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Abstract—Securing off-chip main memory is essential for pro-
tection from adversaries with physical access to systems. However,
current secure-memory designs incur considerable performance
overheads – a major cause being the multiple memory accesses
required for traversing an integrity-tree, that provides protection
against man-in-the-middle attacks or replay attacks.

In this paper, we provide a scalable solution to this problem
by proposing a compact integrity tree design that requires fewer
memory accesses for its traversal. We enable this by proposing
new storage-efficient representations for the counters used for
encryption and integrity-tree in secure memories. Our Morphable
Counters are more cacheable on-chip, as they provide more
counters per cacheline than existing split counters. Additionally,
they incur lower overheads due to counter-overflows, by dynam-
ically switching between counter representations based on usage
pattern. We show that using Morphable Counters enables a 128-
ary integrity-tree, that can improve performance by 6.3% on
average (up to 28.3%) and reduce system energy-delay product
by 8.8% on average, compared to an aggressive baseline using
split counters with a 64-ary integrity-tree. These benefits come
without any additional storage or reduction in security and are
derived from our compact counter representation, that reduces
the integrity-tree size for a 16GB memory from 4MB in the
baseline to 1MB. Compared to recently proposed VAULT [1], our
design provides a speedup of 13.5% on average (up to 47.4%).

Index Terms—Memory Security, Replay Attack, Merkle Tree,
MAC, Intel SGX, Split Counters, Encryption, Compression.

I. INTRODUCTION

Securing system main-memory from physical attacks is

important for building trusted data-centers. Numerous attacks

[2], [3], [4], [5], [6] have demonstrated that adversaries

with physical access can take control of a system through

unauthorized reads and modification of main-memory contents.

Commercial solutions like Intel’s Software Guard Extensions

(SGX) [7], [8] take an important step towards secure memories,

by providing data encryption, integrity and replay attack pro-

tection for small regions of main memory. However, extending

such mechanisms to secure entire memories comes at the cost

of considerable performance overheads [1], [9], [10].

Securing commodity memory requires security metadata

on each data access. For data encryption, a counter needs

to be fetched from memory. For verifying data integrity, a

cryptographic hash of data (MAC) is fetched from memory.

Furthermore, to prevent replay attacks, an integrity tree is

traversed generating several additional memory accesses. These

accesses stress the memory bandwidth causing performance

slowdown. While recent proposals [1], [10] address the

*This work was performed when Prashant J. Nair was affiliated with Georgia
Institute of Technology.

overheads of accessing MACs, integrity-tree traversal continues

to be a bottleneck as it can generate several memory accesses.

Prior proposals optimize integrity tree traversal by caching

tree entries in on-chip caches [7], [11], [12]. However, they

side-step the real problem – the large size of the integrity-tree.

For example, protecting a 16 GB memory with an SGX-like

integrity-tree design would require a tree as large as 292MB,

that is hardly cacheable on-chip. Therefore, in this paper we

explore compact integrity tree designs with higher cacheability,

to reduce memory accesses for integrity-tree traversal.

State-of-the-art integrity-trees are constructed over the entire

footprint of the encryption counters [13]. A smaller footprint

obtained by packing more encryption counters per cacheline,

can shrink the base of the integrity-tree and reduce its size.

Additionally, commercial designs like SGX use integrity-trees

that are designed as a tree of counters [7], where the tree-arity

(fan-in per node) is determined by the number of counters per

cacheline-sized entry. As the arity dictates the ratio by which

each tree-level reduces in size, packing more counters per

tree-entry can further reduce the tree height. Thus, to enable

compact integrity trees, we investigate counter organizations

that can provide a large number of counters per cacheline.

Prior work [14] proposed split counters for encryption, to

accommodate more counters per 64-byte cacheline. This design

can pack up to 64 counters per cacheline, by sharing a large

major counter among 64 smaller minor counters. The minor

counter is incremented when the corresponding data cacheline

is updated in memory, while the major counter is incremented

when any minor counter overflows. A recent work [1] also

proposed using a similar split counter design for integrity-tree

counters, to pack more counters per cacheline-sized tree entry.

However, it is impractical to store more than 64 counters

per cacheline by reducing minor counter size. This is because

smaller counters can overflow frequently. On an overflow, all

the n-minor counters in an entry are reset after incrementing

the major counter. This requires extra memory reads and writes

– for re-encrypting n-child data cachelines on an encryption

counter overflow, and for updating hashes of n-child entries on

an integrity tree counter overflow. For example, packing 128

counters per cacheline results in 3-bit minor counters that can

overflow in just 8 writes. As each overflow requires 256 extra

memory accesses, this can cause significant slowdown.

All existing counter organizations are limited to 64 counters

per cacheline, as they statically provision an equal number of

bits for all the counters. However, we observe that applications

utilize counters in distinct patterns which allow efficient counter
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designs that overflow less frequently. Leveraging this, we

propose Morphable Counters (MorphCtr), that dynamically

changes the counter representation based on the usage pattern

– allowing storing more than 64 counters in a cacheline while

limiting the re-encryption overheads incurred due to overflows.

Our analysis of overflowing counters shows that applications

either use less than a quarter of the counters in a cacheline

or use all the counters in a cacheline. For example, usage of

encryption counters depends on the write-intensity per data

cacheline. As applications write uniformly to most cachelines

within a write-heavy page, frequently overflowing encryption

counters see uniform usage within a cacheline. However, usage

of integrity-tree counters depends on write-intensity per page.

As write-heavy and cold pages can be interspersed in memory,

integrity-tree counters see sparse usage of few counters within

a cacheline. Furthermore, higher levels of the tree do not suffer

counter overflows, as writes do not propagate beyond the level

of the tree that completely fits in the on-chip cache.

When 64 or less counters are used out of 128 counters in a

cacheline, MorphCtr uses a representation called Zero Counter
Compression (ZCC) that performs utility-based allotment of

space to non-zero minor counters in a cacheline. ZCC uses a

bit-vector to track the non-zero minor counters in a cacheline

and distributes the rest of the bits in the cacheline only to those

counters. For example, with 16 non-zero counters, each counter

gets 16-bits while with 32 non-zero counters, each gets 8-bits

and so on. Thus, MorphCtr provides large overflow-tolerant

counters while packing 128 counters per cacheline, when at

most a quarter of the counters within a cacheline are used.

When more than 64 out of 128 counters are used, MorphCtr

uniformly allocates 3-bits per minor counter. In this regime,

most workloads tend to use all the counters in a cacheline,

with low dynamic-range in counters. Leveraging this, MorphCtr

represents each minor counter in the cacheline as the sum of

a common base and an offset. When any offset crosses its

max-value, the counters are re-based instead of being reset, i.e.

the base is moved forward by the smallest offset and all offsets

are reduced by that value. This provides the largest offset room

to grow, without changing other minor counter values, thus

avoiding an overflow and subsequent re-encryption overheads.

Compared to split counters, MorphCtr provides a higher

density of counters per cacheline, while incurring fewer

overflows. Thus, it is a practical alternative to reduce storage

and performance overheads of secure memories. For example,

using MorphCtr for encryption can reduce the memory footprint

of the encryption counters by 2x. This is because MorphCtr-

128 packs 128 counters per cacheline as compared to split-

counters with 64 counters per cacheline (SC-64) in the baseline.

