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ABSTRACT
Large-scale simulations of quantum circuits pose significant chal-
lenges, especially in quantum chemistry, due to the number of
qubits, circuit depth, and the number of circuits needed per prob-
lem. High-performance computing (HPC) systems offer massive
computational capabilities that could help overcome these obstacles.
We developed a high-performance quantum circuit simulator called
NWQ-Sim, and demonstrated its capability to simulate large quan-
tum chemistry problems on NERSC’s Perlmutter supercomputer.
Integrating NWQ-Sim with XACC, an open-source programming
framework for quantum-classical applications, we have executed
quantum phase estimation (QPE) and variational quantum eigen-
solver (VQE) algorithms for downfolded quantum chemistry sys-
tems at unprecedented scales. Our work demonstrates the potential
of leveraging HPC resources and optimized simulators to advance
quantum chemistry and other applications of near-term quantum
devices. By scaling to larger qubit counts and circuit depths, high-
performance simulators like NWQ-Sim will be critical for character-
izing and validating quantum algorithms before their deployment
on actual quantum hardware.
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1 INTRODUCTION
Quantum computing, with its potential to efficiently simulate in-
tricate quantum systems, heralds advancements in fields ranging
from quantum chemistry to materials science and fundamental
physics. Among the myriad of quantum algorithms, the Variational
Quantum Eigensolver (VQE) stands out as a pivotal hybrid quantum-
classical method, showing promise in unraveling the complexities
of the electronic structure problem in quantum chemistry [10].

While the long-term prospects of quantum computing are un-
doubtedly transformative, the immediate challenges lie in the realm
of near-term quantum devices, characterized by noise and other im-
perfections. Simulating VQE on these classical counterparts is indis-
pensable for verification and performance benchmarking. However,
this classical simulation is not without its set of challenges. The
overheads, both in terms of computation and memory, scale expo-
nentially with the size of the quantum system under investigation.
For even a modestly sized quantum system—quantified by qubits
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(a) Number of Gates vs. Number of Qubits:
the number of gates in the UCCSD ansatz in-
creases with the number of qubits.
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(b) Number of Pauli Terms vs. Number of
Qubits: the number of Pauli terms in the down-
folded (effective) observable of the H2O (wa-
ter) molecule using the cc-pV5Z basis set.
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(c) Memory Usage vs. Number of Qubits: the
memory usage of the state vector (in giga-
bytes) increases exponentially with the num-
ber of qubits.

Figure 1: Scaling overhead of the Variational Quantum Eigensolver. As the number of qubits grows, VQE faces rapidly increasing
demands on quantum and classical resources. (a) The gate count of UCCSD ansatz circuits substantially increases, resulting in
greater circuit depths and optimization difficulties. (b) The combinatorial growth in Pauli operator measurements imposes
higher execution time and sampling costs. (c) The memory for state vector representation scales exponentially, exceeding
current classical limits. These overhead trends motivate research into optimized VQE implementations and quantum-classical
architectures. Managing VQE’s scaling demands is critical for advancing practical applications.

numbering fewer than 20—the depth of the quantum circuit and
the sheer number of circuit repetitions necessary for each problem
instance present formidable bottlenecks.

Figure 1a underscores this challenge, showing a pronounced
increase in the number of gates in the UCCSD ansatz with the
growth of qubits. This escalating gate count affects circuit depth
and extends the simulation or runtime of the quantum circuit.

The number of Pauli terms, representing the various circuits
essential for energy evaluation of the current parameter set, is de-
picted in Figure 1b. Here, we specifically focus on the downfolded
(effective) observable of the H2O (water) molecule within the con-
fines of the cc-pV5Z basis set. As the graph elucidates, the rise in
qubits leads to a substantial surge in Pauli terms, adding to the
computational overhead.

Figure 1c further accentuates the memory overhead challenge.
To simulate a quantum system classically, the state vector’s repre-
sentation becomes pivotal, and its size grows exponentially with
the quantum system’s qubit count. This graph paints a stark reality:
even for a quantum system with a modest qubit count, the mem-
ory requirements, quantified in gigabytes, can quickly outpace the
capabilities of conventional computational setups.

