
Taming the Instruction Bandwidth of�antum Computers via
Hardware-Managed Error Correction

Swamit S. Tannu
Georgia Institute of Technology

swamit@gatech.edu

Zachary A. Myers
Stanford University

zamyers@stanford.edu

Prashant J. Nair
Georgia Institute of Technology

pnair6@gatech.edu

Douglas M. Carmean
Microsoft Research

dcarmean@microsoft.com

Moinuddin K. Qureshi
Georgia Institute of Technology

moin@ece.gatech.edu

ABSTRACT
A quantum computer consists of quantum bits (qubits) and a control
processor that acts as an interface between the programmer and the
qubits. As qubits are very sensitive to noise, they rely on continuous
error correction tomaintain the correct state. Current proposals rely
on software-managed error correction and require large instruction
bandwidth, which must scale in proportion to the number of qubits.
While such a design may be reasonable for small-scale quantum
computers, we show that instruction bandwidth tends to become a
critical bottleneck for scaling quantum computers.

In this paper, we show that 99.999% of the instructions in the
instruction stream of a typical quantum workload stem from error
correction. Using this observation, we propose QuEST (Quantum
Error-Correction Substrate), an architecture that delegates the task of
quantum error correction to the hardware. QuEST uses a dedicated
programmable micro-coded engine to continuously replay the in-
struction stream associated with error correction. The instruction
bandwidth requirement of QuEST scales in proportion to the num-
ber of active qubits (typically << 0.1%) rather than the total number
of qubits. We analyze the e�ectiveness of QuEST with area and
thermal constraints and propose a scalable microarchitecture using
typical Quantum Error Correction Code (QECC) execution patterns.
Our evaluations show that QuEST reduces instruction bandwidth
demand of several key workloads by �ve orders of magnitude while
ensuring deterministic instruction delivery. Apart from error cor-
rection, we also observe a large instruction bandwidth requirement
for fault tolerant quantum instructions (magic state distillation).
We extend QuEST to manage these instructions in hardware and
provide additional reduction in bandwidth. With QuEST, we reduce
the total instruction bandwidth by eight orders of magnitude.

CCS CONCEPTS
• Computer systems organization → Quantum computing;

KEYWORDS
Quantum Control Processor, Quantum Error Correction

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
MICRO-50, October 14–18, 2017, Cambridge, MA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4952-9/17/10. . . $15.00
https://doi.org/10.1145/3123939.3123940

ACM Reference format:
Swamit S. Tannu, Zachary A. Myers, Prashant J. Nair, Douglas M. Carmean,
and Moinuddin K. Qureshi. 2017. Taming the Instruction Bandwidth of
Quantum Computers via Hardware-Managed Error Correction. In Proceed-
ings of MICRO-50, Cambridge, MA, USA, October 14–18, 2017, 13 pages.
https://doi.org/10.1145/3123939.3123940

1 INTRODUCTION
A Quantum Computer can solve fundamentally di�cult problems
which are unsolvable with conventional computers. It is envisioned
as an accelerator that can accelerate speci�c class of problems.
These problems range from breaking existing public-key encryption
to designing better catalysts for reducing carbon emissions [17,
42]. Because of the potential for achieving substantial speedups,
both industry and academia are actively developing a prototype
quantum computer. To this end, industry leaders like Google and
IBM have demonstrated quantum computers with nine and sixteen
quantum bits (qubits), respectively. To enable scalability, Google
and IBM are using superconducting qubit technology to fabricate
the quantum substrate. Scaling the number of qubits is vital as
it will enable the development of practical quantum applications.
To this end, several industry labs are in the process of building
50 to 100 qubit machines [9, 44]. As we move into the regime of
hundreds of qubits, quantum computers will face critical system
software and architectural-level bottlenecks that will hinder their
scalability [3, 16, 18, 24]. In this paper, we identify the instruction
delivery to the qubits as a critical bottleneck that prevents the
scalability of superconducting quantum computers. This paper aims
to provide low-cost solutions for mitigating the instruction delivery
bottleneck and enabling practical and scalable quantum computers.

Host T = 300K

Control
Processor

T = 4K

Qubits T = 20mK

Temperature Power Budget
100kW

1W

10µWQ
ua

nt
um

 C
om

pu
te

r

Figure 1: Organization of a superconducting quantum com-
puter. Control processor operating at 4 Kelvin manipulate
the qubits operating at 20 milliKelvin [24]).

679

In the proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-2017)

MICRO-50, October 14–18, 2017, Cambridge, MA, USA Tannu et al.

Figure 1 shows an organization of a superconducting quantum
computer. It consists of a control processor that is connected to a
quantum substrate that is composed of qubits. The control proces-
sor is a conventional computer which acts as an interface between
a programmer and qubits. The control processor can execute quan-
tum algorithms by manipulating and measuring states of qubits.
Unfortunately, qubits are highly susceptible to thermal noise and fre-
quently turn erroneous, thereby causing them to lose their quantum
information. To shield qubits against thermal noise, they are placed
inside a refrigerator that operates at ultra-low temperatures (around
20 milli-Kelvin). Even at these ultra-low temperatures, qubits can
only retain their data for few microseconds and experience error
rates as high as 10�3. To make matters worse, data loss from a qubit
cannot be prevented by reading and refreshing their state (like
DRAM) as reading a qubit destroys the information associated with
the qubit. To improve reliability, theorists developed Quantum Error
Correction Codes (QECC) that enable fault-tolerant quantum com-
puting by mitigating erroneous qubits [41]. Currently, the QECC
protocol is embedded in the execution model and is implemented
by using a set of quantum instructions.1

The implementation of QECC also needs to be programmable
as the �eld of quantum error correction is currently an active area
of research. For programmability and �exibility, current proposals
for quantum computer designs manage QECC at the software level.
Based on this design, several prior works have recommended the
programmer or the compiler insert the QECC instructions directly
into the program’s regular instruction stream. This mixed instruc-
tion stream is then provided to the control processor [2, 16]. For
data integrity, the stream of QECC instructions needs to be exe-
cuted across all qubits even when there are no quantum operations
scheduled on a qubit. Such continuous and parallel execution of
QECC results in an instruction bandwidth that scales linearly with
the number of qubits. To estimate the increase in bandwidth as the
size of the quantum computer is scaled, we analyzed the bandwidth
requirements of Shor’s factoring algorithm with di�erent input
sizes (ranging from 128 bit to 1024 bits). The results of this analysis
are shown in Figure 2. As per our analysis, factoring a 1024 bit num-
ber requires an extremely high instruction bandwidth (100TB/s)
as it requires millions of qubits.2 Unfortunately, it is impractical to
sustain this instruction bandwidth within the tight power budgets
that dictate the operation of the quantum substrate and control
processor operate [24].

If QECC instructions are delayed due to the lack of available
instruction bandwidth, it can lead to uncorrectable errors. Unlike
conventional systems, where one can cache instructions and sus-
tain a large instruction bandwidth, instruction caching cannot be
used for QECC instructions. This is because any non-determinism
(from events like cache misses and tag-lookups) in the QECC in-
struction delivery will delay the execution of QECC. Even small
delay (⇠100ns) in the execution of QECC can result in uncorrectable
errors and the loss of quantum states. To make matters worse, as
dictated by the No-Cloning Theorem [53], the state of a qubit cannot

1We assume the gate compute model and use quantum gates and instructions
interchangeably.
2The bandwidth bloat and the number of physical qubits required are calculated using
the model described in appendix-M of [14]. It uses superconducting qubits that run
surface codes to mitigate physical error rates of 10�4 per error correction cycle.

108

109

1010

1011

1012

1013

1014

1015

104 105 106 107In
st

ru
ct

io
n

B
an

dw
id

th
 (B

yt
es

/S
ec

)
(L

og
 S

ca
le

)

Number of Qubits (Quantum Bits)
(Log Scale)

Total Bandwidth
Quantum Operation Bandwidth

Figure 2: Instruction bandwidth for a superconducting quan-
tum computer with increasing number of qubits.

be copied. Due to this limitation, quantum applications cannot be
checkpointed and recovered in case of uncorrectable errors. There-
fore, the bandwidth required for deterministic execution of the
instruction will hinder the scalability of quantum computers.

To better manage instruction bandwidth, we propose QuEST
(Quantum Error-Correction Substrate), an architecture for the control
processor that delegates the task of quantum error correction from
software to the hardware and reduces the QECC overheads in the
instruction stream. QuEST is based on three insights. First, QECC in-
structions form a signi�cant majority of the instruction bandwidth
(99.99%). Second, QECC instructions are independent of the quan-
tum application control �ow, and they can be executed without any
global synchronization. Third, QECC instructions have a determin-
istic control �ow and relatively small instruction footprints. QuEST
manages instruction bandwidth by distributing the instruction de-
livery across simpleMicro-coded Control Engines (MCEs). Each MCE
addresses a subset of the quantum substrate and manages QECC
instructions using a tiny programmable microcode. This enables
the MCEs to execute quantum error correction instructions without
requiring any software coordination and global synchronization.

To maximize the number of qubits serviced by each MCE, we
exploit underlying reuse patterns in QECC operations. By using
this additional optimization, each MCE can support about 90⇥more
qubits than the unoptimized design. By managing QECC instruc-
tions using micro-codes, QuEST decouples the delivery of QECC
instructions and regular instructions, permitting non-determinism
and enabling instruction caching for fault-tolerant logical instruc-
tions. By managing QECC in hardware near the quantum substrate,
QuEST reduces the required instruction bandwidth by �ve orders
of magnitude. Moreover, QuEST enables the non-deterministic de-
livery of the fault-tolerant (FT) logical instructions by decoupling
the issuing of QECC instruction and FT instructions. This can be
further leveraged to reduce the instruction bandwidth by three
orders of magnitude by caching fault-tolerant logical instructions.