Additionally, as encryption counters form the base of the

integrity-tree, this also reduces the integrity tree size by 2x.

Furthermore, using MorphCtr for the integrity-tree counters

enables a compact 128-ary MorphTree. As the arity dictates

the ratio by which each tree-level reduces in size, a 128-ary

integrity tree has each level smaller by 2x compared to a 64-ary

design obtained with SC-64 counters in the integrity tree. Thus,

� �
�
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8.5 MB (6 levels)

4 MB (4 levels)
1 MB (3 levels)

�

�

�

Fig. 1. Using MorphCtr-128 for encryption and integrity-tree results in a
compact 128-ary integrity-tree (MorphTree) that allows low-overhead traversal.
MorphTree is 4x smaller than Baseline and 8.5x smaller than VAULT.

using MorphCtr-128 for both encryption and integrity-tree

results in a 4x smaller integrity-tree compared to our baseline

which uses SC-64 for both, as shown in Figure 1. As a more

compact tree is also better cacheable on-chip, MorphCtr-128

reduces the memory accesses for the integrity-tree traversal

and improves performance compared to SC-64.

Overall, this paper makes the following contributions:

1) Morphable Counters, an overflow-tolerant counter de-

sign capable of high density of counters per cacheline,

that is 2x more storage-efficient than split counters.

2) MorphTree, a 128-ary integrity-tree using MorphCtr.

Combined with MorphCtr for encryption, this reduces

integrity-tree size by 4x compared to SC-64 baseline.

3) Zero Counter Compression, a scheme for reducing

the counter overflow frequency, when few counters in a

cacheline are used – by compressing zero value counters

and expanding the non-zero counters.

4) Re-basing instead of resetting minor counters, to avoid

overflows and the subsequent re-encryption overheads,

when all the counters in a cacheline are used.

We evaluate Morphable Counters with 28 memory intensive

workloads from SPEC2006 and GAP benchmark suites and

compare our design with a baseline using split counters with 64

counters per cacheline (SC-64) for both encryption and integrity

tree. Using MorphCtr-128 improves performance by 6.3% on

average (up to 28.3%) and reduces energy-delay product by

8.8% on average. These benefits come without any extra storage

or reduction in security and stem from a compact integrity-tree

design enabled by merely interpreting counters differently. For

a 16 GB memory, the SC-64 baseline requires an integrity tree

that is 4MB in size (4 levels), while our 128-ary tree using

MorphCtr is only 1MB (3 levels).

Compared against VAULT [1], a recent proposal using split

counters in the integrity-tree, MorphCtr-128 provides speedup

of 13.5% on average (up to 47.4%). VAULT uses a variable

arity of split counters (16 or 32 counters per cacheline) to limit

counter overflows, resulting in a large integrity tree (8.5MB

size, 6 levels). We propose an orthogonal approach to reduce

counter overflows, that allows a compact 128-ary integrity-tree

(8.5x smaller, 3 levels shorter), improving performance.
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II. BACKGROUND AND MOTIVATION

We first provide background regarding secure memory design.

We then describe the performance overheads with secure

memories and motivate our compact integrity tree design.

A. Secure Memory Design
1) Attack Model: We assume that adversaries have physical

access to the system. Similar to prior works [1], [9], we

assume the processor to be within the trusted computing base,

with the off-chip main-memory and memory-bus vulnerable

to unauthorized reads, modification or replay attacks. In this

context, providing memory security (like SGX) involves data

confidentiality with counter-mode encryption, ensuring data

integrity with Message Authentication Codes (MACs) and

replay attack protection using integrity-trees.

Fig. 2. Counter-Mode Encryption

2) Data Encryption with Counters: To prevent attackers

from reading memory contents, data is encrypted with Counter

Mode Encryption [14], [15]. As shown in Figure 2, a plaintext

data cacheline is encrypted through an XOR with a One Time

Pad (OTP). Similarly, decryption is done through an XOR of

the cipher-text with the OTP. The OTP is a secret bit-string

generated by passing a per-line counter through a block cipher

like Advanced Encryption Standard (AES), with a secret key.

The counter is incremented on each cacheline-write to ensure

temporal variation in the encrypted data. While these counters

are stored in the memory, they are cached on-chip [7], [11]

to avoid extra memory accesses for the counter and allow the

OTP to be pre-computed in parallel with the data-access.

Fig. 3. Split counter design for counters

A split counter [14] design, further packs a large number of

counters in a cacheline, to reduce the storage and the memory

traffic of counters. This is achieved by encoding the counter

value as a concatenation of a large major counter and a smaller

minor counter, as shown in Figure 3. To avoid counter reuse1

on a minor counter overflow, the major counter is incremented

and all the minor counters in the cacheline are reset. This

requires additional memory reads and writes to re-encrypt all

the data cachelines associated with the minor counters. To limit

the subsequent performance overhead, prior work [14] used a

counter cacheline with 64 minor counters, sized such that they

overflow and incur re-encryption overheads infrequently.

1Re-using counter values after a wrap-around is a security vulnerability, as an
XOR of two cipher-texts using the same OTP can leak plain-text information.

3) Data Integrity with Authentication Codes: Encrypting the

entire memory (e.g. AMD-SME [16]) still leaves it vulnerable

to undetected data-tampering by an adversary. To prevent

this, cryptographic signatures of cacheline contents called

message authentication codes (MACs) are stored in memory

per data cacheline. Prior designs use MACs generated by

cryptographically hashing2 data and encryption counter, using

a secret key (e.g. AES-GCM [14], Carter-Wegman [7]). On

every cacheline access, the memory controller fetches the stored

MAC and verifies it by recomputing the MAC using the data

cacheline and the counter, to ensure no tampering has occurred.

Recent work Synergy [10] avoids additional accesses for

MACs, by storing MAC in the extra chip available in an

ECC-DIMM organization, obtaining MAC and data in a single

memory access. Additionally, it is possible to avoid extra

accesses for both MAC and Error Correction Code (ECC) by

storing a 10-bit Single-Error-Correction code (SEC)3 with a

54-bit MAC4 in the extra-chip (a concurrent work [19] makes a

similar observation) – we use this design for all our evaluations.

4) Replay Attack Protection using Integrity-Trees: Memory

contents protected with MACs are still vulnerable to tampering

through replay attacks. For example, an adversary can replace

a tuple of {Data, MAC, Counter} in memory with older values

without detection. Integrity-trees [7], [13], [20] prevent replay

attacks using multiple levels of MACs in memory, with each

level ensuring the integrity of the level below. Each level is

smaller than the level below, with the root small enough to be

securely stored on-chip. We restrict our discussion to Bonsai-

style counter trees [7], [13], a type of integrity-trees using

counters, constructed with encryption counters as their base.

�

�

�

�

�

�

�

�

�

Fig. 4. Counter-tree based integrity tree design like VAULT [1].

Counter-Trees use hashing algorithms that generate MACs

using integrity-tree counters. As shown in Figure 4, MACs

protecting the integrity of encryption counters are co-located

with the encryption counter cachelines (level-0) and generated

using counters from the parent (level-1). Similarly, an integrity-

tree counter cacheline (level-1) is hashed to produce a co-

located MAC using a higher-level counter (level-2). The number

of counters per cacheline-sized entry determines the arity, i.e.

the ratio by which the size of each level reduces and decides the

number of levels, which impacts the tree traversal overheads.