While VQE’s potential in the realm of quantum simulation is
undeniable, it brings with it inherent scalability challenges. Ad-
dressing these, especially in the context of classical simulations,
remains at the forefront of quantum computing research. To address
these scaling challenges, we have developed a comprehensive, end-
to-end execution workflow for the VQE algorithm. This workflow
is optimized for deployment on state-of-the-art High-Performance
Computing (HPC) systems. A high-level overview of the execution
flow is shown in Figure 2. The execution flow is composed of three
core components, which work together seamlessly:

The execution flow starts with a coupled cluster downfolding [1]
process, which downfolds the targeting Hamiltonian to a smaller
one that only contains the active Hamiltonian components. Then,

the XACC [9], a quantum-classical framework, is used to process
the downfolded Hamiltonian to gate-model quantum computing
compatible format and execute the VQE algorithm. Quantum circuit
simulation is a core part of the overall execution of VQE. This is laid
over to NWQ-Sim [6, 7]. NWQ-Sim is a high-performance quantum
circuit simulator built for extensive simulations on advanced HPC
systems, such as ORNL Summit and NERSC Perlmutter. It supports
various execution backends, including CPU, GPU, and multi-node
CPU GPU backends. In this work, beyond the ordinary quantum
circuit simulation capability, we added a chemistry simulationmode
to NWQ-Sim that is specifically optimized for the execution flow
of VQE.

In this work, we demonstrate how integrating NWQ-Sim with
XACC can enhance the efficiency of VQE simulations on state-
of-the-art HPC systems. By employing this VQE execution flow,
we conduct simulations on downfolded quantum chemistry sys-
tems, achieving significant speedup with smaller instances. While
we have not directly demonstrated the capability for larger-scale
VQE algorithms, the observed speedup with smaller cases strongly
suggests the potential to handle larger instances within a defined
time budget. These results underscore the potential benefits of
harnessing optimized simulation capabilities with HPC resources,
signposting a hopeful path forward for quantum chemistry and
other imminent quantum applications.

2 COUPLED CLUSTER DOWNFOLDING
The recently introduced coupled cluster (CC) downfolding tech-
niques [1] provide a powerful framework for systematically reduc-
ing the dimensionality of challenging quantum many-body prob-
lems. CC downfolding recasts the CC formalism as a renormaliza-
tion procedure to construct effective Hamiltonians confined to a
small, active subspace of the full Hilbert space. This active space
encompasses the most important degrees of freedom, while the
remaining external space is integrated.
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There are two primary variants of the CC downfolding approach:
(1) Non-Hermitian downfolding: Based on single-reference

CC theory, this approach generates non-Hermitian effective
Hamiltonians 𝐻eff whose eigenenergies in the active space
exactly match the CC energies 𝐸CC for the full system:

𝐻eff |ΨCAS⟩ = 𝐸CC |ΨCAS⟩ (1)

Here, |ΨCAS⟩ is the wavefunction confined to the complete
active space. The external cluster amplitudes outside the
active space are integrated out to renormalize 𝐻eff.

(2) Hermitian downfolding: Based on unitary CC theory,
this approach produces Hermitian downfolded Hamiltonians
suitable as inputs for quantum computational algorithms.
The anti-Hermitian external cluster operators 𝜎ext are ap-
proximately integrated out through systematic finite com-
mutator expansions:

𝐻eff = 𝑒−𝜎ext𝐻𝑒𝜎ext ≈ 𝐻 + [𝐻, 𝜎ext] +
1
2
[[𝐻, 𝜎ext], 𝜎ext] + . . . (2)

Higher-order commutators systematically improve the ac-
curacy. Initial applications truncating at second order have
demonstrated promise.

A critical theoretical result is the proof of an equivalence the-
orem showing that solving the standard CC equations is entirely
equivalent to solving a set of coupled active space eigenvalue prob-
lems defined by downfolded Hamiltonians 𝐻eff. This provides a
systematic pathway to reduced-scaling CC methods that circum-
vent exponential scaling costs. It also enables quantum algorithms
to leverage modest qubit resources instead of requiring entire con-
figuration interaction (FCI)-scale registers.

Coupled
Cluster

Downfolding
XACC

Quantum Observable

NWQ-Sim

Circuits

Compute
Nodes

HPC

E1U(θ) M1

E2U(θ) M2...

EnU(θ) Mn

Figure 2: The schematic illustration of the execution flow for
the VQE algorithm. It begins with the Coupled Cluster Down-
folding, reducing the complexity of the chemistry problem.
The downfolded Hamiltonian then feeds into the XACC, gen-
erating quantum circuits for execution. Finally, NWQ-Sim,
an optimized quantum circuit simulator, conducts large-scale
simulations.

