
Morphable Counters: Enabling Compact Integrity
Trees for Low-Overhead Secure Memories

Gururaj Saileshwar1
MICRO-2018

Prashant Nair1 Prakash Ramrakhyani2 Wendy Elsasser2

Moinuddin Qureshi1

1 2

Jose Joao2

Securing Main-Memory against Physical Attacks

deadbeef

Securing Main-Memory against Physical Attacks

Unauthorized Reads

ac348bf0

Data Encryption

Securing Main-Memory against Physical Attacks

Unauthorized Reads

Unauthorized Writes

ac348bf0

Data Encryption

4af28c09

Cryptographic Signatures

Hash

Securing Main-Memory against Physical Attacks

Unauthorized Reads

Tamper

Data Verification

Unauthorized Writes Replay Attack

Processor Memory

ac348bf0

Data Encryption

4af28c09

Cryptographic Signatures

Hash

Securing Main-Memory against Physical Attacks

Unauthorized Reads

Data Verification

Unauthorized Writes Replay Attack

Processor Memory

ac348bf0

Data Encryption

4af28c09

Cryptographic Signatures

Hash Data0,
Hash0

Data1,
Hash1

Can force re-use of keys,
repeat sensitive transactions etc.

Securing Main-Memory against Physical Attacks

Unauthorized Reads

Data Verification

Unauthorized Writes Replay Attack

Processor Memory

ac348bf0

Data Encryption

4af28c09

Cryptographic Signatures

Hash Data0,
Hash0

Data1,
Hash1

Replay attack protection -
focus of this work

Can force re-use of keys,
repeat sensitive transactions etc.