2Refer [10], [14] for more details regarding MAC implementation.
3Our analysis with FaultSim [17] shows system failure probability does not

change whether we use 10-bit SEC per 64-byte cacheline or 8-bit SEC per
8-byte word (as in ECC-DIMM) – as the probability of two single-bit errors
in the same cacheline is negligible compared to other failure modes [18]

4Forging a 56-bit MAC in SGX requires 2 million years [7], so forging a
54-bit MAC requires 500,000 years, that is much beyond system lifetime.
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SGX uses an 8-ary counter tree with 8 counters per integrity

tree entry. On the other hand, VAULT [1] uses split counters

in the integrity-tree, with a 32-ary design at level-1 and 16-

ary design at level-2 and beyond. Furthermore, the tree is

constructed on an encryption counter base with a 64-ary split

counter design. This variable-arity design ensures negligible

frequency of counter overflows despite the higher write traffic

at upper levels of the tree, given that writes propagate up the

tree when lower level entries suffer dirty-evicts from on-chip

cache. It is also possible to uniformly use a 64-ary split counter

design across all the levels of the integrity-tree, to optimize

for integrity-tree size rather than counter overflow frequency.

B. Performance Problem in Secure Memories

During secure execution, every memory access for data

requires accessing the encryption counter. If the counter is not

available in the on-chip cache and is fetched from memory,

its integrity is verified by traversing the integrity-tree from the

leaf to the root. The traversal continues accessing tree entries

from memory until an entry is found securely cached on-chip.

These extra memory accesses cause a memory-traffic bloat,

that results in performance overhead during secure execution.

(a) Performance (b) Memory Traffic

N
o
r
m

a
li

z
e
d
 P

e
r
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r
m

a
n
c
e

SC-128VAULT SC-64 SC-128VAULT SC-64

Non-Secure

Fig. 5. Impact of increasing arity of counters used for encryption and integrity-
tree. (a) Performance normalized to SC-64. (b) Memory traffic per data access.

Figure 5(a) compares the performance of secure execution as

the arity of the counters used for encryption and integrity-tree

changes across configurations. Each configuration is evaluated

with 16 GB memory and 128KB metadata cache, using memory

intensive workloads from SPEC2006 and GAP. All results are

normalized to SC-64 that uses 64-ary counters throughout.

There exists a performance gap of 40% between secure

execution with SC-64 and non-secure execution. To bridge this

gap, scaling the integrity tree arity appears promising, but it has

challenges. VAULT, a design using 64-ary encryption counters,

32-ary counters at level-1 of the integrity-tree and 16-ary at

higher levels has 6.4% slowdown compared to SC-64 that is

64-ary throughout. However, further increasing the arity to 128

with SC-128 hurts performance, causing 28% slowdown.

This slowdown is caused by the additional memory accesses

for fetching counters and handling counter overflows, as shown

in Figure 5(b). VAULT incurs 0.7 additional accesses per data

access for counters, while incurring negligible accesses due to

counter overflows. SC-64 reduces the additional accesses for

counters to 0.5 per data access, while incurring a modest 0.07

access per data access for handling counter overflows. While

SC-128 further reduces accesses for counters to 0.4 per data

access, it incurs a considerable penalty on account of counter

overflows – almost 1 additional access per data access.

Increasing the integrity tree arity provides the benefit of

fewer counter accesses. Higher arity trees are smaller in size,

where fewer levels require memory accesses because of poor

cacheability on-chip. For instance, VAULT incurs accesses for

tree levels 1 to 3, while SC-64 requires accesses only for levels

1 and 2, and SC-128 requires accesses to just level-1.

However, increasing arity also causes higher re-encryption

and re-hashing overheads. SC-64 and SC-128 incur more

frequent counter overflows due to 6-bit and 3-bit minor counters,

that can overflow in 64 and 8 writes respectively, whereas

VAULT uses larger (12-bit or 24-bit) counters that overflow

rarely. Furthermore, each overflow requires extra memory reads

and writes to re-encrypt data or re-hash child tree entries, with

the number of extra accesses being proportional to arity. SC-64

requires 64 reads and 64 writes per overflow, while SC-128

requires 128 reads and 128 writes per overflow. For SC-64,

these overheads are limited compared to a reduction in counter

accesses, resulting in a speedup compared to VAULT, but for

SC-128 they are significant enough to cause a slowdown.

C. Goal: Compact Integrity Trees with Low-Overheads

All existing designs statically and equally size the counters

within a cacheline. However, they are all limited to at most a

64-ary design, as uniformly smaller counters face the problem

of frequent counter overflows and considerable re-encryption

overheads. Fortunately, writes that are the root-cause of counter

overflows, only propagate up the tree until the level that is

completely resident in the on-chip cache. Studying the usage

patterns of counters below this level can enable non-uniform

counter organizations that are more tolerant to overflows. Thus,

we investigate counter organizations that are both high density

and overflow-tolerant, to get the benefit of compact integrity

trees without the re-encryption and re-hashing overheads.

III. MORPHABLE COUNTER DESIGN

First, we analyze the problem of overflows in split counters

and then explain our morphable counter design – how it incurs

fewer overflows despite providing more counters per cacheline.

A. Overflow Problem with Split Counters

It is impractical to pack more than 64 counters per cacheline

with split counters because small counters can overflow rapidly

resulting in frequent re-encryptions. However, this overhead

depends on the usage pattern of counters within a cacheline.

Figure 6 shows the “time to overflow”, i.e. number of writes

a counter-cacheline can tolerate before an overflow, for split

counter designs with 64 x 6-bit minor counters (SC-64) and

128 x 3-bit minor counters (SC-128). Time to overflow varies

as the fraction of counter-cacheline used changes (assuming

uniform writes to the counters used). For example, split counters

overflow rapidly if a small fraction of the counters in the

cacheline see a majority of the writes. While SC-64 overflows
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Fig. 6. Number of writes tolerated before an overflow, for split counters.
Assuming uniform writes to the fraction of counters used in a cacheline.

every 64 writes in the worst-case, SC-128 can overflow with

just 8 writes to the cacheline. Therefore, it is important to

address this scenario while designing overflow tolerant counters

building on the split counter design. In general, SC-128 design

tolerates 8x lesser writes before an overflow compared to SC-64,

because its counters are 3-bits smaller in size.

To better understand the application write patterns driving

these counter overflows, we analyze the counter values at the

time of overflow while using an SC-64 counter design for

encryption and integrity-tree. Figure 7 shows the histogram of

the “fraction of counter-cacheline used” when it encounters

an overflow, averaged across 28 memory intensive workloads

from SPEC2006 and GAP benchmark suites.

�

-

Fig. 7. Histogram of “fraction of counter-cacheline used” when an overflow
occurs for SC-64, averaged over 28 workloads from SPEC2006 and GAP.

Most of the overflows in SC-64 occur either when applica-

tions sparsely use few counters in a cacheline, or when they

use all the counters in the cacheline. For example, 27 out of 28

workloads we analyzed incurred more than 75% of overflows,

either when they used less than a quarter of the counters in a

cacheline, or when they used all the counters in a cacheline.

