HYDRA: Enabling Low-Overhead Mitigation of Rowhammer
at Ultra-Low Thresholds via Hybrid Tracking

Moinuddin Qureshi
Aditya Rohan, Gururaj Saileshwar, Prashant Nair

| Georgda % L:lEVERsnY OF
- Tech W (BZROILTUII\S/IgIA

Rowhammer Attacks

DRAM Scaling for Increased Capacity

7Y Y
DRAM
(old) » } *
A y
DRAM
(new)

Rowhammer Attacks

DRAM Scaling for Increased Capacity
More Inter-Cell Interference

DRAM
(old)

DRAM
(new)

Rowhammer Attacks

DRAM Scaling for Increased Capacity %
More Inter-Cell Interference / Rowhammer Attack

Row of Cells (8KB)

DRAM

Bit-Flips in Neighboring Rows

Rowhammer Attacks

DRAM Scaling for Increased Capacity %
More Inter-Cell Interference / Rowhammer Attack

Row of Cells (8KB)

Aggressor Row

Aggressor Row

DRAM

Bit-Flips in Neighboring Rows

Rowhammer Attacks

N

/ Rowhammer Attack

loop:
mov (), %eax
mov (), %ebx
clflush ()

Row of Cells (8KB)

clflush ()
mfence

Jmp loop

Aggressor Row

Aggressor Row

Software Adversary Can Flip Bits in Page Tables & DRAM

Gain Kernel Privileges (Take Over a System) o . .
) Bit-Flips in Neighboring Rows
[Seaborn+, Blackhat’15]

Rowhammer is Getting Worse!

Rowhammer Threshold: Bitflips require activating at least one row TRH times

A139K
=
)
=
b}
‘5 30x Reduction in
g TRH in 8 years!
=
(]
=
<
(e}
7

>
DDR3 DDR4 LPDDR4 DDRS5
(2014) (2020)

Solutions must tolerate not only current TRH but future TRH (Our goal: TRH < 500)

Typical Mitigation for Rowhammer

Targeted Row Refresh (TRR) in DDR4 (2015)

Victim Row

N DRAM y

Typical Mitigation for Rowhammer

Targeted Row Refresh (TRR) in DDR4 (2015)

0 Track Aggressor Rows

Victim Row

N DRAM y

Typical Mitigation for Rowhammer

Targeted Row Refresh (TRR) in DDR4 (2015)

€ Track Aggressor Rows @ Mitigative Action

Refresh

Victim Row
_ DRAM)

Typical Mitigation for Rowhammer

Targeted Row Refresh (TRR) in DDR4 (2015)

1

TRResspass Breaks TRR Tracker [Frigo+, SP’20]

ressor Rows @) Mitigative Action *

Victim Row

Poor Rowhammer Fixes On DDR4 DRAM A "
Chips Re-Enable Bit Flipping Attacks Refresh ggressor Row

Victim Row
Blacksmith Attack: All DDR4 DRAM Vulnerable [Jattke+, SP’22] | DRAM)

When the world ends, all that will be left are cockroaches and new
Rowhammer attacks: RAM defenses broken again

Blacksmith is latest hammer horror Source: The Register

Why Trackers Break?

Refresh Period: 64ms, Row-Cycle Time: 45ns

Activation Budget Per Bank: ~1.4 Million

Victim Row

9 DRAM

Why Trackers Break?

Refresh Period: 64ms, Row-Cycle Time: 45ns

Activation Budget Per Bank: ~1.4 Million

bl L T OO CETTLT

Max. Attack Rows

I T Ty

100,000

Victim Row

_ DRAM)

The number attack rows increases inversely to Threshold, so does tracker state

Why Trackers Break?

Refresh Period: 64ms, Row-Cycle Time: 45ns

Activation Budget Per Bank: ~1.4 Million

 DURRRRRRRRR RN R RN R n v nunnvunnunnnnnn B

Max. Attack Rows

o | ek | sz
100,000
10,000 140 4.5K Victim Row
1,000 1400 45K \ DRAM Y

The number attack rows increases inversely to Threshold, so does tracker state

Pitfall of SRAM-Based Trackers

SRAM-tables can be in memory controller (CAT) or inside DRAM chip (TRR)
Overheads for 16GB Rank (16 Banks, 8KB Rows)

RH Threshold Graphene TWICE D-CBF
(100% CAM) (Blacklist only)

37KB 25KB 53KB 3.8MB

Pitfall of SRAM-Based Trackers

SRAM-tables can be in memory controller (CAT) or inside DRAM chip (TRR)
Overheads for 16GB Rank (16 Banks, 8KB Rows)

RH Threshold Graphene TWICE D-CBF
(100% CAM) (Blacklist only)