The control processor operates at a temperature of 4K, and it is
placed close to the quantum substrate to maximize the connectivity
between qubits and the control processor. At a temperature of 4K,
conventional CMOS is not a feasible option as control processors

680

Taming the Instruction Bandwidth of�antum Computers MICRO-50, October 14–18, 2017, Cambridge, MA, USA

have small power budget [24]. To enable e�cient designs within
the small power budget, alternative technologies like Josephson-
junction (JJ) based quantum control logic are proposed [20, 33, 46].
This is because JJ based logic is 1000x more power e�cient and
orders of magnitude more reliable than CMOS devices. In this paper,
we assume the MCEs are fabricated using JJ based technology and
that the MCEs use the surface code as QECC. This paper makes the
following contributions:

• We identify instruction bandwidth as a major challenge that
limits the scalability of superconducting quantum computers
and show that the Quantum Error Correction instructions
dominate the instruction bandwidth. As the number of qubits
scale, we show that the software managed error correction
is not viable as it leads to a linear relationship between in-
struction bandwidth and the number of qubits (Section 3).

• We propose QuEST, a quantum control processor architec-
ture where QECC is handled by using a programmable micro-
coded engine hardware. We utilize the QECC microcode to
continuously replay the QECC instructions without any soft-
ware intervention (Section 4).

• We propose a scalable microarchitecture for the microcode
engine using insights from the quantum execution model
and QECC instruction locality. By doing this, QuEST reduces
the instruction bandwidth by �ve orders of magnitude.

• We decouple the delivery of QECC instructions and fault-
tolerant instructions to enable instruction caching for fault-
tolerant logical instructions. This enables QuEST to provide
eight orders of magnitude instruction bandwidth savings
(Section 5).

2 BACKGROUND
In this section, we brie�y discuss the fundamentals of quantum
computing, the organization of a quantum computer, and the im-
plementation of quantum instructions.

2.1 What is Quantum Computing?
Unlike conventional computers that use binary bits to encode infor-
mation, quantum computers encode information using two-level
quantum systems called qubits. These two levels can be denoted
as vectors: |0i =

�
1 0

�T and |1i =
�
0 1

�T . Unlike a classical bit,
a qubit can exist in any state which is a superposition of the two
levels. Mathematically, it can be expressed as |� i = � |0i + � |1i,
where |� i is an arbitrary state of a qubit. When a qubit is measured
or read, the quantum state collapses into a single classical bit that
is either 0 or 1 with the probabilities �2 and �2 respectively. The
measurement of a qubit is irreversible and it destroys the quantum
information associate with a qubit.

Quantum instructions manipulate the state of a qubit by chang-
ing the magnitude and phase of the probability amplitudes � and � .
For example, applying a X-gate �ips � and � i.e X |� i = � |0i+� |1i.
Theoretically, an arbitrarily large number of quantum instructions
are possible because even a small change in probability amplitudes
produces a valid quantum state. However, most useful quantum
instructions can be generated with a small instruction set of univer-
sal gates (X ,Z ,H , S,T ,CNOT). Apart from these universal gates,

the Prep0 and Prep1 instructions initialize qubits in either the |0i
or |1i state, while theMeas instruction measures a qubit.

2.2 Organization of Quantum Computer
Figure 3 shows the organization of the quantum computer that is
considered in our study. We assume the accelerator model for the
quantum computer, where the quantum computer is connected to
a traditional host which o�oads quantum executables onto the
quantum computer. The quantum computer is kept inside a cryo-
genic refrigerator with multiple thermal domains. A 77K domain
holds cryogenic DRAM that keeps the instruction working set of
the quantum application. A 4K domain holds a control processor.
A 20 mK domain contains the quantum substrate. DRAM is used
to contain the working instruction set of the quantum application
as the instruction footprint for quantum algorithms is typically
large (10s GB) [28, 29]. Additionally, conventional memories such
as DRAM are empirically found to continue operating at 77K [19].

20 mK

0.1 K

4 K

77K
Host

Quantum Substrate
(Superconducting Qubit)

Control Processor
(Josephson Junction Logic)

300 K

Memory
(Cryo-CMOS)

High Density
Superconducting

Control Wires

Low density metal
Interconnects

Figure 3: Organization of a scalable quantum computer.

We assume that the control processor operates at 4K and is con-
structed with JJ technology [36, 46]. In JJ technology, a Josephson
junction serves as a switch to construct Boolean gates. Compared
to CMOS gates, JJ based gates are 1000x more power e�cient when
clocked at 10 GHz [20]. Furthermore, JJ technology is extremely
reliable at 4K and has a demonstrated bit error rate of 10�30 [20].

We assume that the control signals to the quantum substrate are
routed using �exible superconducting interconnects, which provide
high-density wires at very low leakage and thermal losses [43, 51].
This proposed interconnect technology can support more than mil-
lion control wires at 20mK without violating the thermal budget.
This paper focuses on quantum substrates built with superconduct-
ing qubit technologies that operate at 100MHz.

2.3 Implementing Quantum Instructions
The implementation of the quantum instructions depends on the
qubit technology. For superconducting qubits, the state of a qubit
can be manipulated by applying an electric signal at microwave
frequencies. The application of the microwave signal on the qubit
is equivalent to executing a quantum instruction on that qubit.
Existing superconducting quantum computers utilize point to point
connections between the qubits and a microwave generator, so
every qubit device demands a dedicated waveform generator which
limits the scalability.

681

MICRO-50, October 14–18, 2017, Cambridge, MA, USA Tannu et al.

Arbitrary
Waveform
Generator

CNOT-T

H

X

Z

Quantum Substrate

Measurement
Buffer

Control
Logic

Microwave
Switches

Qubits

Figure 4: A Quantum Execution Unit with waveform genera-
tor and microwave switch. A quantum instruction provides
the select signal to the microwave switches.

A recent work by Hornibrook et al. [24] demonstrates a scalable
quantum execution unit called the Primeline Multiplexing Archi-
tecture. The primeline architecture uses a matrix of microwave
switches to multiplex the outputs of a small number of expensive,
arbitrary waveform generators (AWG) as shown in the Figure 4.
The AWGs generate control pulses capable of manipulating and
measuring qubits. The control pulses correspond to speci�c types
of quantum instructions. The AWG continuously passes the pulses
to the switch matrix through an analog bus called the prime-line
bus. The switch matrix acts as an analog multiplexer that is con-
trolled by select bits from a digital address bus. The select bits on
the bus determine which waveform is directed to which qubit in
a given cycle. The quantum instructions in this architecture are
simply the appropriate bits in the select line of the switch matrix.
In this paper, we assume that the quantum execution unit is based
on the primeline architecture.

3 QUANTUM ERROR CORRECTION
In this section, we discuss the need for error correction in quantum
computing and how this dramatically increases the instruction
bandwidth for quantum workloads.

3.1 Need for Quantum Error Correction
Qubits are sensitive to noise and can lose their state information
through interactions with their environment. This loss of state is
called Decoherence. For superconducting qubits, coherence time is
up to 20µS [4] and the probability of decoherence increases expo-
nentially as time passes. Experiments indicate the average error rate
of 10�3 per 100nS for a superconducting qubit device [38]. In addi-
tion to decoherence e�ects, quantum instructions have low �delity
and can produce erroneous states. To make quantum computing
feasible, Quantum Error Correction Code (QECC) was developed to
mitigate these errors [41]. At a high level, a QECC is composed of
a continuous loop of quantum instructions that correct memory
errors and the use of redundant data encoding to enable reliable
quantum instructions.

3.2 QECC Implementation
QECC detects and corrects errors by generating error syndromes.
To generate error syndromes, the QECC algorithm entangles extra
‘ancillary’ qubits with data qubits. The algorithm then measures

the ancillary qubits in the error syndrome to detect errors. The
measurement destroys the entangled information of the ancillary
qubits while leaving the data qubits una�ected. After that, the
ancillary qubits and data qubits are re-entangled to produce a new
error syndrome for the next QECC cycle as shown in Figure 5. This
cycle is performed continuously to avoid non-correctable errors.

Repeat Syndrome Generation

Syndrome
Genera�on

Error
Decoder

Error
Correction

Ancila Qubits

Data Qubit

Noise

Syndrome
Measurement

Figure 5: Quantum error correction instructions continu-
ously generate and measure syndromes by entangling and
measuring the ancillary qubits.

QECC improves the reliability of instructions by grouping sev-
eral fragile physical qubits into a single ‘logical’ qubit. By using
this abstraction, fault tolerant quantum instructions can be built
that amortize low instruction �delity. In a proposed quantum pro-
gramming model, a programmer composes a quantum application
with fault tolerant logical qubits and instructions [16]. A compiler
then expands each logical instruction into a group of parallel phys-
ical instructions and streams these instructions to physical data
and ancillary qubits. The choice of QECC determines the underly-
ing implementation of error syndromes and logical qubits. In this
paper, we utilize state of the art Surface Code based error correc-
tion schemes. A brief design overview for surface code protocol is
described in Appendix A.

3.3 QECC Dominates Instruction Stream
Current quantum programming models manage QECC at the soft-
ware level. This provides the programmer with the �exibility to
choose the type of QECC they want, including pre-compiled er-
ror correction software libraries [16]. However, managing QECC
at the software level requires the host to transmit all the QECC
instructions to the control processor through the same channels
as program instructions. Since QECC issues continuous parallel
instructions, its required bandwidth instruction grows signi�cantly,
and the speci�cation for the control processor becomes impractical.

