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Architectural Solutions for Memory 
Reliability at Extreme Scaling
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MOORE’S LAW IN MEMORY SYSTEMS

cell
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Technology Scaling: A key driver for applications

Technology Scaling

DRAM Chip
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MOORE’S LAW IN MEMORY SYSTEMS
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Technology Scaling: A key driver for applications

DRAM Chip
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MOORE’S LAW IN MEMORY SYSTEMS

Technology Scaling: A key driver for applications

Moore’s Law is vital for High-Density Memories

DRAM Chip Memory Modules
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MEMORY SCALING:  VITAL FOR ALL DOMAINS
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MEMORY SCALING:  VITAL FOR ALL DOMAINS

Client, Server and IoT devices à Scalable Memories
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CHALLENGES IN MEMORY SCALING
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CHALLENGES IN MEMORY SCALING

Per-core DRAM capacity reduces by 30% every 2 years 
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CHALLENGES IN MEMORY SCALING

Moore’s Law in Memory Systems à Scaling Wall

Per-core DRAM capacity reduces by 30% every 2 years 
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WHY IS DRAM SCALING DIFFICULT?

DRAM Chip

Cell
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DRAM Chip

✖

✖
✖
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WHY IS DRAM SCALING DIFFICULT?

DRAM Chip

✖

✖
✖

✖

High aspect ratio à Faulty cells (Scaling Faults)
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RUNTIME FAULTS

DRAM Chip

Faults that happen while the machine is operating
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TYPES OF RUNTIME FAULTS

DRAM Chip

Permanent Faults
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TYPES OF RUNTIME FAULTS

DRAM Chip

Transient FaultsPermanent Faults
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GRANULARITY OF FAULTS

DRAM Chip
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GRANULARITY OF FAULTS

DRAM Chip

Bit

Word

Column

Row

Bank

Chip

Two types of Runtime Faults @ Many Granularities
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RUNTIME FAULTS ARE PERVASIVE

Efficient solutions to mitigate runtime failures

HPC-2012, SC-2013, ASPLOS 2015

DSN-2015 SIGMETRICS-2009



GOAL

22

• Hurdles for Moore’s Law: Scaling & Runtime Faults

• Conventional techniques: Costly/Ineffective
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Ultra low-cost solutions to sustain Moore’s Law in 
memories using architecture-level approaches

• Hurdles for Moore’s Law: Scaling & Runtime Faults

• Conventional techniques: Costly/Ineffective



BROAD IMPACT AND SOLUTIONS

ISCA-2013
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BROAD IMPACT AND SOLUTIONS

ISCA-2016

ISCA-2013

DRAM

STTRAM
To be Submitted
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TACO-2015

Reliability 
Evaluation Tool

Stacked Memory
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Low-cost architectural techniques to enable reliable 
and scalable memory systems à Sustain Moore’s Law
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THIS TALK

ISCA-2016

ISCA-2013

DRAM

ArchShield

XED
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✖

✖

ArchShield: Architectural 
Framework for Assisting 

DRAM Scaling By Tolerating 
High Error-Rates

ISCA-2013

Prashant Nair
Daehyun Kim 

Moinuddin Qureshi

DRAM
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PROBLEM: RELIABLE TECHNOLOGY SCALING

DRAM Chip

✖

✖
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TERMINOLOGY: ROW, LINE, AND WORD

Activate a Row of 8KB
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TERMINOLOGY: ROW, LINE, AND WORD

Activate a Row of 8KB

Access a Cacheline of 64B

8 Bursts à 8 Words
8B each

{
Memory is accessed in 64B Cachelines à 8 Words
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SCALING OPTION 1: ROW/COL SPARING

DRAM Chip

✖

✖

Spare Rows and Columns
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SCALING OPTION 1: ROW/COL SPARING

DRAM Chip

Entire row or column sacrificed for a few faulty cells

Enable Spare Rows and Columns
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SCALING OPTION 1: ROW/COL SPARING