Securing Main-Memory against Physical Attacks

Unauthorized Reads

Data Verification

Replay Attack Protection with Integrity-Trees

Encrypted Data

Hashes

Counters

Replay Attack Protection with Integrity-Trees

Encrypted Data

Hashes Ctr Ctr Ctr

Counters
Hash

Ctr Ctr Hash

Ctr Hash

CtrIntegrity
Tree

Secure
Root Stored On-Chip

Verifying Every Level
On Each Data Access

Prevents Replay

Hash

Ctr

Hash

Replay Attack Protection with Integrity-Trees

Encrypted Data

Hashes Ctr Ctr Ctr

Counters
Hash

Ctr Ctr Hash

Ctr Hash

CtrIntegrity
Tree

Secure
Root Stored On-Chip

1

2

3
4 Verifying Every Level

On Each Data Access
Prevents Replay

Causes Extra
Memory Accesses

& Slowdown

Hash

Ctr

Hash

This Talk: Designing Compact Integrity Trees

Integrity
Tree

Base of the Integrity Tree C1 C2 C3 …
Encryption Counters

This Talk: Designing Compact Integrity Trees

Integrity
Tree

Base of the Integrity Tree Smaller Base

Integrity
Tree

C1 C2 C3 …
C1 C2 C3 C4 C5 C6 …

Encryption Counters

This Talk: Designing Compact Integrity Trees

Integrity
Tree

Base of the Integrity Tree Smaller Base

Integrity
Tree

C1 C2 C3 …
C1 C2 C3 C4 C5 C6 …

C1 C2 C3 …
Integrity-Tree Counters

Encryption Counters

This Talk: Designing Compact Integrity Trees

Integrity
Tree

Base of the Integrity Tree Smaller Base

Integrity
Tree

Shorter
Height

C1 C2 C3 …
C1 C2 C3 C4 C5 C6 …

C1 C2 C3 …
C1 C2 C3 C4 C5 C6 …

Integrity-Tree Counters

Encryption Counters

This Talk: Designing Compact Integrity Trees

Integrity
Tree

Base of the Integrity Tree Smaller Base

Integrity
Tree

Shorter
Height

C1 C2 C3 …
C1 C2 C3 C4 C5 C6 …

C1 C2 C3 …
C1 C2 C3 C4 C5 C6 …

Integrity-Tree Counters

Encryption Counters

Goal: Pack more Counters per Cacheline for Low-Overhead Integrity Trees

This Talk: Designing Compact Integrity Trees

• 8.5x smaller vs VAULT1

• 4x smaller vs Baseline

• 13.5% vs VAULT1

• 6.3% vs Baseline
Speedup

Tree-Size

Benefits of Our Design

1. VAULT - Taassori et al., ASPLOS, 2018.

Integrity
Tree

Base of the Integrity Tree Smaller Base

Integrity
Tree

Shorter
Height

Goal: Pack more Counters per Cacheline for Low-Overhead Integrity Trees

Agenda

• Introduction

•Background and Motivation

•Design

•Results
6

Split-Counters - More Counters/Cacheline

512 bit cache line

Naïve Counters

C1 C2 C3 C4 C5 C7 C8C6

8 counters x 64b

Major | Minor = Counter

1. Yan et al., ISCA, 2006

C1 C2 C3 . C64Major
Counter

Split-Counters - More Counters/Cacheline

Split Counters1 (Share Significant Bits)

Major | Minor = Counter

1. Yan et al., ISCA, 2006

C1 C2 C3 . C64Major
Counter

64 x 7-bit minor counters

64-ary Design

Split-Counters - More Counters/Cacheline

Split Counters1 (Share Significant Bits)

Major | Minor = Counter

1. Yan et al., ISCA, 2006

C1 C2 C3 . C64Major
Counter

64 x 7-bit minor counters

64-ary Design

128 34 23 . 17Major
Counter

Split-Counters - More Counters/Cacheline

Split Counters1 (Share Significant Bits)

7-bit Minor Counters Can Overflow

Major | Minor = Counter

1. Yan et al., ISCA, 2006

C1 C2 C3 . C64Major
Counter

64 x 7-bit minor counters

0 0 0 . 0Major
Counter +1

64-ary Design

128 34 23 . 17Major
Counter

Split-Counters - More Counters/Cacheline

Split Counters1 (Share Significant Bits)

7-bit Minor Counters Can Overflow

Increment shared
Major counter

Changes values
of ALL counters!

Major | Minor = Counter

1. Yan et al., ISCA, 2006

1. Re-encrypt 64 Data Lines (128 reads/writes)

C1 C2 C3 . C64Major
Counter

64 x 7-bit minor counters

0 0 0 . 0Major
Counter +1

64-ary Design

128 34 23 . 17Major
Counter

Split-Counters - More Counters/Cacheline

Split Counters1 (Share Significant Bits)

7-bit Minor Counters Can Overflow

Increment shared
Major counter

Changes values
of ALL counters!

Major | Minor = Counter

1. Yan et al., ISCA, 2006

1. Re-encrypt 64 Data Lines (128 reads/writes)
2. Update 64 Hashes (128 reads/writes)

C1 C2 C3 . C64Major
Counter

64 x 7-bit minor counters

0 0 0 . 0Major
Counter +1

64-ary Design

128 34 23 . 17Major
Counter

Split-Counters - More Counters/Cacheline

Split Counters1 (Share Significant Bits)

7-bit Minor Counters Can Overflow

Increment shared
Major counter

Changes values
of ALL counters!

Major | Minor = Counter

1. Yan et al., ISCA, 2006

1. Re-encrypt 64 Data Lines (128 reads/writes)
2. Update 64 Hashes (128 reads/writes)

Trade-off: Packing more Counters vs Overflow Updates !

C1 C2 C3 . C64Major
Counter

64 x 7-bit minor counters

0 0 0 . 0Major
Counter +1

64-ary Design

128 34 23 . 17Major
Counter

Split-Counters - More Counters/Cacheline

Split Counters1 (Share Significant Bits)

7-bit Minor Counters Can Overflow

Increment shared
Major counter

Changes values
of ALL counters!

0.94
1.00

0.72

0.60

0.70

0.80

0.90

1.00

1.10

VAULT SC-64 SC-128

N
or

m
al

ize
d

Pe
rf

or
m

an
ce

(a) Performance

(16-32 ary)

Impact of Packing More Counters

Baseline State of the art

1. VAULT - Taassori et al., ASPLOS, 2018.

1

0.94
1.00

0.72

0.60

0.70

0.80

0.90

1.00

1.10

VAULT SC-64 SC-128

N
or

m
al

ize
d

Pe
rf

or
m

an
ce

(a) Performance

(16-32 ary)

Impact of Packing More Counters

0.94
1.00

0.72

0.60

0.70

0.80

0.90

1.00

1.10

VAULT SC-64 SC-128

N
or

m
al

ize
d

Pe
rf

or
m

an
ce

(a) Performance

(16-32 ary)

Impact of Packing More Counters

Performance Increases, then
Decreases!