Practical applications have focused on using downfolding to
compress quantum chemistry simulations, particularly when com-
bining with variational quantum eigensolver (VQE) algorithms.
For example, downfolded Hamiltonians based on double commuta-
tor expansions give highly accurate potential energy surfaces for
breaking chemical bonds, reducing active space errors by orders of
magnitude compared to bare Hamiltonian diagonalization [1].

Downfolding provides a flexible framework for exploiting spar-
sity and locality in quantum simulations. Flow-based algorithms
built from coupled 𝐻eff eigenvalue problems can target only the
most significant degrees of freedom. This avoids the need for ex-
plicit global wavefunctions. Overall, CC downfolding delivers a
systematic avenue to address the pressing challenges of complexity
and scalability across quantum chemistry, materials science, and
beyond. Ongoing work is focused on integrating downfolding with
reduced-scaling CC methods, analyzing the breakdown of locality
approximations, and applying downfolding to periodic solid-state
systems.

3 XACC FRAMEWORK
The eXtreme-scale ACCelerator (XACC) is a cutting-edge program-
ming framework that is a linchpin for the seamless integration and
execution of quantum-classical algorithms [9]. A standout feature of
XACC is its hardware-agnostic nature, empowering researchers to
compile quantum programs for a wide range of supported backends.
This includes physical quantum processors and simulators, estab-
lishing a pathway for high-level algorithms to be initially tested
on simulators and subsequently transitioned to actual quantum
hardware when ready.

3.1 XACC in Quantum Chemistry
In the quantum chemistry domain, XACC emerges as a pivotal tool,
especially for implementing hybrid algorithms like the Variational
Quantum Eigensolver (VQE). The typical workflow encapsulating
this process is as follows:

(1) XACC takes a molecular Hamiltonian 𝐻 combined with a
chosen ansatz quantum circuit𝑈 (𝜃 ) as its primary input.

(2) The input Hamiltonian transforming quantum logic gates
and circuits, which are for expectation values, represented
as
𝑈 † (𝜃 )𝐻𝑈 (𝜃 ).

(3) A specified quantum backend, in our case, the NWQ-Sim
simulator, undertakes the execution of these circuits. The
outcome is the derivation of expectation values correspond-
ing to particular parameter sets denoted by 𝜃 .

(4) A classical optimizer then processes these expectations. The
core objective is to refine and optimize 𝜃 , thereby minimiz-
ing the energy, culminating in the finalization of the VQE
process.

(5) This procedure undergoes repetitive cycles until conver-
gence towards an optimized minimum energy.

3.2 Quantum-Classical Co-Processing in XACC
Central to XACC’s functionality is its execution model premised on
quantum-classical co-processing. Here, quantum circuits, either on
NISQ devices or simulators, furnish the much-needed expectation

1462



SC-W 2023, November 12–17, 2023, Denver, CO, USA Wang et al.

values that feed into the classical optimization procedure. What
sets XACC apart is its intrinsic flexibility. It swiftly integrates novel
quantum backends, state-of-the-art algorithms, and cutting-edge
chemistry methodologies.

The ongoing research landscape is buzzing with endeavors to am-
plify XACC’s capabilities. The goal is clear: to facilitate scalable and
pinpoint-accurate quantum chemistry simulations, harmonizing
the strengths of both classical and quantum hardware.

4 NWQ-SIM OPTIMIZATIONS FOR VQE
The NWQ-Sim simulator provides high-performance quantum cir-
cuit simulation capabilities by leveraging massively parallel GPU
hardware architectures [6]. In particular, NWQ-Sim is designed to
maximize the benefits of GPUs for simulating quantum circuits,
including:

• Maintaining quantum state representations in fast GPUmem-
ory to minimize latency

• Distributing parallel simulation of gates and state updates
across thousands of GPU cores

• Batching independent calculations together to enhance GPU
utilization

This GPU-centric architecture enables NWQ-Sim to rapidly sim-
ulate state preparation, gate applications, and measurements for
quantum circuits.

Crucially, NWQ-Sim also incorporates optimizations targeting
more efficient and accurate simulations of the variational quantum
eigensolver (VQE) algorithm.

