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Can force re-use of keys,

' repeat sensitive transactions etc.

Replay attack protection -
Data Encryption Cryptographic Signatures focus of this work
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This Talk: Designing Compact Integrity Trees

Benefits of Our Design

_ » 8.5x smaller vs VAULT?
Integrity Tree-Size :
Shorter e 4x smaller vs Baseline

Tree

Height

* 13.5% vs VAULT?

Base of the Integrity Tree Smaller Base * 6.3% vs Baseline

1. VAULT - Taassori et al., ASPLOS, 2018.

Goal: Pack more Counters per Cacheline for Low-Overhead Integrity Trees
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Split-Counters - More Counters/Cacheline

Split Counters?! (Share Significant Bits)

64 x 7-bit minor counters 7-bit Minor Counters Can Overflow

Malors 128 34 23 . ... ..., Increment shared  _,  Changes values
Major counter of ALL counters!

Counter

Major | Minor = Counter
x 1. Re-encrypt 64 Data Lines (128 reads/writes)

2. Update 64 Hashes (128 reads/writes)

v  64-ary Design

Trade-off: Packing more Counters vs Overflow Updates !

1. Yan et al., ISCA, 2006
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Goal: Pack more counters/cacheline, but fewer overflows !
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Analysis of Counter Overflows

Counter Usage at the Time of Overflow.

0.25 ' T y T T
(7))
g 0.2 Few counters used All counters used
= i in cacheline in cacheline
g ' (tree-counters) (encryption counters)
‘S 0.1 / ~75% of ~25% of \
g overflows overflows
= 0.05
(® )
o
Li. 0 = -

0 0.2 04 0.6 0.8 |

Fraction of Counter Cacheline Used

Insight: Bimodal pattern in overflows = Morphable Counters

with customized formats to reduce overflows




Few Counters Used: Compress Zero Counters

512-bit Counter Cacheline

Minor Counters (384-bit)

Insight: When few counters non-zero,
allocate bits only to them
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128-bit 256-bit <=16 ctrs 16-bits/ctr
<=32 ctrs 8-bits/ctr
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Few Counters Used: Compress Zero Counters

512-bit Counter Cacheline

Minor Counters (384-bit)
(<= 64 non-zero ctrs) [ @[5 {e]s Counters Counters Size

____________________ 128b't256b't <=16 ctrs 16-bits/ctr

Uniform

128 x 3-bit Counters <=32 ctrs = 8-bits/ctr
(>64 non-zero ctrs)

ZCC provides large overflow-tolerant counters,

when less than 25% counters are used out of 128
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Avoiding Overflows When All Counters Used

Instead of conventional (Major Il Minor)

Major Minor Counter Effective Value =

Counter (3-bit) (Major + Minor)
Overflowing Minor Counter 100 5 6€ 7 | 105 106 €D 107
Reset Counters (Existing Design) 108 0 0 0 0 [(DADACDAD

Counters changed
— re-encryption needed
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Avoiding Overflows When All Counters Used

Instead of conventional (Major Il Minor)

Major Minor Counter | Effective Value =
Counter (3-bit) (Major + Minor)
Overflowing Minor Counter (7100 5 6 € 79105 106 €D 107

5

Rebase Counters (Avoid Overflow) ﬁp 105 0 1 3 2& 105 106 €01 107

Add smallest Subtract that No change;
minor counter value from all

No re-encryption;

Rebasing avoids counter overflow and overheads,

when all counters used
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Reduction in Overflows

mm= SC-64 (Baseline)
Overflow Frequency == SC-128 - 7.4x B
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MorphCtr-128 packs 2x Counters / Cacheline,
Still, 1.6x Fewer Overflows vs SC-64
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VAULT 1.6%
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Encryption counter storage reduced by 2X,




Storage Benefits

Integrity-Tree
Enerybtion Counter

Configuration
Storage Storage Levels Accessed
(From Memory)

VAULT 1.6% 0.050% 4
SC-64 1.6% 0.025% 3
MorphCtr-128 0.8% 0.006% 2

Encryption counter storage reduced by 2X,

Integrity-tree size reduced by 4x vs Baseline, 8.5X vs VAULT
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Conclusion

 Morphable Counters =» reducing overheads of secure memory
« 2x Compact & 1.6x Less Overflow-Rate vs Split Counters
 For Practically Free = Only Encoding Change, No Loss in Security

« Closed 1/3d gap between State-of-the-Art & Non-Secure
* 13.5% Speedup with 8.5x Smaller Integrity-Tree than VAULT

Thank You! Questions?