Sparse counter usage is common in level-1 counters, where

the counter values depend on the frequency of writes to a

physical page of data in memory. Because hot pages can be

interspersed in memory with cold pages, there is a sparse

utilization of counters within a cacheline at this level. On the

other hand, encryption counters are more prone to uniform

utilization especially in streaming applications, that uniformly

write to all cachelines within a write-heavy page. Optimizing

for these patterns of counter usage can help improve the write-

tolerance of split counters and enable a high-density counter

organization that is also tolerant to overflows.

B. Zero Counter Compression: For Sparse Counter Usage
We observe that when counters within a cacheline are used

sparsely, few counters seeing intense writes drive the overflows,

while many counters remain unused. Conventional counter

designs equally allot bits to all counters irrespective of their

usage. However, we observe that overflows may be reduced if

zero counters are compressed to make space for larger sized

non-zero counters. With this insight, we propose a Morphable

Counter representation using Zero Counter Compression (ZCC)
that enables utility-based sizing of counters.

1) Design: Figure 8 shows the counter cacheline organiza-

tion with morphable counters using ZCC. The 512-bit counter

cacheline is split into 4 fields: a 57-bit major counter, a 7-

bit format field (specifying ZCC or Uniform), a 384-bit field

storing the minor counters and a 64-bit MAC for the cacheline.

Major Counter Format (F) Minor Counters MAC

(57-bit) (7-bit) (384-bit) (64-bit)

F = Uniform 128 x 3-bit Ctrs

F = ZCC Bit-Vector Non-Zero Ctrs

(128-bit) (256-bit)

(a)

(b)

Ctr-Sz

(1-bit)(6-bit)

Fig. 8. Organization of Morphable Counter cacheline. Counters are represented
in (a) Zero Counter Compression or (b) Uniform formats.

In ZCC-format, minor counter size depends on the number of

non-zero counters. A 128-bit Bit-Vector tracks which counters

are non-zero and the rest of the 256-bits are equally distributed

only among the non-zero counters. The non-zero counter size

is stored in the 6-bit Ctr-Sz field. In uniform-format, all the

minor counters are uniformly sized as 128 x 3-bit counters.
ZCC permits large counter sizes when only a few counters in

a cacheline are used. For example, up to 16 non-zero counters

each counter gets 16-bits, up to 32 non-zero counters each gets

8-bits and so on (7-bits up to 36, 6-bits up to 42, 5-bits up to

51 and 4-bits up to 64). When more than 64 counters are used,

the design adopts the uniform format without the bit-vector,

allotting 3-bits for each of the 128 minor counters.
The counter value used for encryption or hash genera-

tion is obtained by adding the major and minor counter

(Counter = Ma jorCtr+MinorCtr). On an overflow, to avoid

re-using counter values, the major counter is incremented

by the value of the largest minor counter in the cacheline

(Ma jorCtr += (Largest MinorCtr+1)) and all minor coun-

ters are reset to 0. While the major counter grows at a faster

rate than in conventional split counter design, it is large enough

to never overflow in system lifetime, as shown in Section V.

2) Operation: Counter cachelines are encoded with ZCC

in both the on-chip cache and main-memory – decoding

is required to obtain the counter value for encryption and

decryption. Interpreting if a counter is zero only requires

indexing into the bit-vector, as the corresponding bit is set

to 0 for such counters. For a non-zero counter, the value can

be obtained as shown in Figure 9(a), using the counter-size

from the Ctr-Sz field and indexing into the Non-Zero Ctrs
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field of the cacheline. As these are relatively simple operations

compared to a cryptographic operation like AES required for

encryption or decryption, decoding can be completed with

negligible impact on the latency of encryption or decryption.

(a) Decoding morphable counters in ZCC format (on counter read)

Read counter

cacheline

Determine 

counter size

Locate counter

 in cacheline

(b) Re-encoding counters into ZCC format (on a counter increment)

Increment 

counter

Update Ctr-Sz

(if changed)

Check for

overflows

Reorganize counters 

(if required)

Count 1s in bit-vector 

before current counter

Read 

Ctr-Sz field

Fig. 9. Decoding and re-encoding morphable counters in ZCC format.

On a counter increment, a check is performed to ensure

that it did not overflow. If the counter increment increased the

number of non-zero counters, there is a possibility of reduction

in the minor counter size. In this case, re-encoding the counters

to ZCC requires re-organizing the Non-Zero Ctrs field to reflect

the updated counter size as shown in Figure 9(b). However, as

counter re-organization is performed infrequently and only on

a write, its latency is not on the critical path of execution.
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Fig. 10. Benefit in ”time to overflow” with Morphable Counters using ZCC,
compared to split counters. ZCC tolerates a higher number of writes before
an overflow when less than 25% of counters in a cacheline are used.

3) Benefits: Figure 10 shows the number of writes before an

overflow for morphable counters with MorphCtr-128 compared

to SC-64. MorphCtr-128 has a higher “time to overflow” when

at most a quarter of the counters in a cacheline are used. This

is because when only a few counters in the cacheline are used,

ZCC provides large counters by distributing the available bits

among the non-zero counters. For example, when 32 or fewer

counters are used, each counter gets at least 8-bits. On the

other hand, SC-64 statically provisions 6 bits per minor counter.

However, when a majority of the counters in a cacheline are

used, MorphCtr-128 tolerates 8x lesser writes compared to

SC-64, because it only provisions 3-bits per counter.

To evaluate benefits with real applications, we compare

the overflows per million memory accesses for MorphCtr-128

against SC-64 and SC-128 configurations as shown in Figure 11.

On average, SC-128 incurs 7.4x higher overflows compared

to SC-64, whereas MorphCtr-128 incurs 1.4x fewer overflows

than SC-64 and 10.2x fewer overflows than SC-128.

O
v
er

fl
o
w

s 
/ 

M
il

li
o
n
 M

em
o
ry

 A
cc

es
se

s

SC−64
SC−128
MorphCtr−128 (ZCC-only)

Fig. 11. Overflows per million memory accesses for SC-64, SC-128, and
MorphCtr-128 using ZCC, for workloads from SPEC2006 and GAP.

ZCC considerably reduces the overflows of the sparsely used

counters in the integrity-tree – therefore, MorphCtr-128 incurs

fewer overflows than SC-128 for all workloads. Moreover,

for workloads with inherently sparse data accesses (like mcf,
omnetpp, xalancbmk), ZCC encoding for MorphCtr-128 helps

reduce overflows of the encryption counters as well, resulting

in fewer overflows compared to SC-64 for these workloads. For

other workloads with streaming data accesses (like libquantum,
gcc, lbm) that use a large fraction of the encryption counter-

cacheline, ZCC is not as effective. This causes MorphCtr-128

to incur more overflows than SC-64 for streaming applications.

IV. MORPHCTR - HANDLING UNIFORM COUNTER USAGE

When a majority of the counters in a cacheline are used,

MorphCtr-128 uses 3-bits per counter. As a result, it tolerates 8x

fewer writes before an overflow, compared to SC-64 with 6-bit

counters. Fortunately, workloads with such counter usage have

uniform accesses (e.g. streaming workloads) and tend to use

all the counters in a cacheline, without any zero counters. For

such patterns, it is possible to avoid re-encryption overheads

on a minor counter overflow – by re-basing minor counters,

i.e. moving the major counter ahead by the smallest minor

counter and reducing all minor counters by that value.