4.1 Caching and Reusing Post-Ansatz States
At the heart of the VQE is a need to measure quantum states in
various bases to evaluate expectation values accurately. But first,
let’s establish what we mean by different basis measurements and
why they are crucial in quantum computing.

4.1.1 Basis Measurements inQuantumComputing. In classical com-
puting, we think of bits: 0s and 1s. In quantum computing, however,
qubits can exist in a superposition of states. The ’basis’ refers to
the set of states against which a qubit’s state is measured. The most
familiar basis is the computational (or Z-basis), where measurement
yields either a |0⟩ or |1⟩.

However, for many quantum algorithms, measuring qubits in
different bases is essential. For instance, X and Y bases are other
commonly used ones.

4.1.2 Handling Different Bases. In quantum computing, the most
common measurement bases are the Pauli bases: X, Y, and Z. These
bases are essential for quantum computations and play a pivotal
role in determining the outcomes of quantum measurements.

The Z-basis is the standard computational basis, and if we pre-
pare a qubit in the state |0⟩ or |1⟩ and measure it, the outcome will
correspond to one of these states.

If we want to measure a qubit initially prepared in a Z-basis state
for the X-basis, we apply a Hadamard gate (H) before measurement.
This gate transforms the qubit from the Z-basis to the X-basis. The
outcomes here are represented by |+⟩ (which is a superposition of
|0⟩ and |1⟩) and |−⟩ (a superposition with a relative phase).

For the Y-basis, a combination of Pauli-X and Pauli-Z gates
(specifically, a S† gate followed by a Hadamard gate) will transform
the qubit from the Z-basis to the Y-basis. The outcomes in the Y-
basis are typically represented by the states |𝑦+⟩ and |𝑦−⟩, which
are complex conjugates of each other.

4.1.3 Computing Expectation Values in VQE. To compute the expec-
tation value of a Hamiltonian 𝐻 in the state |𝜓 (𝜃 )⟩, the expression
is:

⟨𝐻 ⟩ = ⟨𝜓 (𝜃 ) |𝐻 |𝜓 (𝜃 )⟩ (3)

Often, 𝐻 is a sum of terms acting on different bases. Hence, to
evaluate ⟨𝐻 ⟩, the state |𝜓 (𝜃 )⟩ may need to be measured in several
different bases.

For example, consider a toy Hamiltonian:

𝐻 = 𝑍 ⊗ 𝑍 + 𝑋 ⊗ 𝑋 (4)

For a 2-qubit system, this Hamiltonian comprises terms in both Z
and X bases. If our state is |𝜓 (𝜃 )⟩ andwe’remeasuring in the Z-basis,
we don’t need any additional operations. However, we’d apply a
Hadamard gate to each qubit to measure the second term to switch
to the X-basis before measurement. These repeated measurements
in various bases necessitate multiple executions of the ansatz circuit
𝑈 (𝜃 ) to prepare the state |𝜓 (𝜃 )⟩.

4.1.4 Efficiency through Caching. Recognizing the recurring need
to reapply the ansatz, NWQ-Sim introduces a novel approach. After
the initial simulation of

|𝜓 (𝜃 )⟩ = 𝑈 (𝜃 ) |0⟩⊗𝑛 (5)

the resulting state’s amplitudes are cached in the GPU memory.
This pre-computed state now serves as a ready reference for all
subsequent measurements, eliminating the need for repeated ansatz
executions.

However, quantum states can have large memory requirements,
especially for systems with many qubits. Thus, if the GPU’s mem-
ory capacity surpasses, NWQ-Sim seamlessly transitions to CPU
memory storage. While this might introduce some performance de-
lays compared to the rapid GPU access times, it ensures scalability
and continuity of the simulation process.

In essence, by caching post-ansatz states, NWQ-Sim addresses
the significant challenge posed by the VQE’s multi-basis measure-
ment needs, presenting a practical solution to a complex quantum
problem.

4.2 Direct Expectation Value Calculation
When working with quantum systems, obtaining accurate informa-
tion about the system’s properties often requires calculating expec-
tation values. Traditionally, these values have been estimated using
a sampling approach, wherein the quantum system is measured
multiple times, and the results are averaged to infer the expectation
value. However, this method can be computationally intensive and
might not provide exact values due to statistical fluctuations.

4.2.1 Traditional Sampling vs. Direct Calculation. The quantum
system is prepared and measured repeatedly in the traditional sam-
pling method. Each measurement collapses the quantum state to
a particular basis state, and the outcomes are collected over many
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runs. These outcomes are then statistically processed to estimate
the expectation value of an operator.