DRAM Chip

Enable Spare Rows and Columns

Sub-10 nm

DRAM Chip

✖
✖
✖

✖
✖

Error-Rate: 100ppm
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SCALING OPTION 1: ROW/COL SPARING

Sub-10 nm

DRAM Chip

Row/Column sparing has large area overheads

Error-Rate: 100ppm

DRAM Chip

Enable Spare Rows and Columns



Single Error Correct Double Error Detect (SECDED)

ECC ChipData Chips
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SCALING OPTION 2: ECC-DIMM



Corrects single-bit fault in each word (8 Bytes)
For 8GB DIMM è 1 Billion words 

✖

ECC Chip

✖
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SCALING OPTION 2: ECC-DIMM

Single Error Correct Double Error Detect (SECDED)



Examining all the words…

ECC Chip
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SCALING OPTION 2: ECC-DIMM

Single Error Correct Double Error Detect (SECDED)



High chance of two faults in atleast one word 
Birthday Paradox

ECC Chip

✖ ✖
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High chance of two faults in atleast one word 
Birthday Paradox

8GB DIMM è 1 billion words = N
Expected faults till double-fault = 1.25*Sqrt(N) = 40K faults  è 0.5 ppm

ECC Chip

✖ ✖
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SCALING OPTION 2: ECC-DIMM

Single Error Correct Double Error Detect (SECDED)



High chance of two faults in atleast one word 
Birthday Paradox

8GB DIMM è 1 billion words = N
Expected faults till double-fault = 1.25*Sqrt(N) = 40K faults  è 0.5 ppm

ECC Chip

✖ ✖

SECDED alone cannot protect against scaling faults
38

SCALING OPTION 2: ECC-DIMM

Single Error Correct Double Error Detect (SECDED)



Strong ECC are robust, but complex and costly

ECC ChipsData Chips

Strong ECC
Encoder/Decoder

Memory requests incur encoding/decoding latency
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Strong ECC are robust, but complex and costly

ECC ChipsData Chips

Strong ECC
Encoder/Decoder

Memory requests incur encoding/decoding latency
Bit Error Rate (BER) of 100 ppm: ECC-4 è 50% storage overhead
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Strong ECC are robust, but complex and costly

ECC ChipsData Chips

Strong ECC
Encoder/Decoder

Memory requests incur encoding/decoding latency
Bit Error Rate (BER) of 100 ppm: ECC-4 è 50% storage overhead

Strong ECC are inefficient for tolerating errors 
39

SCALING OPTION 3: STRONG ECC
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At BER of 10-4 (100ppm)

99.24%

0.75% 0.01%

No Fault 1-Bit Fault Multi-Bit Faults

Proportion of Words (8 Bytes)

DISSECTING FAULT PROBABILITIES



40

Most faults are 1-bit: Exploit skew in probability

At BER of 10-4 (100ppm)

99.24%

0.75% 0.01%

No Fault 1-Bit Fault Multi-Bit Faults

Proportion of Words (8 Bytes)

DISSECTING FAULT PROBABILITIES
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Inspired from SSDs to handle high rates of errors

Memory 
Space

ARCHSHIELD: AN OVERVIEW

SECDED

✖ ✖

✖
✖

Replication
Area

Fault-Map
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Inspired from SSDs to handle high rates of errors

Use Replication Area and Fault-Map to handle faults

Memory 
Space

ARCHSHIELD: AN OVERVIEW

SECDED

✖ ✖

✖
✖

Replication
Area

Fault-Map



During the first bootup, runtime testing is performed
Each 8B word gets classified into one of three types:

No Error

Faulty cell information: Stored in hard drive for future use

(Replication not 
needed)

SECDED can 
correct soft error

1-bit Error

SECDED can 
correct hard error

Need replication 
for soft error

Multi-bit Error

Word gets 
decommissioned

Only the replica
is used

FAULTS: RUNTIME TESTING & CLASSIFICATION

63



During the first bootup, runtime testing is performed
Each 8B word gets classified into one of three types:

No Error

Faulty cell information: Stored in hard drive for future use

(Replication not 
needed)

SECDED can 
correct soft error

1-bit Error

SECDED can 
correct hard error

Need replication 
for soft error

Multi-bit Error

Word gets 
decommissioned

Only the replica
is used

FAULTS: RUNTIME TESTING & CLASSIFICATION

Identifies the faulty cells & decides type of correction
64
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A map to keep track of all words

DRAM

EXPOSE FAULTS USING A FAULT-MAP

✖ ✖

✖
✖

Fault-Map
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A map to keep track of all words

Fault-Map identifies faulty vs non-faulty words

DRAM

EXPOSE FAULTS USING A FAULT-MAP

✖ ✖

✖
✖

Fault-Map



Fault-Map
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FAULT-MAP: INFORMATION AND OVERHEAD

4bits (2-bits replicated) per 8B word 
✖ ✖

✖
✖

64B line
00 à No Fault
01 à Single Bit-Fault
11 à Multi-Bit Fault

10
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Per-word Fault-Map has an overhead of 6.4% 

FAULT-MAP: INFORMATION AND OVERHEAD

4bits (2-bits replicated) per 8B word 
✖ ✖

✖
✖

64B line
00 à No Fault
01 à Single Bit-Fault
11 à Multi-Bit Fault

10



Fault-Map
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FAULT-MAP: INFORMATION AND OVERHEAD

4bits (2-bits replicated) per 64B cacheline 
✖ ✖

✖
✖

64B line

11

00 à No Fault
01 à Single Bit-Fault
11 à Multi-Bit Fault



Fault-Map
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FAULT-MAP: INFORMATION AND OVERHEAD

4bits (2-bits replicated) per 64B cacheline 
✖ ✖

✖
✖

64B line

11

Per-line Fault-Map has an overhead of 0.8% 

00 à No Fault
01 à Single Bit-Fault
11 à Multi-Bit Fault
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64B line

FAULT-MAP: OPERATION

✖ ✖

✖
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64B line
Request 1

FAULT-MAP: OPERATION
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✖
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64B line
Request 1

Request 2

FAULT-MAP: OPERATION
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✖
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64B line
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FAULT-MAP: OPERATION
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64B line

Remove two lookups

Request 1

Request 2

FAULT-MAP: OPERATION

✖ ✖

✖
✖{
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Caching Fault-Map for Performance

Last-Level Cache

Request 1

FAULT-MAP: OPERATION

✖ ✖

✖
✖
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Caching Fault-Map for Performance

Cache Fault-Map line à Information of 128 lines

Last-Level Cache

Request 1

Request 2

FAULT-MAP: OPERATION

✖ ✖

✖
✖
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Valid data from faulty words are stored in replicas

Memory 
Space

KEEP REPLICAS OF FAULTY WORDS

✖ ✖

✖
✖
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Valid data from faulty words are stored in replicas

Memory 
Space

Replication
Area

KEEP REPLICAS OF FAULTY WORDS

✖ ✖

✖
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Valid data from faulty words are stored in replicas

Replication area stores valid data of faulty words

Memory 
Space

Replication
Area

KEEP REPLICAS OF FAULTY WORDS

✖ ✖

✖
✖
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Replicas à Anywhere in a contiguous replication area

Replication
Area

ARCHITECTING THE REPLICATION AREA

✖ ✖

✖
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Replicas à Anywhere in a contiguous replication area

Replication
AreaTable

ARCHITECTING THE REPLICATION AREA

✖ ✖

✖
✖✖

✖
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Replicas à Anywhere in a contiguous replication area

Replication
Area

~8 Million Entries

Table

ARCHITECTING THE REPLICATION AREA

✖ ✖

✖
✖✖

✖
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Replicas à Anywhere in a contiguous replication area

