Morphable Counters: Enabling Compact Integrity

Trees for Low-Overhead Secure Memories

MICRO-2018

Gururaj Saileshwar’

Prashant Nair? Prakash Ramrakhyani? Wendy Elsasser?
Jose Joao? Moinuddin Qureshi’

1 Georgia & ‘arm
Tech Research

[m—T)

Securing Main-Memory against Physical Attacks

Securing Main-Memory against Physical Attacks

Unauthorized Reads

W
:
o > LN
~
deadbee ,
s
O

Securing Main-Memory against Physical Attacks

Unauthorized Reads

s/
R
A
- oy £ K L'\‘\\ .“.
|
1\
A
»
‘_.\1',\\\7'»
S
O

Data Encryption

Securing Main-Memory against Physical Attacks

Unauthorized Reads Unauthorized Writes

Data Verification

A
v \ ..";\\‘ =
]

Data Encryption Cryptographic Signatures

Securing Main-Memory against Physical Attacks

Unauthorized Reads Unauthorized Writes Replay Attack

Data Verification

Processor“ Memory

< 4af28¢09 Hash | @

~

d

N ac348bfo |

Data Encryption Cryptographic Signatures

Securing Main-Memory against Physical Attacks

Unauthorized Reads Unauthorized Writes Replay Attack

Data Verification

d

Can force re-use of keys,

" repeat sensitive transactions etc.

Data Encryption Cryptographic Signatures

Securing Main-Memory against Physical Attacks

Unauthorized Reads Unauthorized Writes Replay Attack

Data Verification

Can force re-use of keys,

' repeat sensitive transactions etc.

Replay attack protection -
Data Encryption Cryptographic Signatures focus of this work

Replay Attack Protection with Integrity-Trees

. Hashes |

Counters

L)

Replay Attack Protection with Integrity-Trees

[Secure

Root } Stored On-Chip

/
Integrity cf’J[”as*N

Tree [Ctr [Ctr]:Hash
[Ctr] Ctr [Hash]
. Hashes /[Ctr | | Ctr | | Ctr | [Hash|

Encrypted Data

Counters

L

)

Verifying Every Level
On Each Data Access
Prevents Replay

Replay Attack Protection with Integrity-Trees

[Secure

Root } Stored On-Chip

/
Integrity Ctr | ”as*\a

Tree

|

Hashes

|

Encrypted Data

(3
[Ctr] Ctr [Hash] 0

[Ctr [Ctr] ash

Lo (o] (o ash (1,

Counters

L

)

Verifying Every Level
On Each Data Access
Prevents Replay

Causes Extra
Memory Accesses
& Slowdown

This Talk: Designing Compact Integrity Trees

Integrity
Tree

Encryption Counters

Base of the Integrity Tree

This Talk: Designing Compact Integrity Trees

Integrity
Tree

Integrity
Tree

Base of the Integrity Tree Smaller Base

Encryption Counters

EEC0EEE

B

This Talk: Designing Compact Integrity Trees

Integrity-Tree Counters

o Jo]e

Integrity
Tree

Integrity
Tree

Base of the Integrity Tree Smaller Base

Encryption Counters

EEC0EEE

B

This Talk: Designing Compact Integrity Trees

Integrity-Tree Counters

E2228E

B

Integrity

Height

Encryption Counters

Base of the Integrity Tree Smaller Base

EEC0EEE

This Talk: Designing Compact Integrity Trees

Integrity-Tree Counters
r r 17
[N) |7

E2228E

Integrity

Height

Base of the Integrity Tree Smaller Base

Encryption Counters

EEC0EEE

Goal: Pack more Counters per Cacheline for Low-Overhead Integrity Trees

This Talk: Designing Compact Integrity Trees

Benefits of Our Design

_ » 8.5x smaller vs VAULT?
Integrity Tree-Size :
Shorter e 4x smaller vs Baseline

Tree

Height

* 13.5% vs VAULT?

