
SUDOKU: TOLERATING HIGH-RATE
OF TRANSIENT FAILURES FOR
ENABLING SCALABLE STTRAM

Prashant J. Nair

Bahar Asgari
Moinuddin K. Qureshi

The University of British Columbia

Georgia Institute of Technology

!2

INTRODUCTION

Caches are key for enabling high performance processors

*Source: Intel Haswell-E Die

Processor: Die-Shot*

!3

INTRODUCTION

Last-Level Caches (LLC) → Tend to occupy the largest area

*Source: Intel Haswell-E Die

Processor: Die-Shot*

LLC → Static RAM (SRAM)

!4

INTRODUCTION

LLC → Static RAM → Spin Torque Transfer RAM

!5

INTRODUCTION

16 MB

Spin Torque Transfer RAM (STTRAM)

64 MB

4x Capacity

!6

INTRODUCTION

SRAM STTRAM

Capacity ✖ ✔
Reliability ✔ ✖

Scaling STTRAM faces reliability concerns

STT
RAM

!7

INTRODUCTION

Weak
ECC

Strong
ECC Goal

Performance ✔ ✖ ✔
Area

Overhead ↓ ↑ ↓
Reliability ✖ ✔ ✔

Ideally we need to scale STTRAM with low overheads

STT
RAM

!8

INTRODUCTION

Weak
ECC

Strong
ECC Goal

Performance ✔ ✖ ✔
Area

Overhead ↓ ↑ ↓
Reliability ✖ ✔ ✔

Goal: Reliable and Scalable STTRAM at Low Overheads

 Enable STTRAM as a practical alternative to SRAM

STT
RAM

!9

BACKGROUND

STT
RAM

Average Retention Time = 1ns*eΔ

Δ = Thermal Instability Factor

!10

BACKGROUND
Average Retention Time = 1ns*eΔ

Δ = Thermal Instability Factor

Δ Scaling

Δ
STT
RAM

!11

BACKGROUND

Δ STT
RAM

Polarization
of the cell

Scaling

!11

BACKGROUND

Δ Δ
STT
RAM

Polarization
of the cell

Scaling

!12

BACKGROUND

Δ Δ
STT
RAM

Polarization
of the cell

Scaling

!12

BACKGROUND

Δ Δ
STT
RAM

Polarization
of the cell

Scaling

!13

BACKGROUND

Δ Δ

Thermal Noise

Polarization
of the cell

Scaling

!13

BACKGROUND

Δ Δ

Thermal Noise

Polarization
of the cell

Scaling

!14

BACKGROUND

Δ Δ

Thermal Noise

Polarization
of the cell

Scaling

✖

✖

✖

!14

BACKGROUND

Δ Δ

Thermal Noise

Polarization
of the cell

Scaling

✖

✖

✖

!14

BACKGROUND

Δ Δ

Thermal Noise

Polarization
of the cell

Scaling

✖

✖

✖

!15

BACKGROUND

Δ Δ

Thermal Noise

Scaling

✖

✖

✖

Faults

!15

BACKGROUND

Δ Δ

Thermal Noise

Scaling

✖

✖

✖

Faults

!15

BACKGROUND

Δ Δ

Thermal Noise

Scaling

✖

✖

✖

Faults

!16

BACKGROUND

Δ Δ

Thermal Noise

Scaling

✖

✖

✖

Faults

As STTRAM scales → High Rate of Retention Faults

!16

BACKGROUND

Δ Δ

Thermal Noise

Scaling

✖

✖

✖

Faults

As STTRAM scales → High Rate of Retention Faults

!16

BACKGROUND

Δ Δ

Thermal Noise

Scaling

✖

✖

✖

Faults

As STTRAM scales → High Rate of Retention Faults

!17

BACKGROUND

Investigating the Mean Time to Failure (MTTF)

STTRAM Cell

!18

BACKGROUND

STTRAM Cell
[22nm]

Investigating the Mean Time to Failure (MTTF)

Time (not to scale)

MTTF

1hr (cell)

!19

BACKGROUND

Investigating the Mean Time to Failure (MTTF)

MTTF
STTRAM Cache

[512 Million Cells]

64 MB

7us (cache)

Time (not to scale)

!20

BACKGROUND

Scrubbing + Error Correcting Code (ECC) → High MTTF

MTTF
STTRAM

Weak
ECC

(ECC-1)

2%

Time (not to scale)

20ms
(ECC-1)

!21

BACKGROUND

Scrubbing + Error Correcting Code (ECC) → High MTTF

MTTF

Time (not to scale)

20ms
(ECC-1)

10 Billion
hrs

(ECC-6)Strong
ECC

(ECC-6)

12%

STTRAM

!22

BACKGROUND

Scrubbing + Error Correcting Code (ECC) → High MTTF

MTTF

Strong
ECC

(ECC-6)

12%

Time (not to scale)

20ms
(ECC-1)

10 Billion
hrs

(ECC-6)

Ideally we need ECC-6 at the cost of ECC-1

STTRAM

!23

OBSERVATIONS AND INSIGHT

Most faults (>99%) are 1-bit faults (common case)
• Use ECC-1 for address the common case
• Low-cost for the common case

A mechanism to detect 2+ faults
• High-cost in uncommon case (<1% times)