37KB 25KB 53KB 3.8MB
500 340KB 23MB 1.5MB 768KB 2.3MVIB
‘ 250 679KB >2MB >2MB 1.5MB 2MB ‘

SRAM-Based trackers incur impractical SRAM overheads at ultra-low thresholds

Pitfall of SRAM-Based Trackers

SRAM-tables can be in memory controller (CAT) or inside DRAM chip (TRR)
Overheads for 16GB Rank (16 Banks, 8KB Rows)

RH Threshold Graphene TWICE D-CBF
(100% CAM) (Blacklist only)

37KB 25KB 53KB 3.8MB
500 340KB 23MB 1.5MB 768KB 2.3MVIB
‘ 250 679KB >2MB >2MB 1.5MB 2MB ‘

Our goal is < 64KB SRAM per Rank

SRAM-Based trackers incur impractical SRAM overheads at ultra-low thresholds

Pitfall of DRAM-Based Trackers

Counter-Based Row Activation [Kim, Nair, Qureshi - CAL'14]:
Keep counters for ALL rows in a dedicated region in DRAM, cache counter-lines on-chip

[CRA-64KB I CRA-128KB EEN CRA-256KB

g SPEC-2017 » ¢ PARSEC » ¢ GAP » GEOMEAN
]
£ , I - N A
_
O
=
)
Q —
€ i i | i n i NN ni
§ .
0.0
\7«7’\ O 9\6\ \36\

' :‘e e(, 36\0((\ C\,QQ ((\(9 *1«((\ 6$((\\‘68‘ cC 3‘0 6 \‘,\(K((\é \(,\‘ (‘,(\e\ (6\‘ (%% (3 0 39 a()‘(e \)\6(, W (,/ (/(, _ ?6
2 'a‘ AN (((:\ O 'oQ,‘a c"o\e’ > (;Q ’L a((\Q “\69\\ ‘@xe‘ (@MY KRR AL 7 QMg Cc’(a\> 6??'C\>?‘6€6PP

&0 C@ *@ 6 Q

DRAM-based trackers incur low SRAM storage but high performance overhead (25%)

Goal

Develop secure and low-cost Rowhammer mitigation:
v’ Effective at Ultra-Low thresholds (500 or below)

v' Low SRAM overhead (<64KB per rank)

v Low performance overhead (< 1%)

v" No changes to DRAM arrays or memory interfaces

Observation and Insight

Rowhammer: Race against time (64 ms)
- Access many rows few times vV
- Access few rows many times vV
- Access many rows many times X

Observation and Insight

Workload || MPKI | Unique | ACT-250+ | ACTs Per

Rowhammer: Race against time (64 ms) LLC | Rows* | Rows* Row*
- Access many rows few times vV bwaves || 396 | 77.9K 2 38.6
parest 27.6 13.8K 5,882 237

- Access few rows many times vV fotonik3d || 259 | 212K | 0 17.5
o Ibm 25.6 41.8K 0 82.1

- Access many rows many times X mcf 20.8 0 28.8
omnetpp 9.75 195 10.7

. . . . roms 9.15 1,169 22.9
Applications (within 64ms): Xz 5.87 1,755 26.4
cam4 3.23 45.5K 5 54.1

- Access 100k+ rows cactuBSSN 3.20 24.6K 4,609 107
- On average, few 10s of ACT/row xalancbmk || 1.61 | 60.8K 0 198
blender 1.52 52.4K 2,288 58.7

- Few thousand rows have 250+ ACT gee 0.65 | 144K 159 18.0
nab 0.61 61.9K 0 31.9

deepsjeng 0.29 802K 0 1.78

X264 0.28 25.0K 0 34.0

wrf 0.27 19.3K 18 20.9

namd 0.26 24.7K 0 34.9

imagick 0.16 10.7K 0 19.1

perlbench 0.09 25.6K 0 5.88

leela 0.03 0.72K 0 2.68

povray 0.03 0.50K 0 2.28

Observation and Insight

. . Workload MPKI | Unique | ACT-250+ | ACTs Per
Rowhammer: Race against time (64 ms) LLC | Rows* | Rows* Row*
_ H bwaves 39.6 77.9K 0 38.6
Access many rows few times et | e | ek |5 -
- Access few rows many times vV fotonikd || 259 | 212K | 0 17.5
o Ibm 25.6 41.8K 0 82.1
- Access many rows many times X mef 20.8 0 28.8
omnetpp 9.75 195 10.7
roms 9.15 1,169 22.9
Applications (within 64ms): Xz 5.87 1,755 26.4
cam4 3.23 45.5K 5 54.1
- Access 100k+ rows cactuBSSN 3.20 24.6K 4,609 107
- On average, few 10s of ACT/row xalancbmk || 1.61 | 60.8K 0 198
blender 1.52 52.4K 2,288 58.7
- Few thousand rows have 250+ ACT gee 0.65 | 144K 159 18.0
nab 0.61 61.9K 0 31.9
deepsjeng 0.29 802K 0 1.78
. X264 0.28 25.0K 0 34.0
Insight: wif 027 | 193K 18 20.9
oge namd 0.26 24.7K 0 34.9
- Have ability to track all rows (DRAM) imagick || 016 | 107K . o1
- Use SRAM to filter out common-case perlbench |} 0.09 1} 25.6K 0 588
leela 0.03 0.72K 0 2.68
povray 0.03 0.50K 0 2.28