For example, let’s assume a superconducting qubit that operates
at 100 MHz with byte sized quantum instructions. To maintain
data integrity, each physical qubit needs to receive the QECC in-
structions close to its operating rate and thus requires 100 MB/s
of instruction bandwidth. At small scale, this linear relation be-
tween qubits and instruction bandwidth may be tolerable. At large
scale, a large instruction bandwidth can hinder the design of large-
scale quantum computers. For example, a quantum computer with
100,000 qubits will require 10TB/s of instruction bandwidth within
a tight temperature and power budget. Worse, unlike conventional
systems, the bandwidth is not only a performance bottleneck but a

682

Taming the Instruction Bandwidth of�antum Computers MICRO-50, October 14–18, 2017, Cambridge, MA, USA

correctness bottleneck. If QECC instructions are not issued at the
desired rate, the physical qubits experience a delay in the QECC
cycles thereby increasing their error rates.

To understand the severity of the QECC overhead, we esti-
mated the bandwidth overhead of seven quantum workloads with
QuRE [47] by calculating the ratio of QECC instructions to the
actual workload instructions. Figure 6 shows the ratio of QECC in-
structions to the useful instructions for various workloads. Almost
99.999% bandwidth is dedicated to the QECC instructions.

100

102

104

106

108

1010

BW
T BF

FeM
C
O

G
SE

SH
O
R

Q
LS TFP

G
M

EAN

R
a

tio
 o

f
E

C
C

 t
o

 n
o

n
-E

C
C

 o
p

s

Figure 6: Ratio of QECC instructions to regular instructions
in quantum workloads. QECC requires an instruction over-
head of 4 to 9 orders of magnitude.

3.4 Need for Deterministic Instruction Supply
Unfortunately, traditional methods of managing high instruction
bandwidth do not translate to quantum computing. For instance,
conventional computers cache instructions to manage high instruc-
tion bandwidth. However, these instruction caches introduce non-
deterministic latencies (due to cache misses and tag lookup) that
are unacceptable when executing QECC instructions as it increases
the error rate. To minimize the complexity of QECC, it is essen-
tial to have a deterministic supply of instructions from the control
processor to each of the qubits.

4 QUEST: OVERVIEW AND DESIGN
To manage the instruction bandwidth of quantum computers, we
propose a control processor architecture called QuEST (Quantum
Error-Correction Substrate).

4.1 Insight
We design QuEST based on four key insights. First, with conven-
tional software-managed error correction, QECC instructions con-
tribute more than 99.999% of the total instructions in the instruction
stream of a quantum workload. Second, it is necessary to deliver
QECC instructions in a deterministic fashion to ensure the reli-
able operation of the quantum substrate. Third, QECC instructions
have high parallelism and can be performed independently with-
out any global synchronization. Fourth, QECC instructions are
simple enough that microcode tables can store and deliver micro-
operations without sacri�cing determinism and programmability.

4.2 Control Processor Organization
In QuEST, the control processor is divided into an array of dedicated
Microcode Control Engines (MCEs) placed at 4K temperature and

D�� D�� D��

DĂƐƚĞƌ�
�ŽŶƚƌŽůůĞƌ

YƵĂŶƚƵŵ�^ƵďƐƚƌĂƚĞ

D��

,ŽƐƚ

/ŶƐƚƌƵĐƚŝŽŶ�WŝƉĞůŝŶĞ

DŝĐƌŽĐŽĚĞ�WŝƉĞůŝŶĞ

YƵĂŶƚƵŵ��ǆĞĐƵƚŝŽŶ�hŶŝƚ

�ƌƌŽƌ�
�ĞĐŽĚĞƌ
WŝƉĞůŝŶĞ

�ƌƌŽƌ�
�ĞĐŽĚĞƌYƵĂŶƚƵŵ�

�ǆĞĐƵƚĂďůĞ

ZƵŶ�dŝŵĞ�
�ŶǀŝƌŽŶŵĞŶƚ

ϰ<

ϮϬŵ<

ϳϳ<

ϯϬϬ<

Figure 7: QuEST uses independent hardware units called as
Microcoded Control Engines (MCE), to deliver instructions
to a �xed qubit group.

a master-controller. These are all connected via a global data and
instruction bus as shown in Figure 7. Each MCE manages a tiled
subsection of the quantum substrate and executes logical and QECC
instructions for that tile. Each MCE is solely responsible for issuing
QECC instructions for its tile. These tiled subsections are composed
of a �xed number of prede�ned qubits and are independent of each
other. The master-controller orchestrates all logical operations by
dispatching the logical instructions to the appropriate MCEs.3

An MCE has four functional blocks: instruction pipeline, mi-
crocode pipeline, quantum execution unit, and error decoder pipeline,
as shown in Figure 7. The instruction pipeline (IP) delivers logical
instructions and translates them into physical instructions. The
microcode pipeline (MP) feeds these physical instructions to the
quantum execution unit. The quantum execution unit is based on
a prime line architecture. It consists of an AWG and a microwave
switch array controlled by physical instructions. The error decoder
pipeline is a part of a two-level error decoding scheme. The error
decoder collects the syndrome measurement data and performs
a limited local error decoding with a lookup table to correct fre-
quently occurring isolated single-qubit errors. Additionally, there
is a single global decoder in the master-controller that decodes
more complex error patterns [50]. The global bus between the MCE
and master controller carries both logical instructions and error
syndrome data. The master controller delivers logical instructions
to MCE using a packet switched network. In this paper, we focus
on solving the instruction bandwidth problem by optimizing the
instruction and microcode pipeline.

4.3 Microcode Pipeline
The microcode pipeline (MP) executes all physical instructions
translated from logical and QECC instructions. The MP consists of
a microcode memory and an address decoder as shown in Figure 8a.
To guarantee that each qubit receives an instruction per cycle, the
physical instruction is designed similar to a very long instruction
word (VLIW) and composed of a µop per qubit. These instructions
are executed in lockstep for all qubits to ensure parallel QECC
operation. The parallel constraint stems from the need to construct
a continuous lattice of error syndromes as discussed in Appendix A.
The microcode pipeline architecture ensures the complete control

3Master-controller is assumed to be placed at a higher temperature (77K) and is
fabricated using CMOS technology as it requires a complex architecture to handle the
run-time environment and the error correction decoder.

683

MICRO-50, October 14–18, 2017, Cambridge, MA, USA Tannu et al.

(a)
Micro-code Memory

Quantum Execution Unit

1 2

3

Microcoded Control Engine(MCE)

Microcode
Memory

Master
Clock

Instruction
Buffer

Instruction
Decoder

Inst Ack Req

Syndrome
Measurement

Buffer

Local Error
Decoder

A

B

C

Logical µops

Mask Bits

M x N
QECC µops

Address
Decoder

Instruction Bus

Error Syndromes
Data busArbitrary Waveform

Generator

Address
Decoder

(c)

opcode Address

log(N) bits C bits

opcode Address

log(N) bits C bits

M
ux

(b)

Prep 0

Qubit1 Qubit2 QubitN

Identity Prep 0

CNOT CNOT H

Meas Identity Identity

͙...

͙...

͙...

Cycle 1

Cycle 2

Cycle M

QECC Instruction Cycle

͙
...

Repeat

Physical µop VLIW instruction͙.

͙
...

Figure 8: (a) An overview of MCE microarchitecture. (b) QECC instruction cycle. QECC cycle repeats after M instructions. (c)
Microcode memory organization with QECC-µop table, Logical-µop table and mask table. QECC µop contains fully decoded
µops used to execute QECC cycle. Where each µop has op-code and address bits.

over all the quantum operations at any point of time so that no
qubit remains idle.

Inside the MCE, a physical instruction is executed in three steps
as shown in Figure 8a. In step 1 , the µop corresponding to an
instruction moves from the microcode memory to the address de-
coder. In step 2 , the decoder delivers the µop to the corresponding
microwave switch, and µop is latched onto it. The µop corresponds
to the speci�c waveform as discussed in Section 2.3. Steps 1 and
2 are repeated until all the microwave switches in the execution
unit are latched with the corresponding µop. In step 3 , a master
clock is applied to both the AWG and all the microwave switches
which activate the switches and results in parallel synchronized
execution of quantum instructions.

This execution model guarantees a complete control over all
qubits at any point in time. The timings for all the instructions are
therefore predetermined by design and are managed by the master
clock. These steps are pipelined to improve the throughput and
minimize the delay between two quantum instructions. When a
microwave switch is active and passing microwave signals from
the AWG to the qubits, a µops corresponding to next instructions
can be latched onto the microwave switches.

4.4 Managing QECC Bandwidth
The primary objective of QuEST is to deliver QECC instructions
without intervention from the master controller. To achieve this
goal, we partitioned the microcode memory into a QECC-µop mem-
ory, a logical-µop memory and a mask table as shown in Figure 8c.
QECC-µop table contains the fully decoded QECC-µops which can
be directly latched into Quantum Execution Unit by accessing the
QECC-µop table. Figure 8b shows a QECC instruction cycle, where
all the qubits are assigned an instruction.

The mask table holds mask-bits that decide if the µop for a given
qubit should be fetched from logical µop or QECC-µop memory. If
there are no logical instructions in logical-µop table then the MP
replays QECC-µops continuously to generate error syndromes.4

The size of the microcode table and the design of the QECC
protocols depend on the number of instructions in the QECC cycle

4The function of mask table is elaborated in Section 5.1 which describes the execution
of logical instructions.

and the size of instructions. Both the number and size of the instruc-
tions depend on the type of QECC used. For our architecture, we
use a “simulacrum” of existing surface code QECC cycle (syndrome
generation circuit depth) that is approximately 9 to 14 instructions
long [14, 50]. The last instruction in this QECC cycle measures the
syndrome qubits. In our design, the resulting measurement is fed
into the error decoder pipeline which resolves errors and reports
them to the master controller.