Replication
Area

~8 Million Entries
Looking up a Large Table à High Latency

Table

ARCHITECTING THE REPLICATION AREA

✖ ✖

✖
✖✖

✖
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Replication
Area

ARCHITECTING THE REPLICATION AREA

✖ ✖

✖
✖

{Fully Associative

Replicas à Anywhere in a contiguous replication area
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Replication
Area

ARCHITECTING THE REPLICATION AREA

✖ ✖

✖
✖

{Fully Associative

Replicas à Anywhere in a contiguous replication area

Looking up the Replication Area à High Latency
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Taking inspiration from Hash-Tables

Replication
Area

Keys

ARCHITECTING THE REPLICATION AREA

Buckets
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Taking inspiration from Hash-Tables

Replication
Area

Keys

Hash-Table Lookup à Low Latency

ARCHITECTING THE REPLICATION AREA

Buckets
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A Set Associative Area (Like a Hash Table)

Replication
Area

ARCHITECTING THE REPLICATION AREA

✖ ✖

✖
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A Set Associative Area (Like a Hash Table)

Replication
Area

ARCHITECTING THE REPLICATION AREA

✖ ✖

✖
✖

Set-Associative Structure à Low Latency
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Set Associative: May not handle all faulty words 
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Set Associative: May not handle all faulty words 

Replication
Area

Set-Associative Structure à Can Overflow

ARCHITECTING THE REPLICATION AREA

✖ ✖

✖
✖
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Taking inspiration from Hash-Tables with Chaining

Replication
Area

Keys

ARCHITECTING THE REPLICATION AREA

Buckets Overflow
Buckets
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Taking inspiration from Hash-Tables with Chaining

Replication
Area

Keys

Hash-Table with Chainingà Mitigates Overflows

ARCHITECTING THE REPLICATION AREA

Buckets Overflow
Buckets
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Provision Overflow Sets

HANDLE SKEWS IN THE REPLICATION AREA

Replication
Area

✖ ✖

✖
✖
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Provision Overflow Sets

Overflow Sets handle skews in the Replication Area

HANDLE SKEWS IN THE REPLICATION AREA

Replication
Area

✖ ✖

✖
✖
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Tolerates 200x higher BER with only 1% slowdown

ARCHSHIELD: RESULTS

0.1
1

10
100

1000

SECDED ArchShield

(L
og

10
 Sc

al
e)

To
le

ra
bl

e 
BE

R 
in

 p
pm

200x

0.95

1

1.05

1.1

Baseline ArchShield

Sl
ow

do
w

n

1%

Replication Area Fault-Map

Area Overheads 3.2% 0.8%



57

x8 DIMM

XED: Exposing On-Die Error 
Detection Information for 
Strong Memory Reliability

ISCA-2016

Prashant Nair 
Vilas Sridharan

Moinuddin Qureshi



ON-DIE ECC: MITIGATE SCALING FAULTS
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DATA ECC

Vendors plan to use “On-Die ECC” 
• Fix scaling faults transparently
• Good DIMM with bad chips (yield)
• Part of new DDR standards
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64-Bits Correct Data

Detect

Correct

✖
✖

✖

ON-DIE ECC: MITIGATE SCALING FAULTS
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64-Bits Correct Data

On-Die ECC fixes scaling faults invisibly

Detect

Correct

✖
✖

✖

ON-DIE ECC: MITIGATE SCALING FAULTS
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Runtime faults
• Chip faults common
• Need strong ECC

Fault 
Mode

Transient 
Fault Rate 

(FIT)

Permanent 
Fault Rate (FIT)

Bit 14.2 18.6
Word 1.4 0.3

Column 1.4 5.6

Row 0.2 8.2
Bank 0.8 10
*Total 18 42.7

ECC-DIMM
(9-Chips)

✖

✖

MITIGATING RUNTIME FAULTS
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Runtime faults
• Chip faults common
• Need strong ECC

*Sridharan+ SC13

Fault 
Mode

Transient 
Fault Rate 

(FIT)

Permanent 
Fault Rate (FIT)