HYDRA: Hybrid Tracker

HYDRA: SRAM for group-tracking, and DRAM for per-row tracking (cached)

Memory Controller (SRAM) DRAM

rown| [)

Address
Space

Group Count
Table (GCT)

Row Count
\ J Table (RCT)

HYDRA uses DRAM to get scalable tracking, and SRAM to avoid performance overheads

HYDRA: Hybrid Tracker

HYDRA: SRAM for group-tracking, and DRAM for per-row tracking (cached)

Memory Controller (SRAM) DRAM
Row-ID / \

L 1]
>

- L Address

I e Space
Group Count Row Count
Table (GCT) Cache (RCC)

Row Count
\ J Table (RCT)

HYDRA uses DRAM to get scalable tracking, and SRAM to avoid performance overheads

HYDRA: Operation

Row-ID

Assume: Hydra Threshold = 250, Group Threshold= 200

>

Group Count
Table (GCT)

HYDRA: Operation

Row-ID

Assume: Hydra Threshold = 250, Group Threshold= 200

Group Count
Table (GCT)

HYDRA: Operation

Assume: Hydra Threshold = 250, Group Threshold= 200

Row-ID

L
{ |
Row Count
Cache (RCCQ)

Group Count
Table (GCT)

HYDRA: Operation

Assume: Hydra Threshold = 250, Group Threshold= 200

Row-ID

L
{ |
Row Count
Cache (RCCQ)

Group Count
Table (GCT)

HYDRA: Operation

Row-ID

Assume: Hydra Threshold = 250, Group Threshold= 200

Group Count
Table (GCT)

L
{ |
Row Count
Cache (RCCQ)

DRAM

Address
Space

Row Count
Table (RCT)

HYDRA: Operation

Assume: Hydra Threshold = 250, Group Threshold= 200

“ DRAM

Row-ID
- |
"Hl
Address
Row Count Space
Group Count Cache (RCC)
Table (GCT)
Row Count
Table (RCT)
32KB SRAM 24KB SRAM 4MB DRAM
(90.7% Accesses) (9% Accesses) (0.3% Accesses)

The GCT filters most of the counter checks, less pressure on RCC, minimal RCT access

HYDRA: Reset and Set

Every 64ms, Reset SRAM state

Memory Controller (SRAM) DRAM

Row-ID / \

-- Address
-- Space
Group Count Row Count

Table (GCT) Cache (RCC)

Row Count
\ / Table (RCT)

HYDRA: Reset and Set

When GCT-entry reaches 200

Every 64ms, Reset SRAM state Set relevant RCT-entries to 200
Memory Controller (SRAM) DRAM
Row-ID / \

| Up 2007 |

< Up 2007
C L Address
. L -

Group Count Row Count

Table (GCT) Cache (RCC)

Row Count
\ / Table (RCT)

HYDRA uses intelligent indexing to reduce RCT set overhead (128 counters in two lines)

HYDRA: Reset and Set

When GCT-entry reaches 200

Every 64ms, Reset SRAM state Set relevant RCT-entries to 200
Memory Controller (SRAM) DRAM
Row-ID (\

| Up 2007 |

< Up 2007
C L Address
. L -

Group Count Row Count

Table (GCT) Cache (RCC)
Row Count
\ / Table (RCT)

If a Row is accessed continuously, first mitigation may be at 50, then 250 each

HYDRA uses intelligent indexing to reduce RCT set overhead (128 counters in two lines)

Security Analysis

HYDRA Threshold is set to TRH/2 due to periodic reset (TH=250, TRH=500)

Security NOT

Proof that HYDRA issues a mitigation at-least once per TRH dependent
on pattern

Protection for RCT rows (their counters kept in SRAM, 500 bytes)
Protection against Half-Double (mitigations increment count for victim)

HYDRA works with any mitigating action (BH/RRS): Refresh 2 rows on each side

For detailed security analysis, please see the paper

Results

Config: 8-core 000, 32GB DRAM (2 Ranks, 8KB Row-Buffer)