Major 

Counter

Minor Counter

(3-bit)

100

108

5 6 7

0 0 0 0

Effective Value

(major + minor)

105 106 107

105 0 1 3 2 105 106 107

After Overflow (Existing Design)

Avoiding Overflow With Rebasing

Overflowing Minor Counter 8 108

108 108 108 108

108

Fig. 12. Avoiding overflow and re-encryption with minor counter re-basing.
Existing design resets all minor counters, requiring re-encryptions (all effective
values changed); Re-basing only changes effective value of overflowing counter.

All existing designs incur re-encryption costs when a minor

counter overflows, as they reset all the minor counters to 0 while

incrementing the major counter. This changes the effective

counter value for all counters in the cacheline as shown in

Figure 12, requiring subsequent re-encryptions. However, if

all the minor counters are non-zero, it is possible to re-base

them, i.e. move the major counter ahead by the smallest minor

counter and reduce all the minor counters by that value. This

provides room for incrementing the previously overflowing

counter, without changing the effective counter values for the

other counters. Thus re-basing minor counters can avoid a

counter overflow and also the associated re-encryption costs.
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Minor Counter Re-basing (MCR) as described, is applicable

to all existing counter designs up to 64 counters per cacheline.

However, with 128 counters per cacheline, we observe a

differing behavior among the two sets of 64 counters at the

encryption counter level, given that each set corresponds to a

different 4KB physical page. To support re-basing over two

separate sets of 64 counters, we propose a double-base format

for MCR in MorphCtr-128 – one base per set of 64 counters.5

MAC

(56-bit) (1-bit) (128-bit) (64-bit)

Minor Ctrs-1

(64 x 3-bits)
(b)

(a) F = ZCC Bit-Vector Non-Zero Ctrs

Major

Counter

Minor Ctrs-2

(64 x 3-bits)
Base-1 Base-2

(49-bit) (7-bit) (7-bit) (192-bit) (192-bit)

Major Counter

(256-bit)

MACF = MCR

(64-bit)(1-bit)

Ctr-Sz

(6-bit)

Fig. 13. Organization of morphable counter cacheline supporting (a) ZCC
and (b) MCR (Minor Counter Re-basing) formats.

1) Design: Figure 13(b) shows the organization of a

MorphCtr-128 cacheline in the MCR format. Each cacheline

stores two 7-bit bases and two sets of 64 x 3-bit minor

counters. The additional space required for the second base

comes from storing a smaller 49-bit major counter, compared

to a 56-bit major counter in ZCC format as shown in

Figure 13(a). The effective counter value is a 56-bit value

in both formats, i.e. (Ma jorCtr +MinorCtr) for ZCC, and

((Ma jorCtr ‖Base)+MinorCtr) for MCR.

2) Operation: When MorphCtr has more than 64 non-zero

counters per cacheline, the format switches from ZCC to MCR.

To ensure counter values are unchanged, initial values of Base-
1 and Base-2 in MCR are the same as the lower 7-bits of

MajorCtr in ZCC. In MCR, rebasing is attempted when a

minor counter at the maximum value needs to be incremented

– the base is moved forward by the smallest minor counter,

and all the counters are decreased by the same value. Now

the counter can be incremented without an overflow. If the

smallest minor counter is zero, then re-basing is not possible –

then all the counters in the set are reset to 0 and the base is

incremented (Base += (LargestMinorCtr+1)), accompanied

by 64 re-encryptions. In case either base overflows, then both

bases and all minor counters are reset to 0, the major counter

is incremented by two6 along with 128 re-encryptions, and the

format switches back to ZCC.

3) Benefits: Rebasing reduces overflows in addition to the

benefits obtained with ZCC, as shown in Figure 14. On average,

ZCC+Rebasing reduces overflows by 1.6x compared to SC-

64, while ZCC-only reduces by 1.4x. For many streaming

workloads (like gcc, lbm, libquantum), ZCC+Rebasing signifi-

cantly reduces overflows to a level similar as or below SC-64.

However, for some outliers (e.g. GemsFDTD), ZCC+Rebasing

incurs higher overflows as the counter usage pattern is neither

sparse nor uniform. While our scheme is sub-optimal for such

patterns, these patterns fortunately, occur rarely.

5For page sizes larger than 4KB (e.g. 8KB, 2MB etc.), a single-base design
(using major counter as the base) works as well as the double-base design.

6Ma jorCtr += 2 ensures that the effective counter value at the time of
simultaneous overflow of Base and MinorCtr is not re-used
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Fig. 14. Overflows per million memory accesses for SC-64 and MorphCtr-128
(ZCC-only and ZCC+Rebasing), for workloads from SPEC2006 and GAP.

V. SECURITY ANALYSIS

Ensuring no counter reuse: The security of encryption and

integrity-checks is retained with morphable counters, as we only

change the counter representation, without any modification

to the encryption or MAC algorithm. By ensuring that the

effective counter value is always forward-moving and never

repeated, morphable counters prevents counter re-use. While

the effective counter value can grow 2x faster than the minor

counter (due to Ma jorCtr += 2), it is sufficiently large (56

bits) that it will not overflow in system lifetime (30+ years

before overflow, with 1 counter increment per 100 CPU cycles).

Resilience to Denial of Service: Morphable counters

can tolerate 500+ writes before an overflow, when counters

are written uniformly as shown in Figure 10. However, a

pathological write pattern can cause an overflow in 67 writes,

by writing once to 52 counters out of 128 (reducing the counter

size to 4-bits), followed by 15 writes to a single counter. In

fact, the baseline split counter design is even more vulnerable,

as it can overflow every 64 writes. Such frequent overflows can

flood the memory system with accesses for re-encryptions and

MAC updates. However, other programs can be shielded from

any performance impact in this scenario with fairness-driven

memory scheduling policies [21], [22], [23] that can throttle

the overflow-handling accesses of the pathological application

and maintain serviceability of other applications.

Potential side-channels: Morphable counters do not leak

any information in addition to existing side-channels. While

overflow frequency can reveal information about memory

access patterns, this is available by monitoring address-bus or

plaintext counter-values even in baseline. Data-confidentiality

is further unaffected, as only counter-encoding is changed, with

counter-values in counter-mode encryption of data unchanged.

VI. EXPERIMENTAL METHODOLOGY

Simulation Framework: We use USIMM [24], a memory

system simulator for evaluating system performance and

power. USIMM enforces the JEDEC DDR3 protocol and

uses power parameters from industrial 4Gb x8-DRAM chips

to accurately model memory power. For our simulations,

we warm-up the counters for 25 billion instructions7 before

7We verify that counter overflows have stabilized by comparing the counter
overflow rate with simulations for 50 billion instructions.

422

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on December 30,2021 at 04:12:59 UTC from IEEE Xplore.  Restrictions apply. 



measuring performance over 5 billion instructions. We evaluate

performance by comparing Instructions Per Cycle (IPC) for

our proposal against baseline design. We also characterize the

bloat in memory traffic due to secure execution by evaluating

the ratio of total memory accesses to data accesses.

