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This Talk: Designing Compact Integrity Trees
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Integrity
Tree

Base of the Integrity Tree Smaller Base

Integrity
Tree

Shorter 
Height

Goal: Pack more Counters per Cacheline for Low-Overhead Integrity Trees



Agenda

• Introduction

•Background and Motivation

•Design

•Results
6
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Few Counters Used: Compress Zero Counters
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Few Counters Used: Compress Zero Counters
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ZCC provides large overflow-tolerant counters, 
when less than 25% counters are used out of 128
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No change; 
No re-encryption;

Instead of conventional (Major II Minor)

Rebasing avoids counter overflow and overheads,
when all counters used
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Reduction in Overflows

MorphCtr-128 packs 2x Counters / Cacheline, 
Still, 1.6x Fewer Overflows vs SC-64
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Storage Benefits

Configuration Encryption Counter
Storage

VAULT 1.6%

SC-64 1.6%

MorphCtr-128 0.8%

Encryption counter storage reduced by 2X,  
Integrity-tree size reduced by 4x vs Baseline, 8.5X vs VAULT

Configuration Encryption Counter
Storage

Integrity-Tree

Storage Levels Accessed 
(From Memory)

VAULT 1.6% 0.050% 4

SC-64 1.6% 0.025% 3

MorphCtr-128 0.8% 0.006% 2
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Conclusion

• Morphable Counters è reducing overheads of secure memory

• 2x Compact & 1.6x Less Overflow-Rate vs Split Counters

• For Practically Free è Only Encoding Change, No Loss in Security

• Closed 1/3rd gap between State-of-the-Art & Non-Secure
• 13.5% Speedup with 8.5x Smaller Integrity-Tree than VAULT

Thank You! Questions? 