Our architecture makes the QECC portion of microcode table
programmable, so the choice of QECC is �exible. However, even
with a di�erent error correction scheme, the number of instructions
(quantum circuit depth) in a syndrome generation cycle is expected
to be small as the cycle size and error rate (due to decoherence
and instruction �delity) are coupled. We reasonably assume that
number of QECC instruction in a QECC cycle (syndrome gener-
ation circuit depth) will be short and that it is possible to supply
QECC instructions from a reasonably sized microcode. A detailed
feasibility analysis and design optimization are discussed in the
next section. However, it will be shown that designing a microcode
table using JJ technology faces some challenges.

4.5 Microcode Architecture
The main limitation of JJ technology is the lack of a dense mem-
ory. Existing JJ fabrication technology has limited JJ density (106
to 108 JJs per cm2) which is almost 100⇥ to 10000⇥ smaller than
state of the art CMOS technology [21, 49]. Additionally, the high
complexity of JJ-based memories also limits the memory capacity
as a memory element requires a large number of JJs. The limited
memory capacity also has a direct impact on our design since this
limits the capacity of our microcode memory. This places a ceil-
ing on the number of qubits serviced per MCE which restricts the
overall scalability of our quantum computer. While it is di�cult to
quantify the available memory capacity for the state of the art JJ
process technology due to limited data, conservative estimations
of memory capacity from older fabrication processes suggest a
memory density of ⇠4Kb/cm2 [49]. Optimistic estimations of mem-
ory capacity using state of the art technology suggest a capacity
of ⇠400Kb/cm2 [11, 12]. Limited memory capacity is not the only
design challenge. The bandwidth of the microcode memory also
limits the number of qubits per MCE, especially for the lockstep

684

Taming the Instruction Bandwidth of�antum Computers MICRO-50, October 14–18, 2017, Cambridge, MA, USA

VLIW execution model. This model assumes a microcode table that
delivers instructions to all the qubits in one cycle (each cycle is
10ns-20ns long).

However, we can reduce the capacity needed for QECC-microcode
with the following insights: In a quantum execution unit, physical
instructions are executed in lock step. All µops are �rst latched
onto all microwave switches, and then the quantum instruction is
executed. This process does not require random access to the µops
as all qubits are addressed every execution cycle. Additionally, the
order of latching the instructions is not important so the address
bits can be omitted from the µops. This means the QECC microcode
memory can be designed as FIFO. This reduces the capacity required
per instruction, so the total QECC microcode capacity will scale
with O(N) instead of O(Nlo�2(N)). This improves the scalability
by 3 to 4 times as shown in the Figure 10.

To reduce the capacity requirement further, we can utilize the
underlying instructional similarity in the surface code. The basic
unit of a surface code is the set of spatially repeating syndrome
generation instructions that are executed on all the physical qubits
in order to generate spatially periodic syndromes as shown in
Figure 9. The spatial granularity of the repeating instructions is
a unit cell of 25 qubits [14]. By replaying the unit cell op-codes
spatially, one can generate the complete sequence of instructions
for a surface code error correction cycle. A small set of instructions
corresponding to the unit-cell can be stored in a microcode memory
and replayed using a state machine. This optimization e�ectively
manages QECC instructions with a �xed memory capacity such
that QECC microcode capacity scales with O(1) which improves
the scalability as shown in Figure 10.

...Cycle 1

Cycle 2

Cycle M

͙
...

P I P ... I HP I P ... I H

... C I C ... I CC I C ... I C

...M I M ... I M M I M ... I M

P I P ... I H

C I C ... I C

͙M I M ... I M

Unit Cell Instruction Block

Unit Instruction block Repeating in Space

(b)

opcode Address
log(n) bits C bits

(a)
opcode
C bits

Figure 9: (a) In FIFO optimization, address bits for a µop
are dropped. (b) QECC instructions have a repeating unit in-
struction block. Only unit block instructions can generate
instructions for all of the qubits.

The mask memory requires a memory capacity of N bits per
MCE, as each qubit requires a mask bit to select between QECC
instructions or logical instructions, so its capacity scales on the
order of O(N). However, for the surface code, the storage can be
reduced if a coalesced mask bit is used for a small group of qubits.
For surface codes, all the logical instructions have the operational
granularity of d2 physical qubits where d is the code distance.5 For
N physical qubits, only N /d2 mask bits are used. As the shape and

5A code with the distance of d can detect d�12 errors in a single error correction cycle.

dimension of the mask are pre-determined, coalesced mask-bits
can be used to mask QECC instructions. The proposed capacity
optimization is based on the locality and usage patterns of QECC
instructions. Although the design is speci�c to surface codes, the
underlying insights can be applied to other classes of quantum error
correction codes such as planner codes, color codes and triangle
codes [27, 50, 54]. For example, the 4 ⇥ 4 unit cell can be used for
the class of surface code discussed in [50].

10
1

10
2

10
3

10
4

Number of Qubits

102

104

106

108

M
ic

ro
co

d
e
 C

a
p
a
ci

ty
(b

its
)

RAM
FIFO
Unit Cell

O(1)

O(N)

O(N*log
2
N)

Figure 10: Trends in required memory capacity vs number
of qubits serviced for microcode designs.

In QuEST, all the contents of microcode memory (both mask
and QECC microcode) are streamed out every cycle which cre-
ates a large bandwidth demand. This bandwidth requirement for
microcode memory is N⇥InstructionSize

InstructionLatenc� where the instruction la-
tency is roughly 10 ns. The proposed FIFO optimization reduces the
raw bandwidth demand from O(Nlo�2N) to O(N) since it reduces
the instruction size. However, the unit cell optimization does not
reduce the bandwidth directly since we need bandwidth to replay
QECC instructions. However, the capacity reduction from the unit
cell optimization indirectly a�ects the output microcode bandwidth.
A smaller capacity microcode has a smaller read latency, i.e. it can
deliver more op-codes to Quantum Execution Units per unit time.

To �nd the e�cacy of our optimizations, we calculated the num-
ber of qubits serviced per MCE for each optimization for one-
channel, two-channel and four-channel memory con�gurations
for a �xed memory capacity of 4Kb.6 The one channel memory
is a 4Kb memory array with one read port. The two channel is a
2⇥2Kb memory with two independent memory arrays with a read
port each. The four channel memory is 4⇥1 Kb memory with four
independent memory arrays. Figure 11 shows the results of this
experiment. The baseline design assumes no capacity optimization.
QECC instructions are managed by software and bu�ered in a JJ
based memory with a conventional encoding of op-code and ad-
dress bits. In the baseline design, the number of serviced qubits is
limited by the microcode capacity since the capacity scales with
O(N ⇥ lo�2(N)). A 4Kb microcode memory can only hold 48 qubits
worth of QECC instructions and addition of channels does not a�ect
the number of serviceable qubits.

For FIFO optimization, microcode memory capacity scales as
O(c⇥N)where c is the op-code size. For a 4 bit op-code, the number
of serviced qubits is limited to 120 due to the memory capacity. For
Unit cell optimization, a number of serviced qubits is decoupled
from the memory capacity since the number of QECC instructions
6 4Kb memory requires about 170,000 JJs over 1 cm2 and consumes about 10µW [11].

685

MICRO-50, October 14–18, 2017, Cambridge, MA, USA Tannu et al.

100

101

102

103

104

1-Channel 2-Channel 4-ChannelN
u
m

b
e
r

o
f
S

e
rv

ic
e
d
 Q

u
b
its

RAM FIFO Unit-cell

Figure 11: Number of qubits serviced perMCE formicrocode
designs with a �xed 4Kb microcode memory.

for a unit cell easily �t into a 4Kb microcode memory. The number
of serviced qubits now only depends on the memory bandwidth as
shown in Figure 11 where adding more bandwidth improves the
number of serviced qubits. For a microcode design with unit cell
optimization, a linear increase in channels provides a super-linear
increase in bandwidth due to the small capacity of the microcode
bank. For a one channel 4Kb, the memory access latency is three
cycles [11]. For a four-channel 1Kb memory con�guration, the read
latency decreases to 2 cycles, and the bandwidth improves by 6x.

5 INSTRUCTION PIPELINE
In this section, we brie�y overview how logical instructions are
executed in QuEST. Later we discuss a source of logical bandwidth
bloat and how QuEST can be extended to solve it.

5.1 Executing Logical Instructions
Surface codes group physical qubits into a block and disable the
execution of quantum error correction within that block to create
a logical qubit. Figure 12a shows a section of the surface code com-
posed of both data and ancillary qubits (for a description of surface
codes see Appendix A). The surface code section in Figure 12a
does not contain any logical qubits. To create a logical qubit, the
syndrome generation and measurement is turned-o�. Figure 12b
shows logical qubits Q1 and Q2 that were created by turning o� (or
masking) error correction for all the ancilla qubits inside the area
and on the perimeter of the highlighted squares.

A single logical qubit can be created with two masked squares
brie�y connected during initialization (Fowler et. al [14] describes
this process in detail). The logical qubit with code distance of d
can detect d�1

2 errors every error correction cycle and requires at-
least d qubits on the perimeter of each square mask. The distance
between two masks should also be d data qubits. This requires
total 12.5⇥d2 physical qubits per logical qubit (as per Appendix-M
of [14]). Broadly, there are two categories of logical instructions
that manipulate logical qubits: transverse instructions and mask
instructions. Transverse instructions, like SIMD instructions, are
applied on all physical qubits inside a logical qubit. For example,
to prepare a logical qubit in the |0i state, a transverse PrepLo�ical
instruction is applied to all physical qubits inside the logical qubit
and initializes all the physical qubits to |0i. Mask instructions move,
expand and contract the boundary of logical qubits by changing
the QECC-mask. Figure 12c shows an intermediate braiding step
for the logical CNOT operation where the boundary of the logical
qubit-Q1 is expanded and braided along the boundary of the logical
qubit-Q2 by altering the bits in the mask-table.