Bit 14.2 18.6
Word 1.4 0.3

Column 1.4 5.6

Row 0.2 8.2
Bank 0.8 10
*Total 18 42.7

MITIGATING RUNTIME FAULTS
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Runtime chip faults à Chipkill (strong ECC)

Cost: 18 Chips, Performance and Power Inefficient
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18 DRAM Chips

MITIGATING RUNTIME FAULTS
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• Get “Chipkill-level” reliability with only 9 Chips
• Use On-Die ECC to enable Low-Cost Chipkill

GOAL
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On-Die Error Correction Code

Data

64-Bits

Detect

Correct

Corrects? Detects?
Single-Bit Failures ✔ ✔

Chip Failures ✖ ✔

XED: RE-PROVISION ON-DIE
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On-Die Error Strong Detection
+

Correction Code

On-Die ECC can detect chip-failures

Corrects? Detects?
Single-Bit Failures ✔ ✔

Chip Failures ✖ ✔ (99.9%)

Data

64-Bits

Detect

Correct

CRC-8 ATM-code instead of Hamming-code

XED: RE-PROVISION ON-DIE
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Expose On-Die Error Detection à Chipkill with 9 Chips

XED: RE-PROVISION ON-DIE ECC à RAID-3 
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Expose On-Die Error Detection à Chipkill with 9 Chips
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66

C
H

IP

C
H

IP

C
H

IP

C
H

IP

C
H

IP

C
H

IP

C
H

IP

Pa
rit

y
C

hi
p

C
H

IP

On-Die ECC detected it

Expose On-Die Error Detection à Chipkill with 9 Chips

XED: RE-PROVISION ON-DIE ECC à RAID-3 
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On-Die ECC detected it Reconstruct Data in Failed Chip

Expose On-Die Error Detection à Chipkill with 9 Chips

XED: RE-PROVISION ON-DIE ECC à RAID-3 



OPTION 1: Use additional wires
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Catch Word (CW) = Valid Data (D2) [Collision]
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• A chip stores 64 bits/cache-line à 264 combinations 
• Even a 16Gb chip has only 228 cachelines
• Nearly 263.99 data combinations free!
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The catch-word will most likely not collide

CATCH-WORD COLLISIONS: NOT A PROBLEM
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USIMM : 8 Cores, 4 Channels, 2 Ranks, 8 Banks

FaultSim*: Memory Reliability Simulator
• Real World Fault Data
• 7 year system lifetime,
• Billion Monte-Carlo Trials
• Metric: Probability of System Failure
• Scaling Fault-Rate: 10-4

* Nair et. al. HiPEAC 2016

EVALUATION
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• Hurdles for Moore’s Law: Scaling & Runtime Faults

• Current techniques are costly/ineffective

Low-cost architectural techniques can enable reliable 
and scalable memory systems à Sustain Moore’s Law

• 100-1000x higher reliability with minimal overheads
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Reliability and Performance Optimizations

RESEARCH VECTOR: HYBRID MEMORY SYSTEM
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Reliability Performance
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Low-cost reliability for memory systems that implement security
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RESEARCH VECTOR: OPTIMIZED IOT

Security
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IoT optimizations by using codes to save power and provide security 
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Power
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Temperature

1000x higher bandwidth overhead due to error correction
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Temperature
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Temperature

Ways to delegate ECC near the quantum substrate

RESEARCH VECTOR: QUANTUM COMPUTERS

Enabling Practical and Scalable Quantum Computers
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EARLY & TURBO READ: VARIABILITY IN PCM 

• Low (SET) and High (RESET) resistance states

• Cell states are compared to reference resistance 
• The states correspond to binary values of 0 and 1

The read latency of PCM depends on value of Rref
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Detect with Berger Code, Retry on error
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SDC AND DUE

a row to identify the faulty chip. Under high rate of scaling-
related faults, there is a small probability that 10% of the
lines in the row will have scaling errors. This may cause the
diagnosis to deem the incorrect chip as faulty. Fortunately,
even at a high error rate of scaling related fault, the chance
that 10% of the lines in a row will have errors is negligibly
small (10−12 under scaling-related fault rate of 10−4).

