACK STRATEGIES

1. PL support for efficient
check-pointing

2. Better Fault Resilient

Algorithms

Strong systems with

OS-level reliability

Programming
Languages

Algorithms

Compilers

Operating Systems

Architecture
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Unlock more benefits with cross-stack solutions
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RESEARCH VECTOR: QUANTUM COMPUTERS

Enabling Practical and Scalable Quantum Computers
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1000x higher bandwidth overhead due to error correction
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RESEARCH VECTOR: QUANTUM COMPUTERS

Enabling Practical and Scalable Quantum Computers

Temperature

Server 300K
I ___________
5 | |

=2 Control | 4K
= | |Processor| |
S | I
o Mmoo
e |
2 ! |
5 ! .

@4 : Qubits : 20mK

___________

Ways to delegate ECC near the quantum substrate



COLLABORATORS

P amie-w b ] TS
L]

] Carnegie =
Gec_’r;gc'ﬁ @ Mellong UNIVERSITY U C S B a (mte, IBM Research

= UIliVBI'Sity JVIRGINIA "

100



THANK YOU

Always welcome to reach out to me at pnair6@gatech.edu
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Reducing Read Latency of
Phase Change Memory via
Early Read and Turbo Read

HPCA-2015

Prashant Nair
Chia-Chen Chou
Bipin Rajendran

Moinuddin Qureshi

Georgia VS
Tech

Performance

“Low-Latency
Non-Volatile memories
using Error Codes”
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EARLY & TURBO READ: VARIABILITY IN PCM

* Low (SET) and High (RESET) resistance states

Rref
SET RESET

Prob. Of Cell

Resistance
* Cell states are compared to reference resistance
* The states correspond to binary values of 0 and 1

The read latency of PCM depends on value of R




EARLY & TURBO READ: SENSING EARLIER

Prob. Of Cell

Resistance
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EARLY & TURBO READ: SENSING EARLIER
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EARLY & TURBO READ: SENSING EARLIER

Errors
RESET

Resistance

Prob. Of Cell
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EARLY & TURBO READ: SENSING EARLIER

Prob. Of Cell
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Errors are Unidirectional

Resistance
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EARLY & TURBO READ: SENSING EARLIER
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Errors are Unidirectional
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Prob. Of Cell

Resistance

Detect with Berger Code, Retry on error
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EARLY & TURBO READ: SENSING EARLIER

_\@’_

Errors are Unidirectional

RESET

Prob. Of Cell

Resistance

Detect with Berger Code, Retry on error

Read latency 30% I = Performance 26%
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BIRTHDAY PROBLEM

Probability of no match

10-20}

10760

10 100 |

10 120 |

10 140 |

10 160

Birthday paradox - p(n) =

_ 365!
365" (365—n)!

I

50

100

150 200 250 300 350
Number of people

400
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MTTF: XED VS CHIPKILL

2-Chip Failures

XED (9-chips) FAILED

Chipkill (18-chips)
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MTTF: XED VS CHIPKILL

2-Chip Failures

XED (9-chips)




MTTF: XED VS CHIPKILL

2-Chip Failures = Extend to Multi-Chip Failures

XED (9-chips) PASSED




SDC AND DUE

SDC AND DUE RATE OF XED

Source of Vulnerability

Rate over 7 years

XED: Scaling-Related Faults

No SDC or DUE

XED: Row/ Column/ Bank Failure

1.4x10~13 (SDC)

XED: Word Failure

6.1x10% (DUE)

Data Loss from Multi-Chip Failures

5.8x10—4




ADDITIONAL BURST/TRANSACTION

@ Expose On—Die ECC using an Extra Burst .
® Expose On—Die ECC using Additional Transaction

1.30 | |
1.25
1200 B
1asb
10L
1050 — |
1.00
0.95

Normalized Value

| Chipkill Double [ Chipkill Double
Chipkill Chipkill



XED VS LOT-ECC

| BXED

[

-

o0
[

B LOTECC (with Write—Coalescing)

1.06

1.04

1.02

1.00

Normalized Execution Time
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