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DRAM BACKGROUND

Dynamic Random Access Memory (DRAM) stores data as
charge on capacitor
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DRAM BACKGROUND

Dynamic Random Access Memory (DRAM) stores data as
charge on capacitor
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DRAM is a volatile memory - charge leaks quickly




DRAM REFRESH

Retention Time: The time for which cell/memory retains data

DRAM maintains data by “refresh” operations at row granularity
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DRAM REFRESH

Retention Time: The time for which cell/memory retains data

DRAM maintains data by “refresh” operations at row granularity

DRAM Chip
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Refresh period determined by “worst-case” cell: 64ms (JEDEC)

DRAM relies on refresh (64ms) for data integrity




“REFRESH WALL” FOR DRAM SYSTEMS

Refresh cost proportional to capacity = Exponentially increasing
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*Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.
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“REFRESH WALL” FOR DRAM SYSTEMS

Refresh cost proportional to capacity = Exponentially increasing
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Refresh consumes significant time and energy

*Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.



NOT ALL RETENTION TIME IS CREATED EQUAL

Retention time of cells vary significantly: most cells >> 64ms

*Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.
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NOT ALL RETENTION TIME IS CREATED EQUAL

Retention time of cells vary significantly: most cells >> 64ms

N/ Exploit variability in retention time = Multirate Refresh
9\ Normal Refresh (64ms) & Slow Refresh (e.g. 256ms+)

NS

Row contains a cell with retention

time < period of Slow Refresh
Yes No

Use Normal Refresh Use Slow Refresh

Efficient DRAM refresh by exploiting variability

*Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.
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MULTI RATE REFRESH: DESIGN & EFFECTIVENESS

DRAM Rows Ref. Rate Table
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DRAM Rows Ref. Rate Table
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Multi rate refresh can reduce refresh by 70%+




VARIABLE RETENTION TIME (VRT): THE NEMESIS

Multirate refresh relies on retention time to remain unchanged

Retention time can vary at runtime due to VRT
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VARIABLE RETENTION TIME (VRT): THE NEMESIS

Multirate refresh relies on retention time to remain unchanged

Retention time can vary at runtime due to VRT

DRAM Rows Ref. Rate Table
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VRT renders multi-rate refresh unusable in practice




GOALS

VRT considered one of the biggest impediment to DRAM scaling
-- [Samung & Intel, Memory Forum 2014]

Our study investigates the following questions:
1. Can we analyze VRT using architecture level models?
2. Can we overcome VRT simply by using ECC DIMM?

3. If not, what is a low cost solution to mitigate VRT?



OUTLINE

»Background
»VRT: mechanism, measurement, model

»Can’t we fix VRT by simply using ECC DIMM?
» AVATAR

» Results
» Summary



WHY DOES VRT OCCUR? WHEN IS IT HARMFUL?

VRT caused by fluctuations in Gate Induced Drain Leakage.

External factors: mechanical stress, high temperature etc.



WHY DOES VRT OCCUR? WHEN IS IT HARMFUL?

VRT caused by fluctuations in Gate Induced Drain Leakage.

External factors: mechanical stress, high temperature etc.
Not all VRT is harmful
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EXPERIMENTAL SETUP

Test platform: DDR3 testing platform Xilinx ML605 FPGA
development board in temperature controlled setting

Slow Refresh: Studied refresh of 4s at 45C, corresponds to
328ms at 85C [khan+ SIGMETRICS'14, Liu+ ISCA'13]

Test: Write specific pattern, read pattern, log id of erroneous cell
Statistics collected every 15 minutes, over 7 days (672 rounds)

Three (2GB) modules, one each from different DRAM vendor



1: POPULATION OF WEAK CELLS INCREASES
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Even after several days of testing, VRT causes new
(previously unidentified) cells to cause failures




2: VRT-CELLS CAN SWITCH RANDOMLY

Cell with retention time < 328ms = Weak Cell, else Strong Cell
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A VRT cell can randomly and frequently transition
between strong and weak states




Size of Active-VRT Pool

3: SIZE OF ACTIVE-VRT POOL VARIES

Active-VRT Cell: Cell that failed during the given 15-min round

Active-VRT Pool (AVP): Group of Active VRT Cells
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The size of AVP varies dynamically for all modules




MODELING THE DYNAMIC SIZE OF AVP

Predicting the exact AVP size is difficult, but it can be modeled
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4: RATE OF NEW VRT CELLS STEADIES

Active-VRT Injection (AVI) Rate
The rate at which new cells become Active-VRT cells
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AVP reduces to ~1 new cell per 15-min period




ARCHITECTURE MODEL FOR CELL UNDER VRT

Weak Cell

AVP




ARCHITECTURE MODEL FOR CELL UNDER VRT

Two key parameters:

Weak Cell

AVP

Active-VRT Pool (AVP): How many VRT cells in this period?