Table IV shows the DUE and SDC rate for XED, assum-
ing runtime failures are constrained to be within one chip.
The SDC rate is 1.4×10−13 and the DUE rate is 6.1×10−6.
Note that the DUE rate is two orders of magnitude smaller
than the likelihood of data loss due to multi-chip failure.
Given that our solution is not designed to tolerate multi-chip
failures, such failures will determine the overall reliability
of the system, rather than the SDC and DUE rates of XED.

Table IV
SDC AND DUE RATE OF XED

Source of Vulnerability Rate over 7 years

XED: Scaling-Related Faults No SDC or DUE

XED: Row/ Column/ Bank Failure 1.4×10−13 (SDC)

XED: Word Failure 6.1×10−6 (DUE)

Data Loss from Multi-Chip Failures 5.8×10−4

IX. DOUBLE-CHIPKILL WITH XED

Memory systems that seek stronger reliability than Chip-
kill implement Double-Chipkill to correct up-to two faulty
chips. Double-Chipkill requires four extra symbols, two each
for identifying the faulty chips and for correcting the data
of these faulty chips. Therefore, it is typically implemented
with 36 chips, whereby 32 chips store the data and 4 chips
store the check symbols. Unfortunately, accessing 36 chips
requires activation of upto two ranks over non-commodity
DIMMs consisting of x4 DRAM-chips. Thus, even with
x4 devices, Double-Chipkill requires overfetch of 100%. It
would be desirable to obtain Double-Chipkill level reliability
on a single cache line, without activating multiple ranks or
channels. We show how XED can be applied to conventional
Chipkill designs (with x4 devices) to obtain the reliability
similar to Double-Chipkill. For this section only, we assume
all systems are designed with x4 devices.

A. Use Erasure Coding For Error Correction

When XED is implemented on the top of conventional
Chipkill design, we would have two extra chips (16 data
chips plus two extra symbol chips). Given that XED can
provide the location of the faulty chips, we can perform
erasure based error correction using the two symbol chips to
correct upto two chip failures. As this implementation uses
18 chips of x4 devices, each access obtains only a single
cacheline, and avoids the power and performance overheads
of Double-Chipkill. We note that, with x4 devices, the Catch-
Word is only 32-bits, so the expected time to collision is
approximately 6.6 hours (fortunately, the latency to update
the Catch-Word is only a few hundred nanoseconds).

B. Results: Double-Chipkill with XED

Figure 9 compares the reliability of Double-Chipkill,
Single-Chipkill, and XED implemented with Single-Chipkill
systems, all evaluated in the absence of scaling errors. Over-
all, Double-Chipkill provides almost an order of magnitude
improvement over Single-Chipkill. Unfortunately, it incurs
significant power and performance overheads compared with
Single-Chipkill. XED allows the memory system to get
Double-Chipkill level reliability while retaining the hard-
ware of Single-Chipkill. In fact, given that XED on the top
of Chipkill has only 18 chips instead of the 36 chips for
Double-Chipkill, we observe that XED provides almost 8.5x
higher reliability than Double-Chipkill while obviating the
performance and power overheads of Double-Chipkill.
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Figure 9. Reliability of Single-Chipkill, Double-Chipkill, and XED-
based Single-Chipkill. Even with hardware similar to Single-Chipkill, XED
provides 8.5x more reliability than Double-Chipkill.

