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ABSTRACT
Variational Quantum Algorithms (VQA) aim to enhance the capa-
bilities of Noisy Intermediate-Scale Quantum (NISQ) devices. These
algorithms utilize parameterized circuits and classical optimizers
to iteratively execute circuits with varying parameters. However,
VQA faces computational overheads due to repeated iterations and
random restarts. Prior work suggests using basic sub-graphs to
transfer parameters for the input graph, reducing optimizer over-
heads but limiting applicability to structured regular graphs. In
real-world applications, random irregular graphs are common, and
existing methods are not scalable or practical for such graphs. This
paper presents a framework that aims to improve random irregular
graphs in VQA. The framework uses graph similarity and important
features like total edge counts, average edge counts, and variance.
It follows an iterative process to choose basis sub-graphs from a
small database and adjust parameters accordingly. Classical opti-
mizers then utilize these parameters to determine when to restart
and perform gradient descent. This approach increases the chances
of reaching global maximum points.
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1 MOTIVATION
Quantum computing has shown great potential in solving com-
plex problems that are beyond the capabilities of classical comput-
ers [1, 6, 15, 17]. In the current era of Noisy Intermediate-Scale Quan-
tum (NISQ) computers, Variational QuantumAlgorithms (VQAs) [3]
has emerged as a promising approach to tackle optimization prob-
lems using quantum computing [10]. Among the VQAs, Quantum
Approximate Optimization Algorithm (QAOA) is one of the most
widely studied and promising algorithms for solving combinatorial
optimization problems [4, 7–9, 14, 18].

However, one of the major challenges in implementing QAOA is
finding the optimal parameters that can provide the best possible
solution for a given optimization problem. The challenge comes
from the impact of noise and execution overheads in the NISQ era.
Due to these limitations, it becomes difficult to execute quantum
circuits with high precision and efficiency.

2 LIMITATION OF STATE-OF-THE-ART

Table 1: Proportion of Irregular Graphs in CommonDatasets

Dataset Description Number of Percentage
Graphs Irregular

AIDS [11] Chemical Com-
pounds

700 98.9%

LINUX [13] Program-
Dependence
Graphs

1000 100%

IMDB [16] Ego-Networks 1500 47.5%

The approach of utilizing parameter concentration [2] has been
effective in optimizing regular graphs by transferring optimized
parameters from smaller to larger instances. However, it faces limi-
tations when applied to real-world irregular graphs that have more
complex local features. Table 1 shows the prevalence of irregu-
lar graphs in commonly used datasets such as AIDS, LINUX, and
IMDB. These graphs tend to lack the symmetry and structure that
make it easy to transfer optimized parameters using the parameter
concentration approach.

To address this limitation, prior works [5, 12] have explored
the transferability of optimized parameters between graphs with
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Figure 1: An overview of the proposed optimization framework that avoids random restarts by using graph feature extraction
and reference graph lookup. The framework employs a lightweight graph database and performs directed restarts to output
the optimal QAOA energy for a given graph and QAOA attributes.
similar structures, defined based on the parity of individual node
degrees. If all nodes in a graph have an odd or even degree, then its
optimized parameters can be transferred to other graphs with the
same overall node parity. Figure 2 shows an example of parameter
transfer between similar graphs.

However, the effectiveness of this approach for more general
irregular graphs remains an open question. While prior research
has shown promise in transferring optimized parameters between
similar graphs, the limitations of applying this approach to irregular
graphs with different structures and features remain a challenge
for optimizing real-world irregular graphs. Ongoing research aims
to refine and extend this approach to address these challenges.

3 KEY INSIGHTS
In the seminal QAOA paper [4], it is shown that the QAOA energy
can be expressed as a sum of contributions from sub-graphs, and the
overall QAOA energy is the sum of local QAOA energies. The local
energy calculation involves a subgraph that consists of individual
edges in the graph along with the nodes that are at most 𝑝 distance
away, where 𝑝 is the number of QAOA layers. This way, we can
represent each input graph as a weight vector, which is a linear
combination of a fixed set of basis sub-graphs. When the normal-
ized weight vectors of two graphs are similar, the QAOA circuit
constructed from those two graphs will provide similar results for
fixed parameters.

Acceptor GraphsDonor Graph

A (regular) B (irregular)

Figure 2: Example parameter transfer between similar graphs
using prior work methods. Note that, A is a regular graph
and B is an irregular graph.

For regular graphs, the number of basis sub-graphs is limited,
but for irregular graphs, the number of basis sub-graphs increases
significantly as we scale up the number of graph nodes, making it
infeasible to compare graph similarities using basis sub-graphs.