The Instruction Pipeline (IP) supports transverse and mask in-
struction in hardware. This pipeline consists of an instruction bu�er,
an instruction decoder, and a logical µops table as shown in Fig-
ure 8a. The IP executes logical instructions in three steps. Step A ,
the MCE receives packets of logical instructions from the master-
controller and places them in the instruction bu�er.7 Step B , the
decoder decodes the instruction and, in step C , places the resul-
tant µops into the logical microcode. To de�ne a logical qubit and
execute a mask instruction, the instruction decoder sets bits in the
mask table to disable QECC µops for a de�ned boundary. Note that
the interleaving of QECC in logical instructions is �xed and the
part of Quantum Error Correction protocol design.

zz

z

X

z

zz

(a) (b) (c)

zz

z

X

z

Q1

d

d/4

Q2
d

d/4

zz

zz

z

X

z

zz

1

z

X

1

2

d

Figure 12: (a) Surface code substrate with data and ancilla
qubits. (b) Logical qubit Q1 and Q2 created bymasking error
correction instructions over group of qubits. (c) State of the
logical qubits can be manipulated by growing or shrinking
their boundaries and braiding.

5.2 The Logical Bandwidth Problem
Most quantum workloads execute only two to three logical in-
structions in parallel [18, 28] hence the required logical instruction
bandwidth is expected to be small. However, workload analysis
shows that required logical instruction bandwidth is substantial
even though logical instruction level parallelism is small. This high
demand stems from just one class of complex logical instruction
called T-gates or T-instructions. The T-gate rotates the qubit by
�/4 about the Z-axis. It is one of the gates required to form a
universal set of quantum gates. Its use is essential to perform ar-
bitrary rotations [29]. The fault-tolerant logical T-gate operation
requires ancillary qubits in a speci�c state known as the magic
state. Unfortunately, magic states can only be generated by a family
of recursive algorithms, called distillation processes, that consume
many execution cycles. Magic state distillation quickly bottlenecks
almost all analyzed workloads as these workloads require magic
states for T-gates roughly every third instructions. Overall, T-gate
instructions constitute 25% to 30% of the instruction stream. One
solution to avoid stalling T-gate instructions is to execute many
parallel instances of the distillation algorithm [25]. Each instance of
distillation is called a T-factory. T-factories require a large portion
of the instruction bandwidth as they require continuous execution
of parallel instructions. Figure 13 shows the T-factory bandwidth
overhead. The overhead is the ratio of distillation instructions to

7Note that the arbitrary rotations are not translated at the MCE. They are either
decomposed at run-time (by the master controller) or at compile time (by the Host).
The Instruction Pipeline (IP) then translates only the logical Cli�ord operations (CNOT,
H, X, Z) into corresponding physical instructions or µops .

686

Taming the Instruction Bandwidth of�antum Computers MICRO-50, October 14–18, 2017, Cambridge, MA, USA

algorithmic instructions. Like QECC instructions, the demand for
the distillation instructions is deterministic and continuous.

100

101

102

103

104

BW
T BF

FeM
C
O

G
SE

SH
O
R

Q
LS TFP

G
M

EAN

 T
-f

a
ct

o
ry

 B

W
 O

ve
rh

e
a
d

Figure 13: The ratio of T-factory instructions to total
quantum application logical instructions in the instruction
stream of quantum workloads.

5.3 Enabling Logical Instruction Caching
As QuEST decouples the logical and QECC instructions, we can
extend the MCEs to cache logical instructions and reduce logical
instruction bandwidth without impacting reliability. Additionally,
the distillation algorithms are recursive and have a deterministic
control �ow. We can leverage this observation and use the instruc-
tion bu�er as an instruction cache. The size of instruction cache
depends on the speci�c distillation algorithm used. A typical distilla-
tion algorithm has 100 to 200 logical instructions. We evaluated the
feasibility of adding the cache to the logical bu�er while assuming
our quantum ISA was similar to the one proposed by Balensiefer et
al. [2] and that quantum instruction size was �xed at two bytes. We
found that we could architect an instruction bu�er as a software-
managed cache and reduce the global bandwidth further by three
orders of magnitude.

6 METHODOLOGY
In this section, we brie�y describe the quantum workloads and the
tools used in our evaluations of QuEST architecture.

6.1 QuantumWorkloads
Current prototypes of quantum computers are small and unsuitable
for executing realistic quantum workloads because they require
several hundred thousand to millions of qubits. For our studies, we
assumed our quantum substrate has a su�cient number of qubits
to solve these realistic quantum workloads. We used six di�erent
quantum workloads drawn from a Sca�CC workload suite [26] and
recent quantum chemistry applications [17]. A brief description of
these workloads is as follows:

• BinaryWelded Tree (BWT) [7]: The benchmark utilizes quan-
tum random walk algorithm to �nd a path between an entry
and exit node of a binary welded tree.

• Boolean (BF) [1]: This benchmark uses the quantum algo-
rithm to provide the best strategy for the game of hex.

• Ground State Estimation (GSE): This quantum chemistry
application uses the phase estimation algorithm to compute
the ground state of the Fe2S2 molecule which is essential to
understand photosynthesis.

• Ground State Estimation of (FeMoCo) [17]: This quantum
chemistry application computes the ground state of the ac-
tive site of a molecule which acts as a catalyst in biological
nitrogen �xation. This application can increase the e�ciency
of fertilizer production.

• Quantum Linear System (QLS) [31]: QLS �nds the solution
to a linear system Ax=b. It shows a polynomial speedups
compared to classical algorithms and can help domains such
as machine learning and optimization.

• Shor’s Algorithm (SHOR) [42]: Shor’s factoring algorithm
can factor numbers in polynomial time. Prime factorization
is a classically hard problem and it scales exponentially. The
exponential scaling of the factorization is the foundation of
RSA encryption standard. However, with a quantum com-
puter running the Shor’s algorithm, it is possible to break
RSA and other public key encryption systems.

• Triangle Finding Problem(TFP) [32]: This benchmark �nds a
triangle within a dense undirected graph. It is parameterized
by the number of nodes n in the graph.

6.2 Evaluation Framework
We evaluated the total bandwidth requirement with modi�ed QuRE-
Toolbox and Sca�old [26]. QuRE is a resource estimation tool for
quantum algorithms [47]. It uses analytical models to evaluate exe-
cution time and the total number of physical qubits and physical
instructions for a particular algorithm.8 It requires technology pa-
rameters such as quantum instruction latencies and error rates,
along with the design parameters of a quantum error correction
code. For this work, we assumed the substrate was made of su-
perconducting qubits with the technology parameters tabulated
in Table 1. The experimental instruction latencies are based on
real qubit devices described in [50]. ProjectedD are projected gate
latencies proposed by DiVincenzo that are widely used in QECC
studies [10]. For modeling microcode memory we use technology
parameters described in [11, 12].

Note that the logical qubits described in the Figure 12c cannot
guarantee the braiding of multiple logical qubits in parallel. Parallel
braiding of multiple logical qubits is essential for parallel CNOT
operations. However, our evaluations utilize 2-D layout of logical
qubits and employ a qubit de�nition that is used by QuRE. Such a
representation uses extra physical qubits to allow multiple parallel
CNOTs and braiding operations without moving the logical qubits.
This de�nition of a logical qubit assumes 7dx3d patch of physical
qubits per logical qubit and requires 6x more qubits as compared to
the optimal logical qubit described in Figure 12. This leads only to
0.1% increase in the estimated number of physical qubits and the
instruction bandwidth for the workloads used in our studies.

Table 1: Technology Parameters

Parameter Description ExperimentalS ProjectedF ProjectedD

tprep state preparation 1µs 40ns 40ns
t1 single-qubit 25ns 10ns 5ns
tmeas measurement 1µs 35ns 35ns
tCNOT CNOT 100ns 80ns 20ns
Tecc one round 2.42µs 405ns 165ns

8QuRE assumes zero overhead on the movement of the logical qubits to evaluate the
execution time which may not be true in realistic quantum machines. This assumption
leads to underestimation of the execution time of a quantum application and overesti-
mation the logical instruction bandwidth. However, we are interested in the fraction
of the ECC bandwidth to logical bandwidth. This ratio is largely independent of the
execution time and is dependent only on the fraction of QECC instructions in the
instruction stream.

687

MICRO-50, October 14–18, 2017, Cambridge, MA, USA Tannu et al.

7 EVALUATIONS
In this section, we evaluate the total bandwidth savings of QuEST
over the baseline design that manages the error correction in soft-
ware. We also examine how Quantum Error Correction protocol
design impacts the throughput of the MCEs.

100
101
102
103
104
105
106
107
108
109

1010
1011
1012

BW
T BF

G
SE

Fem
oc

o
Q
LS

SH
O
R

TFP

G
M

EAN

B
W

 D
e

m
a

n
d

 R
a

tio
 o

f
 B

a
se

lin
e

 t
o

 Q
u

E
S

T

µ-code managed QECC
µ-code + Logical Instruction Cache

Figure 14: Global bandwidth savings with QuEST.