Figure 10 compares the reliability of Double-Chipkill,
Single-Chipkill, and XED on top of Single-Chipkill in the
presence of scaling errors. We assume the rate of scaling
errors to be 10−4. We note that, in the presence of scaling
errors, Double-Chipkill is 5.5x more effective than Single-
Chipkill. XED implemented with Single-Chipkill continues
to provide 8.5x better reliability than Double-Chipkill, pri-
marily due to fewer chips.
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Figure 10. Reliability of Single-Chipkill, Double-Chipkill, and XED-based
Single-Chipkill in the presence of scaling faults. XED on Single-Chipkill
provides 8.5x more reliability than Double-Chipkill.
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ADDITIONAL BURST/TRANSACTION
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Figure 12. Normalized Memory Power (with respect to ECC-DIMM) for XED, Chipkill, XED on the top of Chipkill and Double-Chipkill.. The reduction
in memory power in Chipkill is due to the increased execution time. Double-Chipkill activates two channels and consumes significantly more power.

the contrary, XED consumes the same amount of power as
ECC-DIMM based SECDED implementation as it activates
only a single rank. Furthermore, because it activates only
a single rank, XED also takes almost the same amount of
execution time as SECDED systems.

Conventional Double-Chipkill systems consume 8.4%
more memory power than ECC-DIMM based SECDED
implementation. This is because, even though ECC-DIMM
based Double-Chipkill systems increase execution time by
63.5%, they also activate 36-DRAM chips (by activating four
ranks). This higher execution time does not compensate for
the activation overheads and increases the memory power
consumption by 8.4%. XED based Double-Chipkill reduces
the memory power consumption by 8% by activating only
18 DRAM-chips instead of 36 DRAM-chips for traditional
Double-Chipkill. Furthermore, the likelihood of receiving
multiple Catch-Words are rare (1 in every 200K accesses)
and therefore they consume negligible power overheads.

C. Impact of adding a Burst or Transaction

XED relies on Catch-Word to convey error detection
information. There are alternative ways to convey this infor-
mation such as using additional bursts or transactions. The
memory vendors can change the DDR protocol to expose
On-Die ECC information by adding a burst. Adding another
burst incurs a 25% overhead in current memory systems as it
increases the burst size from 8 to 10. Furthermore, DRAM
vendors are reducing the burst-size to one or two [42,43]
which would increase this overhead to about 50%-100%.
Alternatively, the memory controller can issue another trans-
action to fetch the On-Die ECC. Figure 13 shows the nor-
malized execution time and power for these two alternatives
(additional burst or additional transaction) compared to XED
for both Chipkill and Double-Chipkill. Both these alternative
implementations increase power consumption and execution
time significantly compared to XED implementations for
both Chipkill and Double-Chipkill.

The recently introduced DDR4 standards provide an
ALERT n pin [6,11] to indicate errors in address, command,
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Figure 13. The performance and power overheads of exposing On-Die
ECC using adding an additional two bursts or a transaction, instead of XED.

or write operations. As there is only one ALERT n pin
provisioned for the entire DIMM, the ALERT n signal
can only convey that one of the chip is faulty, however
it cannot identify the chip that encountered the fault. If
future standards [44] could extend the ALERT n pin to also
convey the location of the faulty chip, then XED can be
implemented using ALERT n instead of using Catch-Words.

XII. RELATED WORK

A. Strong Memory Reliability: Orthogonal Proposals

Our paper implements high-reliability memory systems
in the presence of On-Die ECC. Several prior studies have
looked at enhancing memory reliability, albeit they do not
leverage On-Die ECC, and are orthogonal to XED. For
instance, Memguard [45] tries to use ordinary Non-ECC
DIMMs to provide strong reliability by storing hashes of
data and check-pointing data. Memguard stores hashes of
data values to detect errors. Memguard does not expose
or reuse On-Die ECC and incurs checkpointing overheads
for tolerating chip-failures. In a similar vein, COP [46] and
Frugal-ECC [47] can use ordinary DIMMs to provide ECC
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protection by storing ECC alongside compressed lines. Un-
like XED, COP and Frugal-ECC are vulnerable to cachelines
are incompressible. XED enables all cachelines, whether
they are compressible or not, to be protected and guarantees
very high reliability. Virtualized ECC (VECC) [12] enables
memory systems to have tiers of ECC and can provide
Chipkill-level ECC using x8 DRAM-chips. However, VECC
requires support from the OS for managing the locations
of these ECC tiers. Bamboo-ECC [48] and ARCC [15]
tries to tradeoff reliability with the storage and performance
overheads of maintaining ECC. These schemes will benefit
from XED as XED can be plugged into these schemes to
provide additional reliability.