0.00

0.25

0.50

0.75

1.00

1.25

1.50

VAULT SC-64 SC-128Ex
tr

a
Ac

ce
ss

es
 /

Da
ta

 A
cc

es
s

(b) Extra Accesses / Data Access

(16-32 ary)

0.94
1.00

0.72

0.60

0.70

0.80

0.90

1.00

1.10

VAULT SC-64 SC-128

N
or

m
al

ize
d

Pe
rf

or
m

an
ce

(a) Performance

(16-32 ary)

Impact of Packing More Counters

Performance Increases, then
Decreases!

Counters
Overflow

0.00

0.25

0.50

0.75

1.00

1.25

1.50

VAULT SC-64 SC-128Ex
tr

a
Ac

ce
ss

es
 /

Da
ta

 A
cc

es
s

(b) Extra Accesses / Data Access

(16-32 ary)

0.94
1.00

0.72

0.60

0.70

0.80

0.90

1.00

1.10

VAULT SC-64 SC-128

N
or

m
al

ize
d

Pe
rf

or
m

an
ce

(a) Performance

(16-32 ary)

Impact of Packing More Counters

Performance Increases, then
Decreases!

Counters
Overflow

Benefits (counter accesses),

10%

0.00

0.25

0.50

0.75

1.00

1.25

1.50

VAULT SC-64 SC-128Ex
tr

a
Ac

ce
ss

es
 /

Da
ta

 A
cc

es
s

(b) Extra Accesses / Data Access

(16-32 ary)

0.94
1.00

0.72

0.60

0.70

0.80

0.90

1.00

1.10

VAULT SC-64 SC-128

N
or

m
al

ize
d

Pe
rf

or
m

an
ce

(a) Performance

(16-32 ary)

Impact of Packing More Counters

Performance Increases, then
Decreases!

Counters
Overflow

Benefits (counter accesses),
outweighed by costs (overflows)

90%

10%

0.00

0.25

0.50

0.75

1.00

1.25

1.50

VAULT SC-64 SC-128Ex
tr

a
Ac

ce
ss

es
 /

Da
ta

 A
cc

es
s

(b) Extra Accesses / Data Access

(16-32 ary)

0.94
1.00

0.72

0.60

0.70

0.80

0.90

1.00

1.10

VAULT SC-64 SC-128

N
or

m
al

ize
d

Pe
rf

or
m

an
ce

(a) Performance

(16-32 ary)

Impact of Packing More Counters

Performance Increases, then
Decreases!

Counters
Overflow

Benefits (counter accesses),
outweighed by costs (overflows)

90%

10%

Goal: Pack more counters/cacheline, but fewer overflows !

Agenda

• Introduction

•Background and Motivation

•Design

•Results
10

Analysis of Counter Overflows

Fr
ac

tio
n

of
 O

ve
rf

lo
w

s

Fraction of Counter Cacheline Used

Counter Usage at the Time of Overflow.

Analysis of Counter Overflows

~75% of
overflows

Few counters used
in cacheline

(tree-counters)
Fr

ac
tio

n
of

 O
ve

rf
lo

w
s

Fraction of Counter Cacheline Used

Counter Usage at the Time of Overflow.

Analysis of Counter Overflows

~25% of
overflows

~75% of
overflows

All counters used
in cacheline

(encryption counters)

Few counters used
in cacheline

(tree-counters)
Fr

ac
tio

n
of

 O
ve

rf
lo

w
s

Fraction of Counter Cacheline Used

Counter Usage at the Time of Overflow.

Analysis of Counter Overflows

~25% of
overflows

~75% of
overflows

All counters used
in cacheline

(encryption counters)

Few counters used
in cacheline

(tree-counters)

Insight: Bimodal pattern in overflows è Morphable Counters
with customized formats to reduce overflows

Fr
ac

tio
n

of
 O

ve
rf

lo
w

s

Fraction of Counter Cacheline Used

Counter Usage at the Time of Overflow.