TABLE I
BASELINE SYSTEM CONFIGURATION

Number of cores 4
Processor clock speed 3.2GHz
Processor ROB size 192

Processor fetch / retire width 4
Last Level Cache (Shared) 8MB, 8-Way, 64B lines
Metadata Cache (Shared) 128KB, 8-Way, 64B lines

Memory size 16 GB
Memory bus speed 800MHz

Banks x Ranks x Channels 8 x 2 x 2
Rows per bank 64K

Columns (cache lines) per row 128
OS Page Allocation Policy Random

Secure memory model: Our baseline (SC-64) uses split-

counters [14] with a 64-ary design for both encryption and

integrity tree, resulting in a 64-ary integrity-tree. We also

compare with VAULT [1], that has a variable arity of counters

– 64-ary split counters for encryption, 32-ary for level-1 of the

integrity tree and 16-ary for upper levels. Our proposal uses

128-ary MorphCtr-128 (ZCC + Rebasing), henceforth referred

as just MorphCtr-128, for both encryption and integrity-tree.

All configurations assume a Synergy [10] configuration, without

any overhead for accessing MACs. Similar to recent works [1],

[9], we use a 128KB dedicated metadata cache shared across

4 cores, for caching counters (encryption and integrity-tree).

TABLE II
(I) MEMORY ACCESSES PER KILO INSTRUCTIONS (PKI) PER CORE,

(II) MEMORY FOOTPRINT FOR 4 CORES.

Suite Workload Read-PKI Write-PKI Footprint (GB)

SPEC2006

mcf 69 2 7.5
omnetpp 18 9 0.6
xalancbmk 4 3 1.1
GemsFDTD 19 8 3.1
milc 19 7 2.3
soplex 28 6 1.0
bzip2 5 1.4 1.2
zeusmp 5 1.9 1.9
sphinx 14 1.4 0.1
leslie3d 16 5 0.3
libquantum 24 10 0.1
gcc 48 53 0.7
lbm 28 21 1.6
wrf 4 2 1.6
cactusADM 5 1.5 1.6
dealII 1.7 0.5 0.2

GAP

bc-twit 61 24 9.3
pr-twit 94 4 11.2
cc-twit 89 7 7.0
bc-web 13 7 12.0
pr-web 16 3 12.2
cc-web 9 1.5 7.8

Workloads: We evaluate our design using workloads from

SPEC2006 [25] and GAP [26] benchmark suites. As our

proposal optimizes memory accesses, we focus on memory-

intensive workloads from SPEC2006 (>1 memory access per

1000 instructions). From GAP, we use 6 important workloads

(Page Rank, Connected Components, Betweenness Centrality

kernels with Twitter and Web data-sets). We run the benchmarks

in rate mode, i.e. each of the four cores running the same copy

of the benchmark. Additionally, we evaluate 6 mixed workloads

obtained with a random combination of benchmarks.

VII. RESULTS & DISCUSSION

A. Impact on Performance

Figure 15 compares the performance of MorphCtr-128 (using

ZCC and Rebasing) with SC-64 and VAULT, all normalized

to SC-64 (baseline). While VAULT suffers slowdown of 6.4%,

MorphCtr-128 achieves a speedup of 6.3%, compared to SC-64.

Performance depends on the size of the integrity-tree in

each configuration. A more compact integrity-tree has better

cacheability of entries on-chip, resulting in lower overheads due

to integrity-tree traversal and better performance. The baseline

SC-64 using 64-ary counters has an integrity-tree that is 4 MB

in size. On the other hand, VAULT requires a larger 8.5 MB

integrity-tree because it uses lower arity (16 or 32-ary) split

counters in the integrity-tree, while using 64-ary split counters

for encryption. As a result, VAULT suffers slowdown of 6.4%.

In comparison, MorphCtr-128 uses 128-ary counters, that

reduce the footprint of encryption counters by 2x. Consequently,

the area on which the integrity tree is constructed is smaller

by 2x. Additionally, each level of the tree is smaller by 2x

as the tree-arity is double that of SC-64. This reduces the

tree size additionally by 2x. In combination, this results in

an integrity-tree size of 1 MB, that is 4x smaller in size than

SC-64. This is the main driver behind the speedup of 6.3%.

The benefits of MorphCtr-128 are more pronounced for

workloads like mcf, omnetpp, and xalancbmk with high memory

traffic and random data accesses. These workloads incur

considerable memory traffic for integrity-tree traversal in the

baseline because there is limited reuse of the cached tree-

entries without temporal locality in data accesses. In such

scenarios, the compact tree design with MorphCtr-128 provides

considerable speedup by reducing the number of levels to be

traversed. Similar speedup is also seen with graph workloads

from GAP with the Twitter dataset (bc-twit, pr-twit, cc-twit),
which perform random accesses across large working sets.

For workloads with high spatial locality like libquantum,

gcc etc., MorphCtr-128 performs as good as the baseline. This

is because these workloads have limited integrity-tree traversal

with high spatial re-use of cached counters. Similarly, there is

no impact on performance for non-memory intensive workloads,

with infrequent memory accesses and integrity-tree traversal.

B. Analyzing memory traffic bloat

We analyze the memory traffic bloat due to the accesses

for the counters and handling their overflows, which is the

main driver of performance overheads. Figure 16 shows the

memory traffic bloat (memory accesses per data access) for

VAULT, SC-64, and MorphCtr-128. The memory traffic is split

into accesses for (1) program-related data, accesses to multiple

levels of counters, i.e. (2) Ctr Encr used for encryption, (3-5)

Ctr 1, Ctr 2, Ctr 3 & Up (different levels of the integrity tree)

and (6) Overflow handling – memory accesses for re-encryption

of data and updates to MACs on counter overflows.
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Fig. 15. Performance (IPC) of morphable counters (MorphCtr-128) compared with SC-64 (baseline) and VAULT, all normalized to SC-64. MorphCtr-128
improves performance by 6.3% using a more compact integrity-tree, while VAULT suffers slowdown of 6.4% due to a larger integrity tree.

VAULT

SC-64

MorphCtr-128

Bars
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Center
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Fig. 16. Memory traffic for morphable counters (MorphCtr-128), compared with SC-64 and VAULT, normalized to the data traffic. MorphCtr-128 with a 3-level
integrity tree reduces the memory traffic by 8.8% compared to SC-64 (4-level tree), while VAULT (6-level tree) incurs 9.7% higher traffic compared to SC-64.

MorphCtr-128 provides the benefit of fewer memory accesses

for metadata, requiring 0.5 extra accesses per data access

compared to SC-64 that needs 0.6 accesses. This reduction is

due to the compact integrity-tree in MorphCtr-128, that is one

level shorter and better cacheable on-chip compared to SC-

64. While SC-64 require 0.5 counter accesses per data access

(accessing Ctr Encr, Ctr 1 and Ctr 2), MorphCtr-128 only

requires 0.4 accesses (accessing only Ctr Encr and Ctr 1).
Additionally, overflowing counters result in extra memory

accesses for re-encrypting data and updating MACs in child

tree-entries. MorphCtr-128 incurs 0.07 accesses per data access

for handling overflows, similar to SC-64 (0.06 accesses), despite

having 2x arity and consequently, 2x memory accesses required

per overflow. This is because of a reduction in the frequency

of counter overflows by 1.6x in MorphCtr-128 compared to

SC-64, due to a combination of ZCC and Counter-Rebasing.
Random access workloads (like mcf and omnetpp) see

benefits of both higher arity tree of MorphCtr-128 and higher

overflow tolerance of ZCC, resulting in a reduction in accesses

for counters and overflow handling. On the other hand, uniform

access workloads (like libquantum and gcc) have limited

potential for reduction in counter accesses and do not benefit

from higher arity of MorphCtr-128. However, they do not suffer

the overflow handling overheads of smaller counters either, as

Counter Rebasing ensures low overflow frequency.
Only GemsFDTD suffers a slowdown (2%) with MorphCtr-

128, as the reduction in counter memory accesses is offset by a

larger increase in accesses for handling overflows. Here, both

ZCC and Rebasing are unable to limit the overflow frequency,

as the counter usage pattern is neither sparse nor uniform.