We use QuRE to evaluate the reduction in global instruction
bandwidth by calculating the total instruction bandwidth with and
without QECC overheads. In the baseline implementation, the com-
piler generates the physical instruction stream corresponding to the
logical instructions, including the magic-state distillation instruc-
tions and QECC instructions. In QuEST, the architecture manages
error correction using dedicated MCEs. Now, only the application’s
logical instructions and the master-controller’s synchronization
tokens contribute to the global bandwidth. QuEST also manages
magic state instructions locally at the MCEs with software man-
aged logical instruction caches. Synchronization tokens manage
instruction cache and facilitate logical qubit movement and complex
logical instructions across MCEs.9

We evaluated QuEST for the quantum workloads described in
Section 6.1 over three di�erent set of qubit technology parame-
ters and two di�erent error-syndrome designs: Shor-syndrome and
Steane-syndrome. The qubit parameters are speci�ed in table 1.
Each error-syndrome design requires a di�erent number of instruc-
tions in each QECC cycle. The Shor syndrome based design needs
14 instructions per qubit to generate and measure the syndrome.
The Steane syndrome based design requires fewer instructions that
the shor-syndrome and only needs nine instructions per qubit to
generate and measure the syndrome. For all our evaluations we
assumed an error rate of 10�4.

100

102

104

106

108

1010

1012

1014

BW
T BF

FeM
oC

o
G
SE

Q
LS

SH
O
R

TFP

B
a
n
d
w

id
th

 S
a
vi

n
g
s

Error Rate:10-3
Error Rate:10-4

Error Rate:10-5
Error Rate:10-6

Figure 15: Sensitivity of global bandwidth savings for vari-
able qubit error rates.
9Logical instructions across MCEs are not evaluated in this paper

Figure 14 shows the global bandwidth savings for quantum
workloads run on QuEST with ProjectedD technology and Steane-
syndrome. These results represent all con�gurations as both the
technology parameters and the syndrome design have little impact
on bandwidth savings with a coe�cient of variation (standard de-
viation divided by the mean) of 0.0002% between con�gurations.
Managing QECC instruction in the MCEs reduces the instruction
bandwidth by at least �ve orders of magnitude. The addition of
logical instruction caches to the MCEs reduces the instruction band-
width by another three orders of magnitude. Overall, the QuEST
architecture reduces the instruction bandwidth by almost eight
orders of magnitude.10

Figure 15 shows bandwidth savings for three di�erent qubit
error rates. A reduced error rate lowers the total number of phys-
ical qubits needed to run a workload. In turn, this reduces total
instruction bandwidth required in the baseline design. Most of this
bandwidth reduction results from the reduction in quantum error
correction bandwidth bloat. The bandwidth overheard of magic
state distillation remains constant for di�erent error rates because
of the overhead of distillation scales with the number of T-factories
and the number of T-factories scales sub-linearly (Clo� |lo�(er) |)
with the error-rate (er).

Table 2: QECC microcode design

Syndrome No. Instructions Optimal µCode Con�guration No. JJs Power

Steane 148 4 Channel = 1Kb x 4 170048 2.1µW
Shor 300 2 Channel = 2Kb x 2 168264 1.1µW
SC-17 136 8 Channel = 512b x 8 163472 5.6 µW
SC-13 147 4 Channel = 1Kb x 4 170048 2.1µW

The technology parameters and syndrome design have signif-
icant impacts on the MCEs’ throughput (the number of qubits
serviced per MCE). Syndrome design decides the unit cell size and
number of sub-cycles (circuit depth) in a QECC cycle. Technology
parameters, like the single qubit instruction latency, decide the
desired peak bandwidth of the microcode memory. Table 2 shows
the optimal microcode memory con�gurations, a corresponding
number of JJs and total power dissipation for di�erent syndrome
designs. Figure 16 shows MCE throughput for three di�erent tech-
nologies and four syndrome designs. SC-17 and SC-13 are optimized
codes with 17 and 13 qubit unit-cell respectively [50].

1*103
2*103
3*103
4*103
5*103
6*103
7*103
8*103
9*103
1*104

Shor Stean SC-17 SC-13

N
u

m
b

e
r

o
f

S
e

rv
ic

e
d

 Q
u

b
its

Experimental-Slow

Experimental-Fast

Projected-Divincenzo

Figure 16: MCE throughput with syndrome designs.
10The instruction bandwidth bloat from QECC, is directly proportional to the number
of physical qubits in a quantum computer. Improvements in the magic state distillation
algorithms and the QECC protocols may reduce the number of physical qubits and
the bandwidth bloat. Similarly better magic state distillation algorithms may increase
the number of magic states delivered per T-factory and the instruction bandwidth
requirement for the T-factories [15]. We expect the results reported in this study to
change depending on the theoretical and experimental improvements in the future.

688

Taming the Instruction Bandwidth of�antum Computers MICRO-50, October 14–18, 2017, Cambridge, MA, USA

8 RELATEDWORK
Quantum architecture is an active area of research, and we direct
readers to these studies [24, 34, 35, 52] to understand the quantum
computing system stack. Balensiefer et al. [2] identi�ed the over-
head of error correction for the ion-trap computers and proposed
a framework to understand hardware constraints on the system
reliability. Several other works highlighted the impact of quantum
error correction on the design of microarchitecture and proposed
solutions to optimize for area and performance overheads [37].
Thakkar et al. [48] focused on the organization of compute qubits
and memory qubits. The authors observed the temporal locality and
reuse patterns in the quantum workloads and proposed a trade-o�
between reliability and latency to optimize the area and execution
time. Researchers have also proposed distributed SIMD architec-
tures and associated scheduling policies to support quantum opera-
tions on a distributed ion-trap based quantum substrate [18, 28, 29].
Prior works have also explored the microarchitectural trade-o�s
for eSHe qubits and silicon qubits [6, 8].

Outside of technology constraints, quantum workloads and pro-
gramming also present a unique set of challenges as highlighted by
Patil et al. [39] and Schuchman et al. [40]. A large body of work has
also focused on compiler and programming-language level prob-
lems for quantum computers. One of the major challenges in this
space is handling the extremely large executables. Work in [26]
demonstrated a tool-chain which enables quantum compilation.

9 IMPACT OF TECHNOLOGY ON QUEST
We focus on superconducting quantum computers running defect
based surface code to highlight the instruction bandwidth prob-
lem. To mitigate bandwidth bloat, we envision a distributed control
processor that handles QECC instructions using microcode by lever-
aging the deterministic and asynchronous instruction execution of
QECC instructions. We optimize the capacity and bandwidth of the
microcode table by exploiting the underlying unit-cell structure in
surface codes. These insights are fundamental, they are not limited
to any one qubit technology or a speci�c QECC and can be ex-
tended for other error correction protocols and qubit technologies.
For example, QuEST can work with concatenation codes where the
�rst level (inner code) is handled by microcode and higher level
(outer code) concatenations can be handled by software. The hard-
ware/software interface for quantum error correction is still an
open problem. QuEST proposes solutions to overcome this problem
by highlighting the bene�ts of hardware managed Quantum Error
Correction primitives.

Cryogenic control is one of the dominant constraints for not only
superconducting qubit technologies but also for other promising
quantum technologies [45]. Quantum dots, cryogenic NV-centers
and fully microwave controlled ion-traps [30] will also have to deal
with the challenges of cryogenic control. To this end, both indus-
try and academia have highlighted the need to investigate cryo-
genic control to enable scalable quantum computers [3, 5, 22–24].
Nonetheless, the e�ectiveness of QuEST is not limited to quantum
computers which require cryogenic environments. The distributed
control processor with MCE-units can reduce the overall cost even
at room temperature and the reduction in instruction bandwidth
from handling the QECC with MCEs would still be substantial.

10 CONCLUSION
As quantum computers grow from a few qubits to potentially thou-
sands of qubits, they will face several systems and architectural
challenges to scalability. Now is the time for architects to identify
bottlenecks for large-scale quantum computers and propose prac-
tical solutions as these solutions have the potential to enable the
future of quantum computers. In this paper, we identi�ed instruc-
tion bandwidth as one of the key bottlenecks to scaling. As the
quantum substrate relies on a deterministic instruction delivery,
the inability to supply the necessary instruction bandwidth will
result not only in slowdowns but also limit the computer’s func-
tion and scalability. Practical solutions that reduce the demand for
instruction bandwidth allow larger scale quantum computers. To
that end, this paper proposes QuEST, a control processor microar-
chitecture, which manages QECC bandwidth with dedicated QECC
microcode. Our solution reduces instruction bandwidth by �ve or-
ders of magnitude for key quantum workloads. We extend QuEST
to mitigate the bloat of logical instruction bandwidth caused by
magic state distillation and show an overall bandwidth reduction
of eight orders of magnitude.

While we focus on the instruction bandwidth delivery in this
paper, the concepts in our paper can be used to make quantum
control hardware more e�cient by delegating the repeatedly exe-
cuting tasks to the hardware. In a sense, the quantum computing
domain is the middle of establishing the right dynamic-static inter-
face, something that conventional computing went through about
four decades ago. Our future work is to continue to explore the
trade-o�s in the dynamic-static interface in the quantum domain.

APPENDIX A
Surface code (SC) is a quantum error correction codewhich promises
high reliability. In this section, we will provide a brief overview
of the surface codes to highlight the impact of QECC on control
processor design.

A.1 Surface Code Design
The surface code is implemented on a two-dimensional array of
physical qubits, as shown in Figure 18. The qubits are of two
types: data qubits (a,b, c,d, e, f) and ancillary qubits (p,q). The
ancillary qubits are used to generate error syndromes, and data
qubits are used to encode the quantum information. There are two
types of syndromes, X-syndrome which detect bit-�ip errors and
Z-syndrome which detect phase-�ip errors.

The Figure 18 shows an architecture for 5x5 surface code unit cell
with circuits for X-syndrome and Z-syndrome. Quantum circuits are
set of quantum instructions applied in speci�c order. For example,
in the X-syndrome circuit, �rst, an identity instruction is applied
on the qubit p which does not change the state of the qubit. Then
a preparation gate is used to initializes p in state |0i. Then, four
CNOT gates are applied serially such that the ancillary qubit:p is a
target qubit and neighboring four data qubits: a,b, c,d are control
qubits as shown in Figure 18b. To implement the surface code on
large qubit lattice, instructions patterns of a unit cells are simply
repeated across multiple physical qubits.