Few Counters Used: Compress Zero Counters

Insight: When few counters non-zero,
allocate bits only to them

512-bit Counter Cacheline

Major Counter Minor Counters (384-bit) Hash

Few Counters Used: Compress Zero Counters

ZCC

512-bit Counter Cacheline

Major Counter Minor Counters (384-bit) Hash

Is-NZ?
Bit Vector

128-bit

Few Counters Used: Compress Zero Counters

ZCC

512-bit Counter Cacheline

Major Counter Minor Counters (384-bit) Hash

Is-NZ?
Bit Vector

Non-Zero
Counters

128-bit 256-bit

Few Counters Used: Compress Zero Counters

ZCC

512-bit Counter Cacheline

Major Counter Minor Counters (384-bit) Hash

Is-NZ?
Bit Vector

Non-Zero
Counters

128-bit 256-bit

Non-Zero
Counters

Counter
Size

<=16 ctrs 16-bits/ctr
<=32 ctrs 8-bits/ctr

Few Counters Used: Compress Zero Counters

ZCC
(<= 64 non-zero ctrs)

512-bit Counter Cacheline

Major Counter Minor Counters (384-bit) Hash

Is-NZ?
Bit Vector

Non-Zero
Counters

128-bit 256-bit

Non-Zero
Counters

Counter
Size

<=16 ctrs 16-bits/ctr
<=32 ctrs 8-bits/ctrUniform

(>64 non-zero ctrs)
128 x 3-bit Counters

Few Counters Used: Compress Zero Counters

ZCC
(<= 64 non-zero ctrs)

512-bit Counter Cacheline

Major Counter Minor Counters (384-bit) Hash

Is-NZ?
Bit Vector

Non-Zero
Counters

128-bit 256-bit

Non-Zero
Counters

Counter
Size

<=16 ctrs 16-bits/ctr
<=32 ctrs 8-bits/ctrUniform

(>64 non-zero ctrs)
128 x 3-bit Counters

ZCC provides large overflow-tolerant counters,
when less than 25% counters are used out of 128

Instead of conventional (Major II Minor)

Avoiding Overflows When All Counters Used

Major
Counter

Minor Counter
(3-bit)

Effective Value =
(Major + Minor)

Instead of conventional (Major II Minor)

Overflowing Minor Counter

Avoiding Overflows When All Counters Used

Major
Counter

Minor Counter
(3-bit)

Effective Value =
(Major + Minor)

Instead of conventional (Major II Minor)

Reset Counters (Existing Design)
Overflowing Minor Counter

Avoiding Overflows When All Counters Used

Major
Counter

Minor Counter
(3-bit)

Effective Value =
(Major + Minor)

Instead of conventional (Major II Minor)

Reset Counters (Existing Design)
Overflowing Minor Counter

Counters changed
– re-encryption needed

Avoiding Overflows When All Counters Used

Major
Counter

Minor Counter
(3-bit)

Effective Value =
(Major + Minor)

Instead of conventional (Major II Minor)

Reset Counters (Existing Design)Rebase Counters (Avoid Overflow)
Overflowing Minor Counter

Avoiding Overflows When All Counters Used

Major
Counter

Minor Counter
(3-bit)

Effective Value =
(Major + Minor)

Instead of conventional (Major II Minor)

Reset Counters (Existing Design)Rebase Counters (Avoid Overflow)
Overflowing Minor Counter

Avoiding Overflows When All Counters Used

Major
Counter

Minor Counter
(3-bit)

Effective Value =
(Major + Minor)

+5

Add smallest
minor counter

Instead of conventional (Major II Minor)

Reset Counters (Existing Design)Rebase Counters (Avoid Overflow)
Overflowing Minor Counter

Avoiding Overflows When All Counters Used

Major
Counter

Minor Counter
(3-bit)

Effective Value =
(Major + Minor)

+5 -5

Add smallest
minor counter

Subtract that
value from all

No change;
No re-encryption;

Instead of conventional (Major II Minor)

Reset Counters (Existing Design)Rebase Counters (Avoid Overflow)
Overflowing Minor Counter

Avoiding Overflows When All Counters Used

Major
Counter

Minor Counter
(3-bit)

Effective Value =
(Major + Minor)

+5 -5

Add smallest
minor counter

Subtract that
value from all

No change;
No re-encryption;

Instead of conventional (Major II Minor)

Rebasing avoids counter overflow and overheads,
when all counters used

Reset Counters (Existing Design)Rebase Counters (Avoid Overflow)
Overflowing Minor Counter

Avoiding Overflows When All Counters Used

Major
Counter

Minor Counter
(3-bit)

Effective Value =
(Major + Minor)

+5 -5

Add smallest
minor counter

Subtract that
value from all

Agenda

• Introduction

•Background and Motivation

•Design

•Results
14

Reduction in Overflows

10

100

1000

10000

100000

mcf

omnetpp

xa
lancb

mk

GemsFD
TD

milc
so

plex
bzip

2

zeusm
p

sp
hinx

leslie
3d

lib
quan

tum gcc lbm wrf

cac
tusA

DM
dealII

bc-t
wit

pr-t
wit

cc-
tw

it

bc-w
eb

pr-w
eb

cc-
web .