C. Understanding Slowdown of VAULT

As shown in Figure 15, VAULT suffers a slowdown of 6.4%

compared to our baseline SC-64. This is because of 9.7%

higher memory traffic, as shown in Figure 16. VAULT uses

conservative low-arity split counters in the integrity tree (32-ary

counters for level-1, 16-ary for upper levels), that result in

a large 8.5 MB tree with 6 levels. While these counters are

sized such that the overflow handling overheads are negligible,

the resulting integrity-tree has many levels requiring multiple

accesses during traversal. Thus, VAULT requires an additional

0.74 accesses per data access for counters, while only incurring

0.01 accesses per data accesses for handling overflows. On

the other hand, SC-64 incurs lesser memory traffic by trading

off a slight increase in accesses for overflow handling (0.07

accesses per data access) for much fewer counter accesses (0.5

accesses per data access).

D. Understanding Overflow Tolerance of MorphCtr-128

Using a high-arity counter design in the integrity-tree may

seem counter-intuitive, given how these entries protect a large

span of memory. However, the ZCC format in MorphCtr-128

is able to provide the illusion of larger counters despite a high-

arity organization, by exploiting the fact that less than 25%

of the counters in these integrity-tree entries are actually used.

Furthermore, the upper levels of the tree do not have frequent

counter overflows, as writes do to propagate beyond the tree-

level that is completely resident in cache. When streaming

access patterns cause ZCC to fail, MCR format leverages

the uniform counter usage that is common with these access

patterns to avoid overflows in MorphCtr-128.

424

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on December 30,2021 at 04:12:59 UTC from IEEE Xplore.  Restrictions apply. 



E. Impact on Height of the Integrity-Tree

Figure 17 shows the number of levels in the integrity-tree,

using MorphCtr-128 compared with VAULT and SC-64, for

a system with 16GB memory. VAULT has counters with

variable arity, using 64-ary counters for encryption, 32-ary

counters at level-1 of the integrity-tree and 16-ary counters

at higher levels. As a result, it has a large integrity tree with

6 levels. With higher arity counters, the number of levels

in the integrity-tree decreases, thus reducing the worst-case

overhead of integrity-tree traversal. For example, SC-64 (64-ary

throughout) has 4 levels, whereas MorphCtr-128 (128-ary) only

has 3 levels. Additionally, both 64-ary and 128-ary designs

have smaller footprints at each level of the tree, resulting in

better cacheability of tree-entries and fewer memory accesses

for integrity-tree traversal on average.

Encryption
Counters

26
212 218 224 230

26 212 218 224 230 26 212 218 224 230

Memory Footprint (Bytes)

Tree Level 1

Tree Level 2

Tree Level 3

Tree Level 4

Tree Level 5

Tree Level 6

256 MB

8 MB 4 MB

512 KB 64 KB

128 B

128 MB

64 B

1 MB

8 KB

64 B

VAULT SC-64 MorphCtr-128(a) (b) (c)

32 KB

2 KB

64 B

256 MB

1 KB

Fig. 17. Reduction in number of integrity tree levels as arity increases. VAULT
a variable-arity tree (16 to 32-ary) has 6 levels, SC-64 (64-ary) has 4 levels,
MorphCtr-128 (128-ary) only has 3 levels.

F. Impact on Storage Overheads

The higher arity design of MorphCtr-128 reduces the overall

storage overheads for encryption counters and integrity-tree

compared to SC-64, as shown in Table III. SC-64 with a 64-

ary design throughout, incurs 1.6% storage overhead for its

encryption counters (1/64 of data footprint) and 0.025% for the

integrity-tree (approximately 1/64 of encryption counter foot-

print). As MorphCtr-128 provides a 128-ary design, it requires

2x lesser storage, incurring 0.8% overhead for the encryption

counters. In addition, the integrity-tree with MorphCtr-128

is 4x smaller, because of multiplicative benefits of smaller

encryption counter base and higher arity in the integrity-tree.

In comparison, VAULT has a higher integrity-tree overhead

(8.5x larger than MorphCtr) due to its conservative integrity-

tree arity, whereas its encryption counter overhead is similar to

SC-64. Commercial-SGX has much higher storage overheads

in comparison to these designs, because of its 8-ary counter

design for both encryption and integrity-tree counters.

TABLE III
STORAGE OVERHEADS FOR 16GB MEMORY.

Configuration Storage Overheads
Encryption Counters Integrity-Tree

Commercial-SGX 2 GB (12.5%) 292 MB (1.8%)
VAULT 256 MB (1.6%) 8.5 MB (0.05%)
SC-64 256 MB (1.6%) 4 MB (0.025%)
MorphCtr-128 128 MB (0.8%) 1 MB (0.006%)

G. Impact on System Power and Energy

MorphCtr reduces system energy, incurring fewer memory

accesses that consume energy. Figure 18 shows the power,

execution time, energy, and Energy-Delay Product (EDP).

-
-

Fig. 18. Power, Execution Time, Energy and EDP for VAULT, SC-64 and
MorphCtr-128, normalized to SC-64.

MorphCtr-128 reduces execution time by 6% compared to

SC-64. However, it incurs 4% higher power consumption as it

performs the same work in a shorter time. Despite the increased

power, it provides energy savings of 2.7% due to the reduced

execution time and improves the system energy-delay product

(EDP), which is a product of energy and execution time, by

8.8%. On the other hand, VAULT suffers from 3.2% higher

energy and 10.5% higher EDP compared to SC-64.

H. Sensitivity to metadata cache size

MorphCtr-128

SC-64

128 KB 256 KB64 KB

11%

6.3%

3.3%

Fig. 19. Performance of SC-64 and MorphCtr-128 as metadata cache varies
from 64KB to 256KB, normalized to SC-64 with 128KB metadata cache.

Figure 19 shows speedup with MorphCtr-128 vs SC-64, as

the metadata cache size varies. Commercial systems design the

metadata cache as a part of the memory controller [7], making

a large metadata cache difficult due to area constraints. With

smaller metadata caches, there is a larger memory access bloat

for counters – hence MorphCtr-128 provides higher speedup

as the cache size decreases. Thus, MorphCtr-128 provides a

speedup of 3.3% with 256KB cache, 6.3% with 128KB cache

and 11% with 64KB cache. In fact, MorphCtr requires half the

metadata cache, to provide equivalent performance as SC-64.

I. Sensitivity to MAC organization

For data integrity, secure memories store and access MACs of

data cachelines. In this paper, we assume a MAC organization

like Synergy [10] that stores In-Line MACs and provides MAC

in the same access as data. However, an unoptimized design

could store MACs separately (Separate MACs) like other prior

works [7], incurring an extra memory access for MAC on each

data access. Figure 20 compares the performance of SC-64

and MorphCtr-128 using Separate MACs and In-Line MACs

(i.e. Synergy), all normalized to SC-64 with In-Line MACs.
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Fig. 20. Performance of SC-64 and MorphCtr-128 for Separate-MACs and
In-Line MACs configurations, normalized to SC-64 with In-Line MACs.