NWQ-Sim, on the other hand, offers a more direct approach.
Instead of relying on statistical averages, it calculates the exact
expectation value using the full knowledge of the quantum state.

4.2.2 Mathematical Insight. For a clearer understanding of direct
expectation value calculation, let’s consider the simple 2-qubit toy
Hamiltonian from Equation 4. This Hamiltonian consists of two
terms: one that operates in the Z-basis and another in the X-basis.
This Hamiltonian can be represented as a matrix in the compu-
tational basis. Each term of the Hamiltonian would have its own
matrix representation. The overall matrix 𝐻 is the sum of these
individual matrices. Let’s focus on the 𝑍 ⊗ 𝑍 term for simplicity.
Its matrix representation is:

©­­­«
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

ª®®®¬ (6)

Imagine we have a quantum state |𝜓 ⟩ prepared using some ansatz
circuit. This state can be expressed in the computational (Z) basis
as:

|𝜓 ⟩ =
3∑︁

𝑥=0
𝑐𝑥 |𝑥⟩ (7)

Where the coefficients 𝑐𝑥 are the amplitudes of the state and
|𝑥⟩ can be one of the four basis states |00⟩, |01⟩, |10⟩, or |11⟩ for a
2-qubit system. With the state and operator expressed in the same
basis, the expectation value for the 𝑍 ⊗ 𝑍 term can be computed
using:

⟨𝑍 ⊗ 𝑍 ⟩ =
3∑︁

𝑥=0

3∑︁
𝑦=0

𝑐∗𝑥 (𝑍 ⊗ 𝑍 )𝑥𝑦𝑐𝑦 (8)

A similar procedure applies for the 𝑋 ⊗ 𝑋 term, but the state
first needs to be transformed to the X-basis (using Hadamard gates)
before this computation. The total expectation value for 𝐻 is then
the sum of the expectations for each term.

4.2.3 Efficiency through Parallelization. While the direct calcula-
tion method is deterministic, it can be computationally intensive
for large quantum systems due to the double summation over all
possible basis states. However, this challenge is tackled head-on by
NWQ-Sim’s architecture.

The nested sums in the above equation can be efficiently paral-
lelized, especially since each term in the sum is independent of the
others. NWQ-Sim divides these calculations across thousands of
GPU cores, allowing simultaneous computation of multiple terms.
The algorithm maximizes the computational throughput by batch-
ing iterations over the |𝑥⟩ states.

As the system size grows, the advantages of this method become
increasingly apparent. For large-scale quantum simulations, the di-
rect expectation calculation in NWQ-Sim significantly outpaces the
traditional sampling approach, chiefly due to the parallel processing
capabilities of modern GPU hardware.

The direct expectation value calculation in NWQ-Sim offers a
blend of precision and efficiency. By replacing traditional probabilis-
tic methods with deterministic calculations and fully leveraging
GPU acceleration, NWQ-Sim ensures rapid and accurate evalua-
tions of quantum systems, paving the way for future more complex
and insightful quantum simulations.

4.3 Gate Fusion
In quantum circuit simulations, especially those involving many
gates, there is an opportunity to optimize the computation by fusing
multiple consecutive gates into a single gate. This technique, called
gate fusion, can provide significant computational advantages in
simulation over executing each gate separately.

4.3.1 Gate Fusion in Simulation. While quantum hardware devices
may have constraints regarding which gates can be fused, especially
due to available basis gates and qubit connections, a simulator,
like NWQ-Sim, is not limited by such physical constraints. Any
sequence of consecutive gates acting on the same qubit(s) can be
fused in simulation. The resulting fused gate is represented as a
matrix, computed by taking the matrix product of the individual
gate matrices in their sequential order.

NWQ-Sim natively supports single and two-qubit gates. To strike
a balance between optimization and computational feasibility, NWQ-
Sim fuses gates only up to two qubits. This design decision is rooted
in computational efficiency. Consider a scenario where we have
four gates acting on four individual qubits. If we fuse all of these
gates into a single gate, we will have a matrix of dimensions 24 × 24.
On the other hand, if we choose to fuse them into two pairs of gates,
each acting on two qubits, we get two matrices, each of size 22 × 22.
The combined dimensionality of the smaller matrices is much more
manageable than that of the larger matrix.