Ave
rageO

ve
rf

lo
w

s P
er

 M
ill

io
n

M
em

or
y

Ac
ce

ss
es

Overflow Frequency

Reduction in Overflows

10

100

1000

10000

100000

mcf

omnetpp

xa
lancb

mk

GemsFD
TD

milc
so

plex
bzip

2

zeusm
p

sp
hinx

leslie
3d

lib
quan

tum gcc lbm wrf

cac
tusA

DM
dealII

bc-t
wit

pr-t
wit

cc-
tw

it

bc-w
eb

pr-w
eb

cc-
web .

Ave
rageO

ve
rf

lo
w

s P
er

 M
ill

io
n

M
em

or
y

Ac
ce

ss
es

Overflow Frequency
SC-64 (Baseline)
SC-128 - 7.4x

Reduction in Overflows

10

100

1000

10000

100000

mcf

omnetpp

xa
lancb

mk

GemsFD
TD

milc
so

plex
bzip

2

zeusm
p

sp
hinx

leslie
3d

lib
quan

tum gcc lbm wrf

cac
tusA

DM
dealII

bc-t
wit

pr-t
wit

cc-
tw

it

bc-w
eb

pr-w
eb

cc-
web .

Ave
rageO

ve
rf

lo
w

s P
er

 M
ill

io
n

M
em

or
y

Ac
ce

ss
es

Overflow Frequency
SC-64 (Baseline)
SC-128 - 7.4x
MorphCtr-128 (ZCC-only) - 1.4x

Reduction in Overflows

10

100

1000

10000

100000

mcf

omnetpp

xa
lancb

mk

GemsFD
TD

milc
so

plex
bzip

2

zeusm
p

sp
hinx

leslie
3d

lib
quan

tum gcc lbm wrf

cac
tusA

DM
dealII

bc-t
wit

pr-t
wit

cc-
tw

it

bc-w
eb

pr-w
eb

cc-
web .

Ave
rageO

ve
rf

lo
w

s P
er

 M
ill

io
n

M
em

or
y

Ac
ce

ss
es

Overflow Frequency
SC-64 (Baseline)
SC-128 - 7.4x
MorphCtr-128 (ZCC-only) - 1.4x
MorphCtr-128 (ZCC+Rebasing) - 1.6x

Reduction in Overflows

MorphCtr-128 packs 2x Counters / Cacheline,
Still, 1.6x Fewer Overflows vs SC-64

10

100

1000

10000

100000

mcf

omnetpp

xa
lancb

mk

GemsFD
TD

milc
so

plex
bzip

2

zeusm
p

sp
hinx

leslie
3d

lib
quan

tum gcc lbm wrf

cac
tusA

DM
dealII

bc-t
wit

pr-t
wit

cc-
tw

it

bc-w
eb

pr-w
eb

cc-
web .

Ave
rageO

ve
rf

lo
w

s P
er

 M
ill

io
n

M
em

or
y

Ac
ce

ss
es

Overflow Frequency
SC-64 (Baseline)
SC-128 - 7.4x
MorphCtr-128 (ZCC-only) - 1.4x
MorphCtr-128 (ZCC+Rebasing) - 1.6x