Base of the Integrity Tree Smaller Base * 6.3% vs Baseline

1. VAULT - Taassori et al., ASPLOS, 2018.

Goal: Pack more Counters per Cacheline for Low-Overhead Integrity Trees

Agenda

* Introduction
- Background and Motivation
* Design

* Results

Split-Counters - More Counters/Cacheline

Naive Counters

512 bit cache line

Cl C2 C3 C4 C5 C6 C7 C8

8 counters x 64b

Split-Counters - More Counters/Cacheline

Split Counters! (Share Significant Bits)

Major

Cl1 C2 C3

Counter

Major | Minor = Counter

1. Yan et al., ISCA, 2006

Split-Counters - More Counters/Cacheline

Split Counters?! (Share Significant Bits)

64 x 7-bit minor counters

Major

Major | Minor = Counter

v 64-ary Design

1. Yan et al., ISCA, 2006

Split-Counters - More Counters/Cacheline

Split Counters?! (Share Significant Bits)

64 x 7-bit minor counters 7-bit Minor Counters Can Overflow

Major

128 34 23

Counter

Major | Minor = Counter

v 64-ary Design

1. Yan et al., ISCA, 2006

Split-Counters - More Counters/Cacheline

Split Counters?! (Share Significant Bits)

64 x 7-bit minor counters

Major

128 34 23

Counter

Major | Minor = Counter

v 64-ary Design

1. Yan et al., ISCA, 2006

7-bit Minor Counters Can Overflow

Increment shared
Major counter

—

Changes values

of ALL counters!

Split-Counters - More Counters/Cacheline

Split Counters! (Share Significant Bits)

64 x 7-bit minor counters 7-bit Minor Counters Can Overflow

Malors 128 34 23, Increment shared _, Changes values
Major counter of ALL counters!

Counter

Major | Minor = Counter
x 1. Re-encrypt 64 Data Lines (128 reads/writes)

v, 64-ary Design

1. Yan et al., ISCA, 2006

Split-Counters - More Counters/Cacheline

Split Counters! (Share Significant Bits)

64 x 7-bit minor counters 7-bit Minor Counters Can Overflow

Malors 128 34 23, Increment shared _, Changes values
Major counter of ALL counters!

Counter

Major | Minor = Counter
x 1. Re-encrypt 64 Data Lines (128 reads/writes)

/ 64-ary Design 2. Update 64 Hashes (128 reads/writes)

1. Yan et al., ISCA, 2006

Split-Counters - More Counters/Cacheline

Split Counters?! (Share Significant Bits)

64 x 7-bit minor counters 7-bit Minor Counters Can Overflow

Malors 128 34 23, Increment shared _, Changes values
Major counter of ALL counters!

Counter

Major | Minor = Counter
x 1. Re-encrypt 64 Data Lines (128 reads/writes)

2. Update 64 Hashes (128 reads/writes)

v 64-ary Design

Trade-off: Packing more Counters vs Overflow Updates !

1. Yan et al., ISCA, 2006

Impact of Packing More Counters

(a) Performance
1.10
§ 1.00
1.00
e 0.94
£ 090
&
S 0.80
ﬁ 0.72
e 070 l
o
Z 0.60
VAULT1 SC-64 SC-128
(16-32 ary)
7 \\
State of the art Baseline

1. VAULT - Taassori et al., ASPLOS, 2018.

Impact of Packing More Counters

(a) Performance
1.10

1.00
100 0.94 ‘

0.90
0.80

0.72
0.70 l
0.60

VAULT SC-64 SC-128
(16-32 ary)

Normalized Performance

Impact of Packing More Counters

(a) Performance
1.10

§ 1.00
1.00 ‘
g 0.94
£ 0.90 '
]
o
T 0.80
e 0.72
g 0.70
O
< 0.60
VAULT SC-64 SC-128
(16-32 ary)

Performance Increases, then
Decreases!