689

MICRO-50, October 14–18, 2017, Cambridge, MA, USA Tannu et al.

Ancillary Data

HI

c
d
e
f

e

f c
b
a

d

IP

q

p

n

b

a c

d

X-syndrome circuit

Z-syndrome circuit

 0I I

I 0

CNOT

Measure

I Identity

II 0 Prepare

H

q

Figure 17: Surface code X-syndrome and Z-syndromes ap-
plied on an unit cell of 5x5 qubits. Unit cell is a patch of
data qubits (yellow circles) and ancillary qubits (black cir-
cles) that repeats in space.

To understand how X-syndrome detects the bit-�ip errors, we
need to understand the function of CNOT instruction. The CNOT
instruction operates on two qubits: control and target, it �ips the tar-
get qubit if the control bit is |1i, else target is unchanged. Note that
the control qubit is always unchanged when CNOT is applied. In
case of x-syndrome generation, we prepared the p qubit in |0i, and
let’s assume all the data qubits (a,b, c,d) are |1i. This means, when
we apply CNOT (a,p), CNOT (b,p), CNOT (c,p), and CNOT (d,p)
each gate would �ip the ancillary qubit p and ultimately have no
e�ect on the state of p. However, if there is one bit-�ip error on any
of the data qubits then p would �ip, and error can be detected once
we measure p. This can be extended to a case where states of the
data-qubits are arbitrary. As long as a,b, c,d have identical quantum
states; ancillary qubit would not �ip its state. Similarly, a phase-�ip
can be detected by generating and measuring Z-syndrome. When
an isolated single bit �ip or phase �ip error occurs, syndrome mea-
surements can be used to point the errors. In Figure 18, 1 shows
scenario when the data qubit have a phase(Z) error which creates an
unbalanced Z-syndromes, and Z error can be detected by measuring
ancillary qubits. In the case of bit-�ip error 2 , ancillary qubit in
an X-syndrome would �ip, and error can be detected. However,
error detection becomes tricky in the case of long chains of X and Z
errors, as shown in 3 in Figure 18b. Symmetric chains of X-errors
about measurement qubit causes �ip in adjacent error syndromes
of erroneous qubits. To resolve this error we need to look at all the
neighboring syndromes. The decoding of error becomes, even more,
trickier if there are more than two errors in the same syndrome, or
if the error chain is long 4 .

A.2 Error Decoder
Error decoder is used to resolve complex error patterns and provide
protection against a large class of error patterns. To facilitate the
error decoding, syndrome measurement is recorded every time it
changes its value. These records can be represented as a classical
data structure which stores the changes in syndrome measurement
in space and time. This data structure is used as part of error correc-
tion decoder which can identify the error positions by observing

X Error Z Error

1 2

3

4

Figure 18: Surface code detects the isolated and chains of X
and Z errors. It detect the chain of errors using minimum
weight perfect matching decoder [14].

changes in syndrome over a window of space and time. Pairs of
�ipped syndromes are connected to generate a weighted graph. To
�nd the exact locations of the errors, the minimum weight match-
ing algorithm is run on the graph [13]. It is important to note that
surface code performs decoding with classical information since
the syndromes are measured every time, and the measurements
are stored in a weighted graph. Once errors are resolved, they can
be corrected by executing quantum instructions. As both X and Z
errors are unitary, we can simply maintain the log for all the errors
and correct them before measuring a qubit. This decouples the error
decoding and error correction from the quantum execution (for
details please refer [14]).

ACKNOWLEDGEMENTS
We thank Alan Geller, Burton Smith, Nathan Wiebe, Bob Krick,
Chia-Chen Chou, Mohammad Arjomand, Gururaj Shaileshwar, and
Vinson Young for technical discussions and comments. We would
like to thank anonymous reviewers for the feedback and comments.
This work was supported in part by NSF grant 1526798 and the
Center for Future Architecture Research (C-FAR), one of the six
SRC STARnet Centers, sponsored by MARCO and DARPA.

REFERENCES
[1] Andris Ambainis, Andrew M Childs, Ben W Reichardt, Robert Špalek, and

Shengyu Zhang. 2010. Any AND-OR formula of size N can be evaluated in
time Nˆ1/2+o(1) on a quantum computer. SIAM J. Comput. 39, 6 (2010), 2513–
2530.

[2] Steven Balensiefer, Lucas Kregor-Stickles, and Mark Oskin. 2005. An evalua-
tion framework and instruction set architecture for ion-trap based quantum
micro-architectures. In ACM SIGARCH Computer Architecture News, Vol. 33. IEEE
Computer Society, 186–196.

[3] Douglas M. Carmean. 2017. Quantum and Cryo and DNA, oh my! sights along
the new yellow brick road. ISCA 2016 Keynote, http://dcarmean.azurewebsites.
net/ISCA2016.pdf. (2017). [Online; accessed 7-June-2017].

[4] J. Chang, M. R. Vissers, A. D. Corcoles, M. Sandberg, J. Gao, David W. Abraham,
Jerry M. Chow, Jay M. Gambetta, M. B. Rothwell, G. A. Keefe, Matthias Ste�en,
and D. P. Pappas. 2013. Improved superconducting qubit coherence using titanium
nitride. Appl. Phys. Lett. 103, 012602 (2013). (2013). https://doi.org/10.1063/1.
4813269 arXiv:arXiv:1303.4071

[5] E. Charbon, F. Sebastiano, A. Vladimirescu, H. Homulle, S. Visser, L. Song, and
R. M. Incandela. 2016. Cryo-CMOS for quantum computing. In 2016 IEEE Inter-
national Electron Devices Meeting (IEDM). 13.5.1–13.5.4. https://doi.org/10.1109/
IEDM.2016.7838410

[6] Eric Chi, Stephen A. Lyon, and Margaret Martonosi. 2007. Tailoring Quantum
Architectures to Implementation Style: A Quantum Computer for Mobile and
Persistent Qubits. SIGARCH Comput. Archit. News 35, 2 (June 2007), 198–209.
https://doi.org/10.1145/1273440.1250687

690

Taming the Instruction Bandwidth of�antum Computers MICRO-50, October 14–18, 2017, Cambridge, MA, USA

[7] Andrew M Childs, Richard Cleve, Enrico Deotto, Edward Farhi, Sam Gutmann,
and Daniel A Spielman. 2003. Exponential algorithmic speedup by a quantum
walk. In Proceedings of the thirty-�fth annual ACM symposium on Theory of
computing. ACM, 59–68.

[8] Dean Copsey, Mark Oskin, Francois Impens, Tzvetan Metodiev, Andrew Cross,
Frederic T Chong, Isaac L Chuang, and John Kubiatowicz. 2003. Toward a scalable,
silicon-based quantum computing architecture. IEEE Journal of selected topics in
quantum electronics 9, 6 (2003), 1552–1569.

[9] International Business Machines Corporation. 2017. Universal Quantum Com-
puter Development at IBM:. http://research.ibm.com/ibm-q/research/. (2017).
[Online; accessed 3-April-2017].

[10] David P DiVincenzo et al. 2000. The physical implementation of quantum com-
putation. arXiv preprint quant-ph/0002077 (2000).

[11] Mikhail Dorojevets and Zuoting Chen. 2015. Fast pipelined storage for high-
performance energy-e�cient computing with superconductor technology. In
Emerging Technologies for a Smarter World (CEWIT), 2015 12th International
Conference & Expo on. IEEE, 1–6.

[12] Mikhail Dorojevets, Zuoting Chen, Christopher L Ayala, and Artur K Kasperek.
2015. Towards 32-bit Energy-E�cient Superconductor RQL Processors: The
Cell-Level Design and Analysis of Key Processing and On-Chip Storage Units.
IEEE Transactions on Applied Superconductivity 25, 3 (2015), 1–8.

[13] Austin G Fowler. 2015. Minimum weight perfect matching of fault-tolerant
topological quantum error correction in average O (1) parallel time. Quantum
Information & Computation 15, 1-2 (2015), 145–158.

[14] Austin G Fowler, Matteo Mariantoni, John M Martinis, and Andrew N Cleland.
2012. Surface codes: Towards practical large-scale quantum computation. Physical
Review A 86, 3 (2012), 032324.

[15] Jeongwan Haah, Matthew B. Hastings, D. Poulin, and D. Wecker. 2017. Magic
State Distillation with Low Space Overhead and Optimal Asymptotic Input Count.
(2017). arXiv:arXiv:1703.07847

[16] Thomas Häner, Damian S Steiger, Krysta Svore, and Matthias Troyer. 2016.
A software methodology for compiling quantum programs. arXiv preprint
arXiv:1604.01401 (2016).

[17] Matthew B. Hastings, Dave Wecker, Bela Bauer, and Matthias Troyer. 2015. Im-
proving Quantum Algorithms for Quantum Chemistry. Quantum Info. Comput.
15, 1-2 (Jan. 2015), 1–21. http://dl.acm.org/citation.cfm?id=2685188.2685189

[18] Je� Heckey, Shruti Patil, Ali JavadiAbhari, Adam Holmes, Daniel Kudrow, Ken-
neth R Brown, Diana Franklin, Frederic T Chong, and Margaret Martonosi. 2015.
Compiler management of communication and parallelism for quantum computa-
tion. In ACM SIGARCH Computer Architecture News, Vol. 43. ACM, 445–456.