Given the exponential growth of matrix dimensions with the
number of qubits, the computational cost to manipulate and apply
larger matrices, especially considering the parallel processing ca-
pabilities of GPUs, can quickly become infeasible. By limiting gate
fusion to produce only up to 2-qubit gates, NWQ-Sim ensures an
optimal trade-off between reduced operations and computational
complexity.

Overall, gate fusion offers substantial performance improve-
ments. By reducing the total number of operations, NWQ-Sim
can execute simulations more rapidly, leveraging the parallelism of
modern GPUs to handle the matrix operations efficiently.

These GPU-focused architectures and VQE-specific optimiza-
tions enable NWQ-Sim tomaximize performance on quantum chem-
istry simulations relevant to quantum computing. Ongoing work is
expanding the capabilities to larger qubit counts and circuit depths.

5 RESULTS
In this section, we present results from using NWQ-Sim to simulate
variational quantum algorithms. The performance improvements
enabled by the NWQ-Sim workflow are quantified through com-
parative simulations. Furthermore, additional results demonstrate
the accuracy and effectiveness of NWQ-Sim for practical quantum
computational tasks. Together, these two categories of simulations
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provide evidence of NWQ-Sim’s capabilities for efficiently simulat-
ing intermediate-scale quantum circuits and algorithms relevant to
near-term applications.

5.1 Caching Post-Ansatz State
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Figure 3: Comparison of the number of gates required for
VQE energy evaluation using non-caching vs. caching exe-
cution. The y-axis shows the number of gates on a logarith-
mic scale, and the x-axis represents the number of qubits.
Caching the post-ansatz state leads to a significant reduction
in the number of required gates.

The results in Figure 3 highlight the significant reduction in gate
requirements enabled by caching the post-ansatz state. Without
caching, the energy evaluation circuit must repeatedly prepare the
ansatz state followed by basis transformation gates for each term in
the Hamiltonian. This incurs a high gate cost on the order of 107 to
1011 gates. By contrast, caching allows the post-ansatz state to be
prepared only once. Subsequent basis transformations and measure-
ments to compute the partial expectations can be applied with just
104 to 106 additional gates. Thus, caching provides a gate savings
of approximately 3 to 5 orders of magnitude. This substantial effi-
ciency improvement is especially impactful as system size increases.
Caching fundamentally changes the scaling behavior of VQE by
avoiding redundant state preparations. These findings demonstrate
the value of caching techniques for reducing the quantum resources
needed for VQE computations.

5.2 Gate Fusion
The gate count reductions in Figure 4 highlight the optimization
provided by gate fusion in NWQ-Sim. Across 4, 6, and 8-qubit
UCCSD ansatz circuits, fusing neighboring single and two-qubit
gates consistently decreases the number of operations by over 50%.
For example, the 8-qubit circuit gate count reduces from 10,809 to
5,208 gates after fusion, an approximately 52% improvement. The
6-qubit circuit experiences a comparable drop from 4,158 to 1,954
gates. Even small can circuits benefit from significant gate savings
via fusion.

By consolidating quantum operations during simulation, gate
fusion reduces the number of discrete gate applications. This de-
creases the computational resources required to simulate circuit
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Figure 4: Comparison of gate counts for 4, 6, and 8-qubit
UCCSD ansatz circuits before and after gate fusion.

execution. The substantial gate count reductions accelerate the sim-
ulation of quantum circuits within NWQ-Sim. As circuit sizes scale
up for simulating larger quantum chemical systems, gate fusion
will become increasingly crucial for feasible simulations.

5.3 Adapt-VQE Execution of Water Molecule
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Figure 5: Convergence of adaptive VQE for computing the
ground state energy of a downfolded 6-orbital H2O mole-
cule. The energy difference ΔE from the true ground state is
plotted against the VQE iteration. At around 16 iterations,
adaptive VQE reaches the 1 milli-hartree chemical accuracy.

Adaptive VQE [4, 16, 17] is an extension of the standard VQE al-
gorithm that iteratively improves the ansatz by adapting the circuit
structure based on measurement outcomes. Compared to fixed VQE
ansatzes, adaptive VQE circuits can better approximate the ground
state with fewer parameters and shallower circuits. However, adap-
tively growing the ansatz increases the classical optimization bur-
den. In this work, we apply adaptive VQE to efficiently compute the
ground state of a 6-orbital H2O molecule simulated on 12 qubits.