Impact of Packing More Counters

(a) Performance (b) Extra Accesses / Data Access
1.10 A 1.50 Bl Overflow

§ 1.00 1.00 § 125] Counters
g - 0.94 < &
S 5 1.00
u% 0.90 ' 8
% 0.80 : 0.75 S
& 0.72 2 0.50
© Q
g o7 l S 025
o <<
< 0.60 © 0.00

VAULT SC-64 SC-128 = VAULT SC-64 SC-128

(16-32 ary) (16-32 ary)
Performance Increases, then
Decreases!

Impact of Packing More Counters

Normalized Performance

1.10

1.00

0.90

0.80

0.70

0.60

(a) Performance

VAULT SC-64 SC-128
(16-32 ary)

Extra Accesses / Data Access

(b) Extra Accesses / Data Access

1.50
1.25
1.00
0.75
0.50
0.25
0.00

B Overflow
1 Counters

VAULT SC-64 SC-128
(16-32 ary)

Performance Increases, then

Decreases!

Benefits (counter accesses),

Impact of Packing More Counters

(a) Performance (b) Extra Accesses / Data Access
1.10 A 1.50 Bl Overflow
§ 1.00 1.00 § 125] Counters
N X7 < 1
£ 090 ' & 100 glo
= ()]
g < 075 — E>
S 0.80 n
& 0.72 2 0.50
©
£ 0.70 l § 0.25
o <<
< 0.60 © 0.00
VAULT SC-64 SC-128 = VAULT SC-64 SC-128
(16-32 ary) (16-32 ary)
Performance Increases, then Benefits (counter accesses),

Decreases! outweighed by costs (overflows)

Impact of Packing More Counters

Normalized Performance

1.10

1.00

0.90

0.80

0.70

0.60

(a) Performance

VAULT SC-64
(16-32 ary)

SC-128

(b) Extra Accesses / Data Access

A 1.50 Bl Overflow

g L

2 125 [Counters

5 1.00 o

o o

\ 0-75 [

(%)

& 0.50

)

o 0.25

<

© 0.00

x VAULT SC-64 SC-128
(16-32 ary)

Performance Increases, then

Decreases!

Benefits (counter accesses),
outweighed by costs (overflows)

Goal: Pack more counters/cacheline, but fewer overflows !

* Introduction
» Background and Motivation
* Design

* Results

10

Analysis of Counter Overflows

Counter Usage at the Time of Overflow.

Fraction of Overflows

0 0.2 0.4 0.6 0.8
Fraction of Counter Cacheline Used

Analysis of Counter Overflows

Counter Usage at the Time of Overflow.

Few counters used

in cacheline
(tree-counters)

/ ~75% of
/\/%verflows

Fraction of Overflows

0 0.2 0.4 0.6 0.8
Fraction of Counter Cacheline Used

Analysis of Counter Overflows

Fraction of Overflows

Counter Usage at the Time of Overflow.

Few counters used All counters used
in cacheline in cacheline
(tree-counters) (encryption counters)
/ ~75% of ~25% of \
overflows overflows

0 0.2 0.4 0.6 0.8 1

Fraction of Counter Cacheline Used

Analysis of Counter Overflows

Counter Usage at the Time of Overflow.

0.25 ' T y T T
(7))
g 0.2 Few counters used All counters used
= i in cacheline in cacheline
g ' (tree-counters) (encryption counters)
‘S 0.1 / ~75% of ~25% of \
g overflows overflows
= 0.05
(®)
o
Li. 0 = -

0 0.2 04 0.6 0.8 |

Fraction of Counter Cacheline Used

Insight: Bimodal pattern in overflows = Morphable Counters

with customized formats to reduce overflows

Few Counters Used: Compress Zero Counters

512-bit Counter Cacheline

Minor Counters (384-bit)

