SYNERGY: Rethinking Secure-Memory Design for Error-Correcting Memories

HPCA-2018 Vienna, Austria

Gururaj Saileshwar¹

Prashant Nair¹ Prakash Ramrakhyani² Wendy Elsasser² Moinuddin Qureshi¹

² **arm**

Research

by Malicious **Attacks**

by Malicious **Attacks**

Server memories need protection against data corruption

by Natural Errors

Server memories need protection against data corruption

Reliability

by Natural *Errors*

Resilient Memories

	Security
F	Reliability

Resilient Memories

Server memories need protection against data corruption

Attack Resilience – Memory Security

Resilient Memories

Server memories need protection against data corruption

Attack Resilience – Memory Security

Error Resilience – ECC-DIMM

Resilient Memories

Server memories need protection against data corruption

SYNERGY *Co-Design of Security-Reliability*

Resilient Memories

Server memories need protection against data corruption

SYNERGY *Co-Design of Security-Reliability*

- Better Performance 20%
- Better Reliability 185X
- Maintaining Security
- No Extra Storage

Unauthorized Reads

Unauthorized Writes

Replay Attack

Unauthorized Reads

Unauthorized Writes

Replay Attack

Cold Boot Attack

Unauthorized Reads

Cold Boot Attack

Unauthorized Writes

DMA Attack

Replay Attack

Unauthorized Reads

Cold Boot Attack

Unauthorized Writes

DMA Attack

Man-in-the-middle Attack

Unauthorized Reads

Cold Boot Attack

Unauthorized Writes

DMA Attack

Man-in-the-middle Attack

Secure memory needs to protect against these attacks !

Unauthorized Reads

Unauthorized Writes

Replay Attack

Access Number

Memory Access Bloat due to Security Metadata can lead to Performance Overheads

SGX_O – Enhanced Baseline for Secure Memory (SGX with LLC shared by Counters & Data)

SGX_O – Enhanced Baseline for Secure Memory (SGX with LLC shared by Counters & Data)

(SGX with LLC shared by Counters & Data)

MACs cause 0.9x additional accesses – *focus of this paper* !

MACs cause 0.9x additional accesses – *focus of this paper* !
ECC-DIMM for Reliability

ECC-DIMM for Reliability

ECC-DIMM for Reliability

Introduction & Background

Synergy Design

Evaluation

Data Cachelines

Non-Secure

Data Cachelines

Non-Secure - 1 access

8

SYNERGY

SYNERGY - 1 access for reads, unless error (rare)

Non-Secure - 1 access

Secure Memory - 2 accesses

- **SYNERGY** 1 access for reads, unless error (rare)
 - 2 accesses for writes

Non-Secure - 1 access

Secure Memory - 2 accesses

- **SYNERGY** 1 access for reads, unless error (rare)
 - 2 accesses for writes

Synergy avoids extra MAC lookups and improves performance, without any additional storage

Data + MAC Cachelines

MACs have strong error detection ability

MACs have strong error detection ability

Can We Achieve Stronger Error-Correction with Co-Design?

Data + MAC Cachelines ECC Cachelines – for correction D5 D5 D6 E0 D2 D3 D6 **D1** D2 D3 D4D7 D0 D4 E0 ECC ECC ECC ECC ECC ECC ECC ECC MAC D5 D6 D7 D3 D0 D2 D4 **CHIP-WISE PARITY**

Parity Can Correct Large-Granularity Failures, If Chip With Failure Known

DATA MAC MAC can detect when HASH **MISMATCH** data cacheline is free from error -----D0 D3 D5 D6 **D7** D4 D1 MAC PARITY

DATA MAC MAC can detect when HASH MATCH data cacheline is free from error -----D0 D3 D5 D6 **D7** D4 D1 MAC PARITY

Synergy can tolerate 1 chip with failure out of 9 chips, much stronger reliability than SECDED (Baseline)

<u>Errors can occur in any</u> <u>metadata stored in memory</u>

<u>SYNERGY stores Parity with</u> <u>each metadata to correct errors</u>

<u>Errors can occur in any</u> <u>metadata stored in memory</u>

<u>SYNERGY stores Parity with</u> <u>each metadata to correct errors</u>

<u>Errors can occur in any</u> <u>metadata stored in memory</u>

<u>SYNERGY stores Parity with</u> <u>each metadata to correct errors</u>

<u>Errors can occur in any</u> <u>metadata stored in memory</u>

<u>SYNERGY stores Parity with</u> <u>each metadata to correct errors</u>

<u>Errors can occur in any</u> <u>metadata stored in memory</u>

<u>SYNERGY stores Parity with</u> <u>each metadata to correct errors</u>

<u>Errors can occur in any</u> <u>metadata stored in memory</u>

<u>SYNERGY stores Parity with</u> <u>each metadata to correct errors</u>

Introduction & Background

• Synergy Design

Evaluation

SYNERGY Reduces Metadata Accesses by 36%

Benefit-2: Better Performance

Benefit-2: Better Performance

SYNERGY improves performance of secure memory by 20%, without any additional storage

SYNERGY has 185x higher reliability than Baseline ECC-DIMM

SYNERGY improves Performance by 20% and Reliability by 185x

Thanks and Questions

"The whole is greater than the sum of its parts" - Aristotle