As shown in Figure 5, adaptive VQE is able to converge the
ground state energy to within 1 milli-hartree chemical accuracy in
just 16 iterations. Furthermore, each adaptive iteration increases
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the ansatz depth by only 1 layer. This demonstrates efficient ground-
state convergence for the adaptive VQE approach. These results
validate the proposed workflow for efficiently finding the ground
state energy for quantum chemical simulations.

6 DISCUSSION
6.1 Related works
A large number of prior works have looked at optimization for
the execution/simulation of the Variational Quantum Eigensolver
(VQE) algorithm. Hardware-efficient ansatz designs [5] have been
explored to reduce the circuit depth and number of parameters.
Cafqa [11] proposed using an efficient classical simulation of Clif-
ford circuits to expedite the VQE optimization. Adaptive VQE meth-
ods [4, 16, 17] have been developed to significantly reduce the depth
of the ansatz circuit.

Beyond those, general quantum circuit optimizations are also
proposed to reduce gate count, circuit depth, etc. Sabre [8] is a com-
piler that optimizes and maps quantum circuits to IBM Q devices.
It performs circuit rewriting using gate cancellation, commutation,
and fusion. Siraichi et al.[14] developed qubit mapping techniques
to minimize SWAP gates needed for circuits on hardware with lim-
ited qubit connectivity. Faster Schrödinger-Feynman algorithm[3]
fuses sequences of gates to avoid recomputing temporary interme-
diate states.

In addition to VQE-specific optimizations, recent works have
started investigating larger-scale quantum simulations relevant to
quantum chemistry. Cao et al.[2] provided a comprehensive review
of the progress and challenges of quantum computational chemistry
in the NISQ era. They discussed required theoretical foundations,
algorithmic developments, as well as the outlook of near-term
quantum devices for chemical simulations. Along this line, Shang
et al.[12] explored tensor network simulation of quantum chemistry
problems on a supercomputer.

These works have targeted various performance improvements
for VQE and quantum circuits and provide valuable insights on
enhancing VQE execution, which can be integrated with NWQ-
Sim’s backend.

6.2 Future imrprovements
There are several promising directions to further accelerate VQE
simulation in the future. One area is batch execution, where multi-
ple VQE iterations or circuits could be simulated simultaneously.
Within a GPU, multiple compute kernels could be launched concur-
rently to utilize more cores [13]. Across multiple GPUs, independent
circuits can be distributed to enhance parallelism.

Another major bottleneck is the classical optimization proce-
dure. The number of tunable parameters in VQE ansatzes often
ranges from tens to thousands. This creates a vast search space that
is computationally expensive for classical optimizers to traverse.
Specialized optimization algorithms that leverage problem struc-
ture could help mitigate this overhead. Incremental optimization is
another approach where the optimal parameters from the previous
executions can be used to warm start the next round.

Additionally, there are opportunities to optimize the co-design
of classical and quantum resources for VQE. Hybrid algorithm-
architecture techniques like EQC [15] that efficiently distribute

computations across available quantum and classical hardware can
lead to higher throughput and faster convergence. As quantum
devices continue to scale up, developing holistic co-designs that
coordinate the classical and quantum components will become
increasingly important.

7 CONCLUSION
In conclusion, this work demonstrates an integrated workflow for
efficient VQE simulation on high-performance computing systems.
By combining coupled cluster downfolding, the XACC quantum
programming framework, and the optimized NWQ-Sim simulator,
we establish an end-to-end pipeline for practical VQE applications.
NWQ-Sim’s ability to cache the post-ansatz states avoids redundant
circuit executions during VQE energy evaluation. Through selective
gate fusion and direct expectation value calculation, NWQ-Sim
further boosts the performance of simulating quantum circuits.
Our comparative simulations quantify the substantial gate count
reductions and accuracy achieved by NWQ-Sim. In addition, we
showcase the application of this workflow by computing the ground
state energy of a water molecule using adaptive VQE.

This research underscores the benefits of leveraging HPC re-
sources and optimized simulators to tackle the scaling demands of
VQE and advance quantum chemistry simulations. While directly
demonstrating larger-scale VQE capabilities remains an ongoing
effort, the optimizations presented already accelerate smaller in-
stances. As quantum systems continue to grow, high-performance
simulators like NWQ-Sim will be instrumental in verifying quan-
tum algorithms before deployment on real hardware.
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