Insight: When few counters non-zero,
allocate bits only to them

Few Counters Used: Compress Zero Counters

512-bit Counter Cacheline

Minor Counters (384-bit)
e
Bit Vector

128-bit

Few Counters Used: Compress Zero Counters

512-bit Counter Cacheline

Minor Counters (384-bit)
Bit Vector Counters

128-bit 256-bit

Few Counters Used: Compress Zero Counters

512-bit Counter Cacheline

Minor Counters (384-bit)
Bit Vector Counters Counters Sjze

128-bit 256-bit <=16 ctrs 16-bits/ctr
<=32 ctrs 8-bits/ctr

Few Counters Used: Compress Zero Counters

512-bit Counter Cacheline

Minor Counters (384-bit)
(<= 64 non-zero ctrs) [@[5 {e]s Counters Counters Size

128-bi 256-bi :
______________________ ?_b_'t_________s_s_?_'t________ <=16 ctrs 16-bits/ctr

Uniform

128 x 3-bit Counters <=32 ctrs = 8-bits/ctr
(>64 non-zero ctrs)

Few Counters Used: Compress Zero Counters

512-bit Counter Cacheline

Minor Counters (384-bit)
(<= 64 non-zero ctrs) [@[5 {e]s Counters Counters Size

____________________ 128b't256b't <=16 ctrs 16-bits/ctr

Uniform

128 x 3-bit Counters <=32 ctrs = 8-bits/ctr
(>64 non-zero ctrs)

ZCC provides large overflow-tolerant counters,

when less than 25% counters are used out of 128

Avoiding Overflows When All Counters Used

Instead of conventional (Major Il Minor)

Major Minor Counter Effective Value =
Counter (3-bit) (Major + Minor)

Avoiding Overflows When All Counters Used

Instead of conventional (Major Il Minor)

Major Minor Counter Effective Value =
Counter (3-bit) (Major + Minor)

Overflowing Minor Counter

100 |5 6 € 7 | 105 106 € 107

Avoiding Overflows When All Counters Used

Instead of conventional (Major Il Minor)

Major Minor Counter Effective Value =
Counter (3-bit) (Major + Minor)

Overflowing Minor Counter

100 |5 6 € 7 | 105 106 € 107

Reset Counters (Existing Design)

108 [0 0 0 0 | (DD

Avoiding Overflows When All Counters Used

Instead of conventional (Major Il Minor)

Major Minor Counter Effective Value =

Counter (3-bit) (Major + Minor)
Overflowing Minor Counter 100 5 6€ 7 | 105 106 €D 107
Reset Counters (Existing Design) 108 0 0 0 0 [(DADACDAD

Counters changed
— re-encryption needed

Avoiding Overflows When All Counters Used

Instead of conventional (Major Il Minor)

Major Minor Counter Effective Value =
Counter (3-bit) (Major + Minor)

Overflowing Minor Counter

100 |5 6 € 7 | 105 106 € 107

Rebase Counters (Avoid Overflow)

105 0 1 3 2 | 105 106 €0 107

Avoiding Overflows When All Counters Used

Instead of conventional (Major Il Minor)

Major Minor Counter Effective Value =
Counter (3-bit) (Major + Minor)

Overflowing Minor Counter

=100 [5 6 @ 7 | 105 106 € 107

Rebase Counters (Avoid Overflow)

<105 [0 1 3 2 | 105 106 €[> 107

Add smallest
minor counter

Avoiding Overflows When All Counters Used

Instead of conventional (Major Il Minor)

Major Minor Counter Effective Value =
Counter (3-bit) (Major + Minor)

Overflowing Minor Counter =100 5 6 € 79105 106 €D 107
Rebase Counters (Avoid Overflow) = 105 B 1 3 2<:? 105 106 €01 107

Add smallest Subtract that
minor counter value from all

Avoiding Overflows When All Counters Used

Instead of conventional (Major Il Minor)

Major Minor Counter Effective Value =
Counter (3-bit) (Major + Minor)