One observation that can be used to find representative sub-
graphs for irregular graphs efficiently is that the evaluation of
the local QAOA energy involves the target nodes, the edges that
connect to these nodes, and their neighboring nodes. Therefore,
edge count significantly impacts the graph structure for a fixed
graph diameter. We use this observation to perform a path-finding
experiment in which we compare the maxcut values with the edge
count difference of random irregular graphs. This experiment does
not decompose these irregular graphs into sub-graphs, but it helps
us understand the relationships between different irregular graphs.

Figure 3 displays the correlation between the number of edges
and the maxcut value in irregular graphs. By identifying all possible
sub-graphs, we found that a smaller difference in the number of
edges between two graphs leads to a closer maxcut value, which
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Figure 3: Themaxcut difference versus edge count difference
for pairs of irregular graphs. The pairs of basis graphs are
from a set of 457 graphs with 2 to 9 nodes and 2 to 21 edges.
There is a clear correlation between the graph’s maxcut value
and the number of edges in the graph. Essentially, the smaller
difference in the number of edges between two graphs is, the
closer their maxcut values are.
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(a) 7-node graphs.
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(b) 8-node graphs.
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(c) 9-node graphs.

Figure 4: Success rate versus the number of optimization runs while using initial parameters generated from our framework
and baseline. As the baseline optimizer performs repeated random initialization (restarts), it typically takes 10+ optimization
runs to have a success rate of >90%. On the contrary, our approach achieves this with only three optimization runs.

also results in similar local QAOA energy. However, relying solely
on edge count has high variability. Basic sub-graph decomposition
helps, but the varied edge counts can limit its usefulness. Therefore,
considering the mean and variance of the sub-graphs can serve
as additional filters to identify similar graphs with transferable
parameters and correlated maxcut values.

4 MAIN ARTIFACT
The main artifact proposed in this work is a framework that en-
hances the baseline optimizer with three components to find opti-
mal parameters. The first component is a graph feature extraction
block that considers various graph features such as total node count,
average node count, and variance in node counts. The feature extrac-
tion block enables the framework to identify relevant sub-graphs
and helps in efficient parameter transfer.

The second component is a lightweight graph database that
stores pre-computed optimal parameters of graphs. The database
acts as a reference or basis for transferring parameters efficiently,
and it grows linearly with an increase in the number of nodes.
Unlike the baseline optimizer, which tries to find optimal values
through repeated ‘random’ trials, our approach makes use of the
database of pre-computed optimal parameters to provide close-to-
optimal starting points for optimization.

The third component is a low-cost graph lookup block that it-
eratively searches the database using the extracted features and
provides starting points with close-to-optimal initial parameters.
This approach increases the likelihood of finding the global max-
ima for these parameters, making the optimization process more
efficient. The directed approach of using the database for parameter
transfer and starting points, along with the feature extraction block,
enables the framework to perform significantly fewer restarts than
the baseline optimizer while converging on optimal parameters.

Figure 1 provides a high-level overview of the proposed frame-
work. Overall, the framework is more efficient than the baseline
optimizer and provides an innovative way to find optimal parame-
ters by leveraging pre-computed optimal parameters, graph feature
extraction, and a low-cost graph lookup block.

5 KEY RESULTS AND CONTRIBUTIONS
Figure 4 provides a comparison between the success rate of our
framework and the baseline optimizer. The baseline optimizer uses

random initial points across 50 restarts, while our framework uses
graph feature extraction and reference graph lookup to avoid ran-
dom restarts and perform directed restarts. The graphs used in the
experiments are randomly selected non-isomorphic 7, 8, and 9-node
graphs and the graph dataset contains graphs with 5 and 6 nodes.

As shown in Figure 4, our framework significantly outperforms
the baseline optimizer in terms of the achievable success rate across
different numbers of restarts. For example, for the 7 node graphs,
the baseline optimizer achieves a maximum success rate of around
75% with 50 restarts, while our framework achieves a success rate of
over 97% with only 10 restarts. This demonstrates the effectiveness
of our approach in finding globally optimal results efficiently.

Overall, the results show that our framework, which leverages
graph feature extraction and reference graph lookup, outperforms
the baseline optimizer, which uses random initial points across a
large number of restarts. This suggests that our approach is more
efficient and effective in finding globally optimal results for QAOA
optimization problems.

6 CONCLUSION
In conclusion, we propose a framework that employs a directed
restart strategy to efficiently find optimal parameters for QAOA op-
timization problems. By leveraging graph feature extraction and ref-
erence graph lookup, our approach avoids the overhead of random
restarts and achieves globally optimal results with fewer restarts.
Our results demonstrate the effectiveness of our approach, outper-
forming the baseline optimizer in terms of the achievable success
rate across different numbers of restarts, even for larger graphs.
These findings suggest that our approach can significantly improve
the efficiency and effectiveness of QAOA optimization.
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