!24

SUDOKU

A low-cost mechanism that uses ECC-1 and CRC

ECC-1

ECC-1 corrects 1-bit faults, CRC detects 2+ bit faults

CRC

8%STTRAM

!25

SUDOKU-X

Split the STTRAM into regions: Use RAID-4

ECC-1 CRC
31

STTRAM

Parity

{
A SRAM parity structure to store parities per region

!26

SUDOKU-X

Split the STTRAM into regions: Use RAID-4

ECC-1 CRC
31

STTRAM

Parity

{
512 lines per region → Parity is 512x smaller

!27

SUDOKU-X

Split the STTRAM into regions

ECC-1 CRC
31

STTRAM

Parity

{
ECC-1 corrects single bit faults

✖

!28

SUDOKU-X

Split the STTRAM into regions

ECC-1 CRC
31

STTRAM

Parity

{
RAID-4 corrects multi-bit line faults: CRC-31 + Parity

✖ ✖

!29

SUDOKU-X

Split the STTRAM into regions

ECC-1 CRC
31

STTRAM

Parity

{
RAID-4 corrects multi-bit line faults: CRC-31 + Parity

✖ ✖

!30

SUDOKU-X

ECC-1 CRC
31

STTRAM

Parity

{ ✖ ✖
✖

MTTF

Time (not to scale)

20ms
(ECC-1)

10 Billion
hrs

(ECC-6)

Fails when multiple faults correspond to the same parity bit

3.7 sec
(SuDoku-X)

Improve MTTF by mitigating overlapping faults

!31

SUDOKU-Y

In cases of overlapping faults: Flip and Retry

ECC-1 CRC
31

STTRAM

Parity

{
A mechanism to flip bits to fix multi-bit errors in a region

✖ ✖
✖

!32

SUDOKU-Y

In cases of overlapping faults: Flip and Retry

ECC-1 CRC
31

STTRAM

Parity

{
A mechanism to flip bits to fix multi-bit errors in a region

✖ ✖
✖

!33

SUDOKU-Y

In cases of overlapping faults: Flip and Retry

ECC-1 CRC
31

STTRAM

Parity

{
Sequentially flip each bit and check if CRC31 fails

✖ ✖
✖

!34

SUDOKU-Y

In cases of overlapping faults: Flip and Retry

ECC-1 CRC
31

STTRAM

Parity

{
Sequentially flip each bit and check if CRC31 fails

✖ ✖
✖

!35

SUDOKU-Y

In cases of overlapping faults: Flip and Retry

ECC-1 CRC
31

STTRAM

Parity

{
Sequentially flip each bit and check if CRC31 fails

✖
✖

!36

SUDOKU-Y

In cases of overlapping faults: Flip and Retry

ECC-1 CRC
31

STTRAM

Parity

{
Sequentially flip each bit and check if CRC31 fails

✖
✖

Use ECC-1 to fix the remaining 1-bit faults

!37

SUDOKU-Y

In cases of overlapping faults: Flip and Retry

ECC-1 CRC
31

STTRAM

Parity

{ ✖
✖

SuDoku-Y fails when multiple overlapping faults exist
MTTF

Time (not to scale)

20ms
(ECC-1)

10 Billion
hrs

(ECC-6)

3.7 sec
(SuDoku-X)

3.49 hrs
(SuDoku-Y)

!38

SUDOKU-Z

Split the STTRAM into differently hashed regions

ECC-1 CRC
31

STTRAM

Parity 1

Parity 2

Create two parities based on these hashes

!39

SUDOKU-Z

Split the STTRAM into differently hashed regions

ECC-1 CRC
31

STTRAM

Parity 1

Parity 2

Create two parities based on these hashes

!40

SUDOKU-Z

Split the STTRAM into differently hashed regions

ECC-1 CRC
31

STTRAM

Parity 1

Parity 2

If SuDoku-X + SuDoku-Y fails in Parity-1 → Try Parity 2

!41

SUDOKU-Z

ECC-1 CRC
31

STTRAM

Parity 1

Parity 2

CRC-31 to find out if the SuDoku-X, SuDoku-Y succeeded

!42

SUDOKU-Z

ECC-1 CRC
31

STTRAM

Parity 1

Parity 2

CRC-31 to find out if the SuDoku-X, SuDoku-Y succeeded

Strength is limited by CRC31 error detection rate

!43

SUDOKU-Z

ECC-1 CRC
31

STTRAM

Parity 1

Parity 2

Split the STTRAM into differently hashed regions

MTTF

Time (not to scale)

20ms
(ECC-1)

10 Billion
hrs

(ECC-6)

3.7 sec
(SuDoku-X)

3.49 hrs
(SuDoku-Y)

8740
Billion hrs
(SuDoku-Z)

SuDoku: 874x stronger than ECC-6 with low overheads

!44

EVALUATION SETUP

USIMM Simulator: 8 OoO Cores, 64 MB STTRAM Cache

Retention Fault-Rate: 5.3 x 10-6

Analytical models for reliability evaluations

!45

PERFORMANCE RESULTS

Less than 1% performance overhead

!46

INTUITION ON OVERHEADS

Overall, SuDoku optimizes for the common case

1. ECC-1 requires only 1 cycle to fix single-bit errors

2.RAID reads 512 lines → High Overhead
• Fortunately, multi-bit errors occur infrequently: 4

times every 20ms
• Total overhead is 16us every 20ms

3.Parity based SRAMs are 512x smaller
4.Total area overhead from two parity arrays is 0.3%

!47

SUMMARY

1. STTRAM can enable high density caches
2. STTRAM scales unreliably and may require costly ECC
3. To enable practical and efficient STTRAM we need

strong ECC at lower costs.
4.SuDoku enables using ECC-1 (low cost) for the

common case and mitigates overheads in enabling
scalable STTRAM.

5. SuDoku uses strong ECC in the uncommon case and
improves overall reliability

!48

Thank You