Overflowing Minor Counter =100 5 6 € 79105 106 €D 107
Rebase Counters (Avoid Overflow) <=, 105 0 1. 3 2<:? 105 106 €01 107

Add smallest Subtract that No change;
minor counter value from all No re-encryption:

Avoiding Overflows When All Counters Used

Instead of conventional (Major Il Minor)

Major Minor Counter | Effective Value =
Counter (3-bit) (Major + Minor)
Overflowing Minor Counter (7100 5 6 € 79105 106 €D 107

5

Rebase Counters (Avoid Overflow) ﬁp 105 0 1 3 2& 105 106 €01 107

Add smallest Subtract that No change;
minor counter value from all

No re-encryption;

Rebasing avoids counter overflow and overheads,

when all counters used

* Introduction
» Background and Motivation
* Design

 Results

14

Reduction in Overflows

Overflow Frequency

MMWW“WN|M Mh““thL
&* Q

100000

10000

1000
10 “
o M

o

Overflows Per Million Memory Accesses
o

% & Q X
N \'QQ & << & OQQ/ SN o‘o(QQ \.\\Q @ o’& & ?‘Q® béz} &) & :C$\ '$ a & ’$ @
N \,b e S 2L R & S N AR SR Y v“e
& Ao S
X d

Reduction in Overflows

mm SC-64 (Baseline)

Overflow Frequency mm SC-128 - 7.4Xf

100000

10000

o

[EEN
o

Overflows Per Million Memory Accesses

NP F SO < K N RN
¢ &QQ & <<) 0’56 $¥ oe(QQQ@ © o’“@ &S VQ@ b"”z} c;’@\ % 3 o‘$\ § § §
<° \’b N ° & ° \?f & é\\»"’ AR A R R oY
< N\ &

1000
10 “
&

MMWW“WM|M Mh““thL

Reduction in Overflows

mm SC-64 (Baseline)
Overflow Frequency == SC-128 - 7.4x B

100000 mm= MorphCtr-128 (ZCC-only) - 1.4X‘

10000

o

7y
‘II |

1000
o I I 11 ll,

Overflows Per Million Memory Accesses
o

¢ & Q& F L0 ¢ & N & 2
& & @ FFF TS I TP T I EEE] S
& & e S S £ & F N3 SIS R S
> 2 & > 3
SN N\{ &

Reduction in Overflows

mm SC-64 (Baseline)
Overflow Frequency == SC-128 - 7.4x B

100000 mm= MorphCtr-128 (ZCC-only) - 1. 4X‘

mm= MorphCtr-128 (ZCC+Rebasing) - 1.6x ¥
@*

10000

1000
10 “

o

Overflows Per Million Memory Accesses
[EEY
o

< « N
& FFLSATES oo‘“° S \f\ & S &S EE @
N \’b & (& S L5 S & & ¢ & & & & (5, <
(9@ ‘QQ ,b(a
AN <

Reduction in Overflows

mm= SC-64 (Baseline)
Overflow Frequency == SC-128 - 7.4x B

100000 mm= MorphCtr-128 (ZCC-only) - 1. 4X‘
mm MorphCtr-128 (ZCC+Rebasing) - 1.6x 4

10000

1000
Q &
\.Q \ \\Q/

o

Overflows Per Million Memory Accesses
[EEY
o

”%

MorphCtr-128 packs 2x Counters / Cacheline,
Still, 1.6x Fewer Overflows vs SC-64

Performance Benefits

Extra Accesses / Data Access

1.00
0.80
0.60
0.40
0.20
0.00

(a) Extra Accesses / Data Access

VAULT SC-64 MorphCtr-128

Note: 4 Cores, 8MB LLC, 16GB Secure Memory, 128KB Dedicated Counter Cache

Performance Benefits

(a) Extra Accesses / Data Access
(%)
0
S 1.00
<ch 0 Bl Overflow
a 0.8 [Counters
o 0.60
g —
& 0.40
g
s 0.20
& 0.00