1 CRA (64KB) I Graphene (680KB) El Hydra (57KB)
SPEC-2017 >« P GAP GEOMEAN

i
||||.|

0.0

N 9‘«3)“ W QR For Lo o (et Wl 29 e e«e ANy k@RI X M e T S e R RN 30

oW o P\ ?: et 02 NS\ o° Q & AN
o o a *'o A€ Qe R Q‘;&

Norm. Performance
O O O O =
N B O 00 O

HYDRA has negligible slowdown (0.7%) and low SRAM overheads (57KB for two ranks)

Say Hello! to DDR5

SRAM overheads for 32GB (2 Ranks) for DDR4 (current) and DDRS5 (soon)

DDR-4 DDR-5
(16 banks/rank) (32 banks/rank)

Graphene 640 KB (CAM) 1.3 MB (CAM)
TWICE 4.6 MB 9 MB
CAT 3 MB 6 MB
D-CBF 1.5 MB 1.5 MB
HYDRA 56.5 KB 56.5 KB

HYDRA provides scalable Rowhammer mitigation even for DDR5

Say Hello! to DDR5

SRAM overheads for 32GB (2 Ranks) for DDR4 (current) and DDRS5 (soon)

DDR-4 DDR-5
(16 banks/rank) (32 banks/rank)

Graphene 640 KB (CAM) 1.3 MB (CAM)
TWICE 4.6 MB 9 MB
CAT 3 MB 6 MB
D-CBF 1.5 MB 1.5 MB
HYDRA 56.5 KB 56.5 KB

DRAM overhead of HYDRA is negligible (4MB out of 32GB, 0.01%)

HYDRA provides scalable Rowhammer mitigation even for DDR5

Conclusion

Rowhammer is a moving target: Threshold keeps reducing (30x in 8 years)
Existing SRAM trackers needs unacceptable storage (at TRH < 500)
Existing DRAM-based tracker incurs unacceptable slowdown (25%)

We develop HYDRA, a hybrid tracker, that combines the best of both
 Ability to track arbitrary number of rows (good for security)
 Filter per-row updates using SRAM for group tracking (avoids slowdown)

HYDRA incurs 0.7% slowdown and needs 28KB/rank (at TRH=500)

Sensitivity to GCT Capacity

We use a default GCT of 32K

[] 16K I 32K [64K

18.3%

S 2%
N 0.01% 0.01%
N 09 ‘ h |

SPEC(22) PARSEC(7) GAP(6 GUPS(1) ALL(36)

A larger GCT virtually eliminates all slowdown (except for mitigating actions)

Sensitivity to RH Threshold

Structures scaled 2x for TRH=250, and 4x for TRH=125

Il TRH=500 1 TRH=250 TRH=125

(%)

12% i

8%

o 2l

SPEC(22) PARSEC(7 GAP(6) GUPS(1) ALL(36)

Slowdown

HYDRA has can provide scalable Rowhammer mitigation even at low threshold

GCT vs RCC: Which One?

[Hydra-NoGCT [Hydra-NoRCC El Hydra

g ¢ SPEC-2017 > ¢ PARSEC GAP » GEOMEAN
©
£ rr " I'
S |
9 I
£ |
5 .
m\‘?{a <& \‘@’6 o <°° %™ “‘%6?:\ ‘(Qt 8¢ o ‘\f %" e‘if Q‘d“ <‘°‘\e?{\> ey “?’ SN e @R e o o S N R gc\'%l&;?@ 3o
ko o @@ © 8¢ o K g

Figure 8: Slowdown of Hydra without GCT or RCC. The average slowdown of Hydra-NoRCC is 4.5% and Hydra-NoGCT is 20%.

GCT is the primary source of effectiveness (filtering 90% of the accesses)

D-CBF

Comparison with D-CBF: Both D-CBF and Hydra (GCT) use
filters to identify (possibly) hot-rows, however, these two proposals
are at radically different design points. As D-CBF is a single-line
of defense, D-CBF must be over-provisioned to support extremely
low false-positive rates. Whereas, Hydra uses three lines of defense,
GCT for identifying (possibly) hot-rows, then the RCC for caching
per-row count, and RCT for providing unconstrained storage (if
both the GCT and RCC fail). Thus, Hydra can easily use a small filter
and handle overflows. Furthermore, D-CBF can support mitigation
via only delay and not victim refresh (once the entry in the filter
saturates, it stays in that state until reset). Unfortunately, inserting
a delay is not viable at ultra-low thresholds.® Hydra can support
victim refresh as it can reset the per-row state.

SFor example, at Trgy=500, about 250 activations would go in identifying the hot-row,
and the remaining 250 activations must be spread over almost 64ms, which means the
access rate to the hot-row would get limited to once every 0.25 millisecond, which is
almost 2000X lower than the access rate possible in the baseline. We note that such
Denial-of-Service would occur even in regular workloads as we observe that several
workloads have a few thousand rows receiving 250+ activations (Table 3).