0.00

0.20

0.40

0.60

0.80

1.00

VAULT SC-64 MorphCtr-128

Ex
tr

a
Ac

ce
ss

es
 /

Da
ta

 A
cc

es
s

(a) Extra Accesses / Data Access

Performance Benefits

Note: 4 Cores, 8MB LLC, 16GB Secure Memory, 128KB Dedicated Counter Cache

0.00

0.20

0.40

0.60

0.80

1.00

VAULT SC-64 MorphCtr-128

Ex
tr

a
Ac

ce
ss

es
 /

Da
ta

 A
cc

es
s

(a) Extra Accesses / Data Access

Performance Benefits

12%

Counters
Overflow

Note: 4 Cores, 8MB LLC, 16GB Secure Memory, 128KB Dedicated Counter Cache

0.00

0.20

0.40

0.60

0.80

1.00

VAULT SC-64 MorphCtr-128

Ex
tr

a
Ac

ce
ss

es
 /

Da
ta

 A
cc

es
s

(a) Extra Accesses / Data Access

Performance Benefits

MorphCtr-128 reduces counter accesses,
without a bloat in overflow updates

12%

1%

Counters
Overflow

Note: 4 Cores, 8MB LLC, 16GB Secure Memory, 128KB Dedicated Counter Cache

0.00

0.20

0.40

0.60

0.80

1.00

VAULT SC-64 MorphCtr-128

Ex
tr

a
Ac

ce
ss

es
 /

Da
ta

 A
cc

es
s

(a) Extra Accesses / Data Access

0.94
1.00

1.06

0.60

0.70

0.80

0.90

1.00

1.10

1.20

VAULT SC-64 MorphCtr-128

N
or

m
al

ize
d

Pe
rf

or
m

an
ce

(b) Performance

Performance Benefits

MorphCtr-128 reduces counter accesses,
without a bloat in overflow updates

12%

6.4% speedup vs Baseline,
13.5% vs state-of-the-art

6.4%

1%

Counters
Overflow

Note: 4 Cores, 8MB LLC, 16GB Secure Memory, 128KB Dedicated Counter Cache

0.00

0.20

0.40

0.60

0.80

1.00

VAULT SC-64 MorphCtr-128

Ex
tr

a
Ac

ce
ss

es
 /

Da
ta

 A
cc

es
s

(a) Extra Accesses / Data Access

0.94
1.00

1.06

0.60

0.70

0.80

0.90

1.00

1.10

1.20

VAULT SC-64 MorphCtr-128

N
or

m
al

ize
d

Pe
rf

or
m

an
ce

(b) Performance

Performance Benefits

MorphCtr-128 reduces counter accesses,
without a bloat in overflow updates

12%

6.4% speedup vs Baseline,
13.5% vs state-of-the-art

6.4%

13.5%1%

Counters
Overflow

Note: 4 Cores, 8MB LLC, 16GB Secure Memory, 128KB Dedicated Counter Cache

Storage Benefits

Configuration Encryption Counter
Storage

VAULT 1.6%

SC-64 1.6%

MorphCtr-128 0.8%

Storage Benefits

Configuration Encryption Counter
Storage

VAULT 1.6%

SC-64 1.6%

MorphCtr-128 0.8%

Encryption counter storage reduced by 2X,

Storage Benefits

Configuration Encryption Counter
Storage

VAULT 1.6%

SC-64 1.6%

MorphCtr-128 0.8%

Encryption counter storage reduced by 2X,
Integrity-tree size reduced by 4x vs Baseline, 8.5X vs VAULT

Configuration Encryption Counter
Storage

Integrity-Tree

Storage Levels Accessed
(From Memory)

VAULT 1.6% 0.050% 4

SC-64 1.6% 0.025% 3

MorphCtr-128 0.8% 0.006% 2

Conclusion

• Morphable Counters è reducing overheads of secure memory

Conclusion

• Morphable Counters è reducing overheads of secure memory

• 2x Compact & 1.6x Less Overflow-Rate vs Split Counters

Conclusion

• Morphable Counters è reducing overheads of secure memory

• 2x Compact & 1.6x Less Overflow-Rate vs Split Counters

• For Practically Free è Only Encoding Change, No Loss in Security

Conclusion

• Morphable Counters è reducing overheads of secure memory

• 2x Compact & 1.6x Less Overflow-Rate vs Split Counters

• For Practically Free è Only Encoding Change, No Loss in Security

• Closed 1/3rd gap between State-of-the-Art & Non-Secure
• 13.5% Speedup with 8.5x Smaller Integrity-Tree than VAULT

Conclusion

• Morphable Counters è reducing overheads of secure memory

• 2x Compact & 1.6x Less Overflow-Rate vs Split Counters

• For Practically Free è Only Encoding Change, No Loss in Security

• Closed 1/3rd gap between State-of-the-Art & Non-Secure
• 13.5% Speedup with 8.5x Smaller Integrity-Tree than VAULT

Thank You! Questions?