Prior work have also looked at RAID schemes and ap-
plied them to DRAM-DIMMs. Unfortunately, these RAID
inspired schemes tend to have read modify write and parity
update overheads. For instance, Multi-ECC [49] provides
Chipkill using x8 DRAM-chips by using Checksum based
detection and parity-based correction. Unfortunately, Multi-
ECC has additional write overheads to update the checksum.
Another related work is the LOT-ECC [13] design that
uses x8 chips to provide Chipkill by having tiers of error
detection and correction code. We compare LOT-ECC and
with XED. Figure 14 shows the execution time of LOT-ECC
and XED when compared to a baseline ECC-DIMM. LOT-
ECC has 6.6% higher execution time compared to XED, as
it increases the number of writes to the memory system.
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Figure 14. Execution time of LOT-ECC [13] with respect to XED. LOT-
ECC causes a slowdown of 6.6%.

B. Enabling DRAM Scaling By Tolerating Faults

Prior works such as Archshield [1] and CiDRA [2]
have been proposed to mitigate scaling-faults. ArchShield
is designed specifically to handle scaling faults and can
tolerate runtime failures at only a single bit granularity.
CiDRA also discusses mitigating multiple runtime single-bit
failures using On-Die ECC and uses a small SRAM cache
to mitigate multi-bit failures. Unfortunately, it is impractical
to extend this design to handle a chip failure. For example,
to tolerate chip failures, CiDRA will need to provision an
SRAM structure that is sized for at-least one DRAM chip

(upto a few GBs), incurring prohibitive overheads. On the
contrary, XED avoids such SRAM overheads and enables
On-Die ECC to be seamlessly used to tolerate both scaling-
faults and runtime-faults.

Going forward, Citadel [16], Freefault [50] and Parity
Helix [51] tries to address large-granularity faults in stacked
memories. XED can be used with these techniques to
provide higher reliability even for stacked memories.

XIII. SUMMARY

As DRAM technology scales to smaller nodes, the rate of
unreliable bits within the DRAM chips is increasing [3,22].
Memory vendors are planning to provision On-Die ECC to
handle the scaling-induced faulty bits [3,5,6]. To maintain
compatibility with DDR standards, and to avoid the band-
width overheads of transmitting the ECC code, the On-Die
ECC information is not currently exposed to the memory
controller and therefore, this information cannot be used
to improve memory reliability. To enable low-cost higher-
reliability memory systems in presence of On-Die ECC,
this paper proposes proposes XED (pronounced as “zed”,
the British pronunciation of the letter “z”), a technique
that eXposes On-Die Error Detection information to the
memory controller while avoiding the bandwidth overheads
and changes to the memory standards. Our proposed imple-
mentation of XED has the following features:

1) XED exposes On-Die error detection information us-
ing Catch-Words, thereby avoiding any changes to the
DDR protocol or incurring bandwidth overheads.

2) XED uses the 9-th chip in the ECC-DIMM to store
parity information of all the chips, and uses the error
detection information from the On-Die ECC to correct
the data from the faulty chip using a RAID-3 scheme.

3) XED not only tolerates chip-failure, but also mitigate
scaling faults even at very high error rates (10−4).

XED provides Chipkill-level reliability using only a single
9-chip ECC-DIMM, and Double-Chipkill on a conventional
implementation of Single-Chipkill. Our reliability evalua-
tions show that XED provides 172x higher reliability than an
ECC-DIMM and reduces execution time by 21% compared
to traditional Chipkill implementations. As DRAM technol-
ogy ventures into sub 20nm regime, we believe solutions
such as XED that spans across multiple sub-systems will
become necessary to provide high reliability at low-cost.
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