

SUDOKU: TOLERATING HIGH-RATE OF TRANSIENT FAILURES FOR ENABLING SCALABLE STTRAM

Prashant J. Nair

The University of British Columbia

Bahar Asgari
Moinuddin K. QureshiGeorgia Institute of Technology

Caches are key for enabling high performance processors

Processor: Die-Shot*

Last-Level Caches (LLC) \rightarrow Tend to occupy the largest area LLC \rightarrow Static RAM (SRAM)

Processor: Die-Shot*

LLC → Static RAM → Spin Torque Transfer RAM

Spin Torque Transfer RAM (STTRAM)

Scaling STTRAM faces reliability concerns

	SRAM	STTRAM
Capacity	×	<
Reliability		*

Ideally we need to scale STTRAM with low overheads

	Weak ECC	Strong ECC
Performance		*
Area Overhead	→	1
Reliability	*	/

Enable STTRAM as a practical alternative to SRAM

		and the second s		
	Weak ECC	Strong ECC	Goal	
Performance	~	*		STT
Area Overhead	↓	1	↓	RAM
Reliability	*		/	

Goal: Reliable and Scalable STTRAM at Low Overheads

Average Retention Time = $1ns^*e^{\Delta}$

Δ = Thermal Instability Factor

Average Retention Time = $1ns^*e^{\Delta}$

Δ = Thermal Instability Factor

As STTRAM scales \rightarrow High Rate of Retention Faults

As STTRAM scales \rightarrow High Rate of Retention Faults

As STTRAM scales \rightarrow High Rate of Retention Faults

Investigating the Mean Time to Failure (MTTF)

Investigating the Mean Time to Failure (MTTF)

Investigating the Mean Time to Failure (MTTF)

Scrubbing + Error Correcting Code (ECC) \rightarrow High MTTF

Scrubbing + Error Correcting Code (ECC) \rightarrow High MTTF

Scrubbing + Error Correcting Code (ECC) \rightarrow High MTTF

Ideally we need ECC-6 at the cost of ECC-1

OBSERVATIONS AND INSIGHT

Most faults (>99%) are 1-bit faults (common case)

- Use ECC-1 for address the common case
- Low-cost for the common case

- A mechanism to detect 2+ faults
- High-cost in uncommon case (<1% times)

A low-cost mechanism that uses ECC-1 and CRC

ECC-1 corrects 1-bit faults, CRC detects 2+ bit faults²⁴

Split the STTRAM into regions: Use RAID-4

A SRAM parity structure to store parities per region

Split the STTRAM into regions: Use RAID-4 512 lines per region \rightarrow Parity is 512x smaller

26

Split the STTRAM into regions ECC-1 corrects single bit faults

Split the STTRAM into regions

RAID-4 corrects multi-bit line faults: CRC-31 + Parity

STTRAM

Split the STTRAM into regions

RAID-4 corrects multi-bit line faults: CRC-31 + Parity

Fails when multiple faults correspond to the same parity bit

SUDOKU-Y

In cases of overlapping faults: Flip and Retry

A mechanism to flip bits to fix multi-bit errors in a region

SUDOKU-Y

In cases of overlapping faults: Flip and Retry

A mechanism to flip bits to fix multi-bit errors in a region

In cases of overlapping faults: Flip and Retry Sequentially flip each bit and check if CRC31 fails

STTRAM

In cases of overlapping faults: Flip and Retry

Sequentially flip each bit and check if CRC31 fails

STTRAM

SUDOKU-Y

In cases of overlapping faults: Flip and Retry Sequentially flip each bit and check if CRC31 fails

35

SUDOKU-Y

In cases of overlapping faults: Flip and Retry Sequentially flip each bit and check if CRC31 fails

Use ECC-1 to fix the remaining 1-bit faults

In cases of overlapping faults: Flip and Retry

Split the STTRAM into differently hashed regions

Create two parities based on these hashes

Split the STTRAM into differently hashed regions

Create two parities based on these hashes

SUDOKU-Z

Split the STTRAM into differently hashed regions If SuDoku-X + SuDoku-Y fails in Parity-1 \rightarrow Try Parity 2

CRC-31 to find out if the SuDoku-X, SuDoku-Y succeeded

42

CRC-31 to find out if the SuDoku-X, SuDoku-Y succeeded

Strength is limited by CRC31 error detection rate

Split the STTRAM into differently hashed regions

EVALUATION SETUP

USIMM Simulator: 8 OoO Cores, 64 MB STTRAM Cache Retention Fault-Rate: 5.3 x 10⁻⁶ Analytical models for reliability evaluations

PERFORMANCE RESULTS

Less than 1% performance overhead

INTUITION ON OVERHEADS

- 1. ECC-1 requires only 1 cycle to fix single-bit errors
- 2.RAID reads 512 lines \rightarrow High Overhead
 - Fortunately, multi-bit errors occur infrequently: 4 times every 20ms
 - Total overhead is 16us every 20ms
- 3. Parity based SRAMs are 512x smaller
- 4. Total area overhead from two parity arrays is 0.3%

Overall, SuDoku optimizes for the common case

SUMMARY

- 1. STTRAM can enable high density caches
- 2. STTRAM scales unreliably and may require costly ECC
- 3. To enable practical and efficient STTRAM we need strong ECC at lower costs.
- 4.SuDoku enables using ECC-1 (low cost) for the common case and mitigates overheads in enabling scalable STTRAM.
- 5. SuDoku uses strong ECC in the uncommon case and improves overall reliability

Thank You

THE UNIVERSITY OF BRITISH COLUMBIA

A state Blink & Pasta 1. 1.4