VAULT SC-64 MorphCtr-128

Note: 4 Cores, 8MB LLC, 16GB Secure Memory, 128KB Dedicated Counter Cache

Performance Benefits

1.00
0.80
0.60
0.40
0.20

Extra Accesses / Data Access

0.00

(a) Extra Accesses / Data Access

B Overflow
1 Counters

—)

VAULT SC-64 MorphCtr-128

MorphCtr-128 reduces counter accesses,
without a bloat in overflow updates

Note: 4 Cores, 8MB LLC, 16GB Secure Memory, 128KB Dedicated Counter Cache

Performance Benefits

1.00
0.80
0.60
0.40
0.20

Extra Accesses / Data Access

0.00

(a) Extra Accesses / Data Access

B Overflow
1 Counters

=l

VAULT SC-64 MorphCtr-128

Normalized Performance

1.20
1.10
1.00
0.90
0.80
0.70
0.60

(b) Performance

1.06

1.00

0.94

=

VAULT SC-64 MorphCtr-128

MorphCtr-128 reduces counter accesses,
without a bloat in overflow updates

6.4% speedup vs Baseline,
13.5% vs state-of-the-art

Note: 4 Cores, 8MB LLC, 16GB Secure Memory, 128KB Dedicated Counter Cache

Performance Benefits

1.00
0.80
0.60
0.40
0.20

Extra Accesses / Data Access

0.00

(a) Extra Accesses / Data Access

B Overflow
1 Counters

—)

VAULT SC-64 MorphCtr-128

Normalized Performance

1.20
1.10
1.00
0.90
0.80
0.70
0.60

(b) Performance

1.06

VAULT SC-64 MorphCtr-128

MorphCtr-128 reduces counter accesses,
without a bloat in overflow updates

6.4% speedup vs Baseline,
13.5% vs state-of-the-art

Note: 4 Cores, 8MB LLC, 16GB Secure Memory, 128KB Dedicated Counter Cache

Storage Benefits

Encryption Counter

Configuration

Storage
VAULT 1.6%
SC-64 1.6%

MorphCtr-128 0.8%

Storage Benefits

Encryption Counter

Configuration

Storage
VAULT 1.6%
SC-64 1.6%
MorphCtr-128 0.8%

Encryption counter storage reduced by 2X,

Storage Benefits

Integrity-Tree
Enerybtion Counter

Configuration
Storage Storage Levels Accessed
(From Memory)

VAULT 1.6% 0.050% 4
SC-64 1.6% 0.025% 3
MorphCtr-128 0.8% 0.006% 2

Encryption counter storage reduced by 2X,

Integrity-tree size reduced by 4x vs Baseline, 8.5X vs VAULT

Conclusion

 Morphable Counters =» reducing overheads of secure memory

Conclusion

 Morphable Counters =» reducing overheads of secure memory

« 2x Compact & 1.6x Less Overflow-Rate vs Split Counters

Conclusion

 Morphable Counters =» reducing overheads of secure memory
« 2x Compact & 1.6x Less Overflow-Rate vs Split Counters

* For Practically Free = Only Encoding Change, No Loss in Security

Conclusion

 Morphable Counters =» reducing overheads of secure memory
« 2x Compact & 1.6x Less Overflow-Rate vs Split Counters
 For Practically Free = Only Encoding Change, No Loss in Security

« Closed 1/3d gap between State-of-the-Art & Non-Secure
* 13.5% Speedup with 8.5x Smaller Integrity-Tree than VAULT

Conclusion

 Morphable Counters =» reducing overheads of secure memory
« 2x Compact & 1.6x Less Overflow-Rate vs Split Counters
 For Practically Free = Only Encoding Change, No Loss in Security

« Closed 1/3d gap between State-of-the-Art & Non-Secure
* 13.5% Speedup with 8.5x Smaller Integrity-Tree than VAULT

Thank You! Questions?