[19] W. H. Henkels, N. C. C. Lu, W. Hwang, T. V. Rajeevakumar, R. L. Franch, K. A.
Jenkins, T. J. Bucelot, D. F. Heidel, and M. J. Immediato. 1989. A low temperature
12 ns DRAM. In VLSI Technology, Systems and Applications, 1989. Proceedings of
Technical Papers. 1989 International Symposium on.

[20] Quentin P Herr, Anna Y Herr, Oliver T Oberg, and Alexander G Ioannidis. 2011.
Ultra-low-power superconductor logic. Journal of applied physics (2011).

[21] D. S. Holmes, A. L. Ripple, and M. A. Manheimer. 2013. Energy-E�cient
Superconducting Computing x2014;Power Budgets and Requirements. IEEE
Transactions on Applied Superconductivity 23, 3 (June 2013), 1701610–1701610.
https://doi.org/10.1109/TASC.2013.2244634

[22] Harald Homulle, Stefan Visser, Bishnu Patra, Giorgio Ferrari, Enrico Prati,
Carmen G. Almudéver, Koen Bertels, Fabio Sebastiano, and Edoardo Char-
bon. 2016. CryoCMOS Hardware Technology a Classical Infrastructure for
a Scalable Quantum Computer. In Proceedings of the ACM International Con-
ference on Computing Frontiers (CF ’16). ACM, New York, NY, USA, 282–287.
https://doi.org/10.1145/2903150.2906828

[23] Harald Homulle, Stefan Visser, Bishnu Patra, Giorgio Ferrari, Enrico Prati, Fabio
Sebastiano, and Edoardo Charbon. 2017. A recon�gurable cryogenic platform
for the classical control of quantum processors. Review of Scienti�c Instruments
88, 4 (2017), 045103.

[24] J. M. Hornibrook, J. I. Colless, I. D. Conway Lamb, S. J. Pauka, H. Lu, A. C.
Gossard, J. D. Watson, G. C. Gardner, S. Fallahi, M. J. Manfra, and D. J. Reilly. 2015.
Cryogenic Control Architecture for Large-Scale Quantum Computing. Phys. Rev.
Applied 3 (Feb 2015), 024010. Issue 2.

[25] Nemanja Isailovic, Mark Whitney, Yatish Patel, and John Kubiatowicz. 2008.
Running a quantum circuit at the speed of data. In ACM SIGARCH Computer
Architecture News, Vol. 36. IEEE Computer Society, 177–188.

[26] Ali JavadiAbhari, Shruti Patil, Daniel Kudrow, Je�Heckey, Alexey Lvov, Frederic T
Chong, andMargaret Martonosi. 2015. Sca�CC: Scalable compilation and analysis
of quantum programs. Parallel Comput. 45 (2015), 2–17.

[27] Cody Jones, Peter Brooks, and Jim Harrington. 2016. Gauge color codes in two
dimensions. Phys. Rev. A 93 (May 2016), 052332. Issue 5. https://doi.org/10.1103/
PhysRevA.93.052332

[28] Daniel Kudrow, Kenneth Bier, Zhaoxia Deng, Diana Franklin, and Frederic T
Chong. 2013. Dynamic Machine-Code Generation for Quantum Rotations. GSWC
2013 (2013), 23.

[29] Daniel Kudrow, Kenneth Bier, Zhaoxia Deng, Diana Franklin, Yu Tomita, Ken-
neth R Brown, and Frederic T Chong. 2013. Quantum rotations: a case study in
static and dynamic machine-code generation for quantum computers. In ACM
SIGARCH Computer Architecture News, Vol. 41. ACM, 166–176.

[30] Bjoern Lekitsch, Sebastian Weidt, Austin G Fowler, Klaus Mølmer, Simon J Devitt,
Christof Wunderlich, andWinfried K Hensinger. 2017. Blueprint for a microwave
trapped ion quantum computer. Science Advances 3, 2 (2017), e1601540.

[31] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. 2013. Quantum algorithms
for supervised and unsupervised machine learning. (2013). arXiv:arXiv:1307.0411

[32] Frédéric Magniez, Miklos Santha, and Mario Szegedy. 2007. Quantum algorithms
for the triangle problem. SIAM J. Comput. 37, 2 (2007), 413–424.

[33] J. Medford, M. Stoutimore, Q. Herr, O. Naaman, H. Hearne, J. Strand, A. Przybysz,
A. Pesetski, and J. Przybysz. 2015. Demonstrated control of a Transmon using a
Reciprocal Quantum Logic digital circuit - Part 2. In APS Meeting Abstracts.

[34] Rodney Van Meter and Mark Oskin. 2006. Architectural Implications of Quantum
Computing Technologies. J. Emerg. Technol. Comput. Syst. 2, 1 (Jan. 2006), 31–63.
https://doi.org/10.1145/1126257.1126259

[35] Tzvetan S Metodi, Arvin I Faruque, and Frederic T Chong. 2011. Quantum
Computing for Computer Architects. Synthesis Lectures on Computer Architecture
6, 1 (2011), 1–203.

[36] O. Naaman, M. O. Abutaleb, C. Kirby, and M. Rennie. 2016. On-chip Josephson
junction microwave switch. Applied Physics Letters 108, 11, Article 112601 (2016).
https://doi.org/10.1063/1.4943602

[37] Mark Oskin, Frederic T Chong, and Isaac L Chuang. 2002. A practical architecture
for reliable quantum computers. Computer 35, 1 (2002), 79–87.

[38] PJJ OâĂŹMalley, J Kelly, R Barends, B Campbell, Y Chen, Z Chen, B Chiaro, A
Dunsworth, AG Fowler, I-C Hoi, et al. 2015. Qubit metrology of ultralow phase
noise using randomized benchmarking. Physical Review Applied 3, 4 (2015),
044009.

[39] Shruti Patil, Ali JavadiAbhari, Chen-Fu Chiang, Je� Heckey, Margaret Martonosi,
and Frederic T Chong. 2014. Characterizing the performance e�ect of trials
and rotations in applications that use Quantum Phase Estimation. InWorkload
Characterization (IISWC), 2014 IEEE International Symposium on. IEEE, 181–190.

[40] Ethan Schuchman and TN Vijaykumar. 2006. A program transformation and ar-
chitecture support for quantum uncomputation. ACM SIGOPS Operating Systems
Review 40, 5 (2006), 252–263.

[41] Peter W. Shor. 1995. Scheme for reducing decoherence in quantum computer
memory. Phys. Rev. A 52 (Oct 1995), R2493–R2496. Issue 4. https://doi.org/10.
1103/PhysRevA.52.R2493

[42] Peter W Shor. 1999. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM review 41, 2 (1999), 303–332.

[43] Sung-min Sim, Yeonsu Lee, Hye-lim Kang, Kwon-Yong Shin, Sang-Ho Lee, and
Jung-Mu Kim. 2016. Transmission line printed using silver nanoparticle ink on
FR-4 and polyimide substrates. Micro and Nano Systems Letters 4, 1 (2016), 7.

[44] Tom Simonite. 2015. Google Quantum Dream Machine. https:
//www.technologyreview.com/s/544421/googles-quantum-dream-machine/
?state=email-veri�ed. (2015). [Online; accessed 2-November-2016].

[45] Marshall Stoneham. 2009. Trend: Is a room-temperature, solid-state quantum
computer mere fantasy? Physics 2 (2009), 34.

[46] M. Stoutimore, J. Medford, Q. Herr, O. Naaman, H. Hearne, J. Strand, A. Przybysz,
A. Pesetski, and J. Przybysz. 2015. Demonstrated control of a Transmon using a
Reciprocal Quantum Logic digital circuit - Part 1. In APS Meeting Abstracts.

[47] M. Suchara, J. Kubiatowicz, A. Faruque, F. T. Chong, C. Y. Lai, and G. Paz. 2013.
QuRE: The Quantum Resource Estimator toolbox. In 2013 IEEE 31st International
Conference on Computer Design (ICCD). 419–426. https://doi.org/10.1109/ICCD.
2013.6657074

[48] Darshan D Thaker, Tzvetan S Metodi, Andrew W Cross, Isaac L Chuang, and
Frederic T Chong. 2006. Quantum memory hierarchies: E�cient designs to
match available parallelism in quantum computing. In ACM SIGARCH Computer
Architecture News, Vol. 34. IEEE Computer Society, 378–390.

[49] Sergey K Tolpygo, Vladimir Bolkhovsky, TJ Weir, Alex Wynn, DE Oates, LM
Johnson, and MA Gouker. 2016. Advanced Fabrication Processes for Super-
conducting Very Large-Scale Integrated Circuits. IEEE Transactions on Applied
Superconductivity 26, 3 (2016), 1–10.

[50] Yu Tomita and Krysta M. Svore. 2014. Low-distance surface codes under realistic
quantum noise. Phys. Rev. A 90 (Dec 2014), 062320. Issue 6. https://doi.org/10.
1103/PhysRevA.90.062320

[51] David B Tuckerman, Michael C Hamilton, David J Reilly, Rujun Bai, George A
Hernandez, JohnMHornibrook, John A Sellers, and Charles D Ellis. 2016. Flexible
superconducting Nb transmission lines on thin �lm polyimide for quantum
computing applications. Superconductor Science and Technology (2016).

[52] Rodney VanMeter and Clare Horsman. 2013. A Blueprint for Building a Quantum
Computer. Commun. ACM 56, 10 (Oct. 2013), 84–93.

[53] W. K. Wootters and W. H. Zurek. 1982. A single quantum cannot be cloned.
Nature 299, 5886 (28 Oct 1982), 802–803. https://doi.org/10.1038/299802a0

[54] Theodore J Yoder and Isaac H Kim. 2016. The surface code with a twist. arXiv
preprint arXiv:1612.04795 (2016).

691