In Separate MACs configuration, MACs cause significant

memory access bloat in addition to counters. Therefore, both

SC-64 and MorphCtr-128 suffer slowdown of 29% compared

to similar designs with In-Line MACs. As MorphCtr-128 only

reduces the memory traffic bloat due to counters compared

to SC-64, it provides a smaller speedup of 4.7% in Separate

MACs configuration, in contrast to speedup of 6.3% in In-

Line MACs configuration. Other proposals optimizing MAC

accesses [1], [11], [12] would see speedups in this range.

VIII. RELATED WORK

To our knowledge, this is the first work proposing compact

representations for encryption and integrity-tree counters,

to reduce overheads of integrity-tree traversal and counter

overflows. A concurrent work [19] proposes delta-encoding

for encryption counters, but only in the context of reducing

overflows. Prior works have explored alternate encoding of data

(compression) in the memory-system and optimizing integrity-

tree traversal in secure memories – we discuss these below.

A. Compressed memory systems
1) Compressed caches and main-memory: Prior works have

exploited data patterns, to propose compression for caches [27],

[28], [29], [30], [31], main-memory [32], [33], [34], [35], [36],

[37] and even 3D-DRAM [38], [39] – to unlock additional

storage, bandwidth or energy savings.

Our work does not depend on data values and hence is

orthogonal to all of these prior works. Instead, we propose

alternate representations for counters, whose values depend on

write patterns of data. In fact, our proposal works even for

an application writing random data values to its working set.

Furthermore, compression of data in cache or main-memory

may be used along with our proposal to enjoy additive benefits.

2) Low-latency compression algorithms: FPC [40] uses a

dictionary-based approach for compressing small values in

32-bit words. DZC [41] represents zero value cachelines with

a single-bit, to avoid expending energy for reading all the bits.

BDI [42] represents the cacheline as a base value and an array

of deltas, exploiting low-dynamic range in the data values.

BPC [43] uses a bit-plane transformation on 32-bit words to

improve the compression ratio with other schemes.

In a similar spirit, we use counter encoding that exploits

sparse or uniform patterns in counter values. However, while

prior proposals aim to reduce space occupied by data, we store

larger counters in the same space to avoid overflows.

B. Integrity Verification in Secure Memories

1) Alternate integrity-tree designs: All counter based trees

like TEC-Tree [44], Parallelizable Authentication Trees [45],

SGX Tree [7] and VAULT [1] have tree arity dependent on the

number of counters or nonces per tree entry. Using morphable

counters to obtain more counters per entry can enable higher

tree-arity with minimal overheads for these designs.
On the other hand, MAC-Trees or Merkle Trees [13] that are

constructed as a tree of MACs are limited to 8-ary irrespective

of the counter design used. This is because the arity depends on

the number of MACs per tree-entry and only 8 x 64 bit-MACs

can fit in a cacheline sized entry. Smaller 32-bit MACs that

provide a higher arity, do not provide sufficient security.

2) Proposals optimizing integrity-tree traversal: Prior works

[11], [12], [46] have proposed caching integrity-tree entries

in the last-level cache along with data or using metadata

type-aware replacement policies for efficient caching. These

proposals are orthogonal to our work as they do not address the

size of the integrity-tree which we focus on. Combining these

with our compact integrity tree design can ensure low-overhead

integrity-tree traversal as memories scale to larger sizes.
Alternate designs push integrity-tree traversal off the critical

path, with counter value prediction [47] or speculative usage

of unverified counters (e.g. PoisonIvy [9], ASE [48]). However,

they only address the latency overheads of integrity-verification

and still incur the bandwidth overheads. Whereas, our design

also reduces the bandwidth overheads with a compact integrity-

tree and can be combined with these proposals.
Recent smart-memory solutions [49], [50] provide low-

overhead replay-attack protection, but require custom memory

modules. In contrast, our proposal is compatible with commer-

cial approaches for securing commodity DRAM like SGX.

IX. CONCLUSION

In this era of cloud computing, remote data-centers store

sensitive information like credit card details, bitcoin keys, etc.

in main memory. While it is critical to protect such data in

memory from adversaries, it is also important to ensure that the

security mechanisms have low overhead to facilitate adoption.
In this paper, we enabled a secure memory design with

morphable counters, a compact 128-ary counter organization

that requires lesser storage compared to all prior works that

are limited to at most 64-ary. Using morphable counters, we

designed a compact integrity-tree design that is more amenable

to caching, improving performance by 6.3% compared to our

64-ary baseline and by 13.5% compared to VAULT. These

benefits come without any extra storage or reduction in security

and are derived from re-designing the counter organization that

reduces the storage overhead of secure memory.
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[26] S. Beamer, K. Asanović, and D. Patterson, “The GAP benchmark suite,”
arXiv preprint arXiv:1508.03619, 2015.

[27] J. Yang and R. Gupta, “Energy efficient frequent value data cache design,”
in MICRO, 2002.

[28] J. Yang, Y. Zhang, and R. Gupta, “Frequent value compression in data
caches,” in MICRO, 2000.

[29] A. R. Alameldeen and D. A. Wood, “Adaptive cache compression for
high-performance processors,” in ISCA, 2004.

[30] J.-S. Lee, W.-K. Hong, and S.-D. Kim, “Design and evaluation of a
selective compressed memory system,” in ICCD, 1999.

[31] J. Dusser, T. Piquet, and A. Seznec, “Zero-content augmented caches,”
in SC, 2009.

[32] B. Abali, H. Franke, D. E. Poff, R. Saccone, C. O. Schulz, L. M. Herger,
and T. B. Smith, “Memory expansion technology (MXT): software
support and performance,” IBM JRD, vol. 45, 2001.

[33] M. Ekman and P. Stenstrom, “A robust main-memory compression
scheme,” in ISCA, 2005.

[34] G. Pekhimnko, V. Seshadri, Y. Kim, H. Xin, O. Mutlu, P. B. Gibbons,
M. A. Kozuch, and T. C. Mowry, “Linearly compressed pages: a low-
complexity, low-latency main memory compression framework,” in
MICRO, 2013.

[35] A. Shafiee, M. Taassori, R. Balasubramonian, and A. Davis, “MemZip:
Exploring unconventional benefits from memory compression,” in HPCA,
2014.

[36] J. Kim, M. Sullivan, S.-L. Gong, and M. Erez, “Frugal ecc: Efficient
and versatile memory error protection through fine-grained compression,”
in SC, 2015.

[37] D. J. Palframan, N. S. Kim, and M. H. Lipasti, “COP: To Compress and
Protect Main Memory,” in ISCA, 2015.

[38] S. Kim, S. Lee, T. Kim, and J. Huh, “Transparent Dual Memory
Compression Architecture,” in PACT, 2017.

[39] V. Young, P. J. Nair, and M. K. Qureshi, “DICE: Compressing DRAM
Caches for Bandwidth and Capacity,” in ISCA, 2017.

[40] A. R. Alameldeen and D. A. Wood, “Frequent pattern compression: A
significance-based compression scheme for L2 caches,” Dept. Comp.
Scie., Univ. Wisconsin-Madison, Tech. Rep, vol. 1500, 2004.

[41] L. Villa, M. Zhang, and K. Asanović, “Dynamic zero compression for
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