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SYNERGY improves performance of secure memory by 20%,
without any additional storage
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SYNERGY has 185x higher reliability than Baseline ECC-DIMM
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SYNERGY improves Performance by 20% and Reliability by 185x  

Co-Design

Synergy (MAC + Parity)



Thanks and Questions
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“The whole is greater than the sum of its parts” - Aristotle

Synergy