Active-VRT Injection (AVI): How many new (previously
undiscovered) cells became weak in this period?

Model has two parameters: AVP and AVI




ARCHITECTURE MODEL FOR VRT

Input: Mu,Sdev, for the logn of Active-VRT pool
Input: K, rate of discovering new VRT cells
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ARCHITECTURE MODEL FOR VRT

Input: Mu,Sdev, for the logn of Active-VRT pool
Input: K, rate of discovering new VRT cells

PoolSize = Rand (LogNormDist[Mu,Sdev])
Insert K new elements in Pool
Remove K elements from Pool

= System Failure Probability

v

TimePeriod++ |

P[TimePeriod]

Parameter scaling for larger systems: 2GB DIMM to 8GB DIMM
AVP size increased by 4x: from ~400 to ~1600
AVI rate increased by 4x: from 1 to 4
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BACKGROUND ON ECC DIMM

ECC DIMM can tolerate 1 error per word (8 bytes)

3 Agrad

Typically used to tolerate soft error but can also be used to
fix a bit error due to VRT

A multi-bit error per word =» uncorrectable error

What is time to double error per word under VRT?




ANALYTICAL MODEL FOR ECC DIMM

W words in memory (strong rows only)
P words have 1 bit error already (AVP)
K new weak cells get injected in given time quanta

D
P(DIMM has no uncorrectable error) = (1 — —)K

14
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ANALYTICAL MODEL FOR ECC DIMM

W words in memory (strong rows only)
P words have 1 bit error already (AVP)
K new weak cells get injected in given time quanta

2,

P(DIMM has no uncorrectable error) = (1 — W)K
For T time quanta, and D DIMMS
P(System has no uncorrectable error) = (1— E)K L

14




EVEN WITH ECC-DIMM, ERROR RATE IS HIGH

System: Four channels, each with 8GB DIMM
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VRT still causes an error every ~6-8 months
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AVATAR

Insight: Avoid forming Active VRT Pool = Upgrade on ECC error
Observation: Rate of VRT >> Rate of soft error (50x-2500x)

DRAM Rows Ref. Rate Table
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AVATAR

Insight: Avoid forming Active VRT Pool = Upgrade on ECC error
Observation: Rate of VRT >> Rate of soft error (50x-2500x)

DRAM Rows Ref. Rate Table
0]
Weak Cell 0
1
0 Row protected
RETENTION
e 0 from future
0 retention failures
1
{1




AVATAR

Insight: Avoid forming Active VRT Pool = Upgrade on ECC error
Observation: Rate of VRT >> Rate of soft error (50x-2500x)
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AVATAR mitigates VRT by breaking AVP Pool
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AVATAR: ANALYTICAL MODEL

Only errors injected between scrub can clash with each other
Instead of 1000+ weak cells (AVP), deal with 4 errors (AVI)

W words in memory, K errors in time quanta (AVI Rate)

Prob(DIMM has no uncorrectable error) =
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AVATAR: TIME TO FAILURE

System: Four channels, each with 8GB DIMM
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* We include the effect of soft error in the above lifetime analysis (details in the paper)
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System: Four channels, each with 8GB DIMM
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AVATAR increases time to failure to 10s of years

* We include the effect of soft error in the above lifetime analysis (details in the paper)
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RESULTS: REFRESH SAVINGS

Reduction in Refresh (%
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AVATAR reduces refresh by 60%-70%, similar to

multi rate refresh but with VRT tolerance




RESULTS: REFRESH SAVINGS

Retenfion Testing Once a Year can revert refresh
saving from 60% to 70%
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AVATAR reduces refresh by 60%-70%, similar to
multi rate refresh but with VRT tolerance




SPEEDUP
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AVATAR gets 2/3'd the performance of NoRefresh.
More gains at higher capacity nodes




ENERGY DELAY PRODUCT
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AVATAR reduces EDP,
Significant reduction at higher capacity nodes
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SUMMARY

Multirate refresh =» retention profiling to reduce refresh

Variable Retention Time = errors with multirate refresh

v’ Architecture model of VRT based on experiments
v"We show ECC DIMM alone is not enough
v AVATAR (upgrade refresh rate of row on ECC error)

AVATAR increase the time to failure from 0.5 years to
500 years and incurs the same storage as ECC DIMM



