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Abstract

The QuantumApproximate Optimization Algorithm (QAOA)
addresses combinatorial optimization challenges by convert-
ing inputs to graphs. However, the optimal parameter search-
ing process of QAOA is greatly affected by noise. Larger prob-
lems yield bigger graphs, requiring more qubits and making
their outcomes highly noise-sensitive. This paper introduces
Red-QAOA, leveraging energy landscape concentration via
a simulated annealing-based graph reduction.

Red-QAOA creates a smaller (distilled) graph with nearly
identical parameters to the original graph. The distilled graph
produces a smaller quantum circuit and thus reduces noise
impact. At the end of the optimization, Red-QAOA employs
the parameters from the distilled graph on the original graph
and continues the parameter search on the original graph.
Red-QAOA outperforms state-of-the-art Graph Neural Net-
work (GNN)-based pooling techniques on 3200 real-world
problems. Red-QAOA reduced node and edge counts by 28%
and 37%, respectively, with a mean square error of only 2%.

CCS Concepts: • Computer systems organization →
Quantum computing; •Mathematics of computing →
Simulated annealing; Combinatorial optimization.
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1 Introduction

Quantum computing, particularly with Noisy Intermediate-
Scale Quantum (NISQ) computers, offers a powerful solution
for tackling complex algorithms [1–9]. The Quantum Ap-
proximate Optimization Algorithm (QAOA), a widely recog-
nized Variational Quantum Algorithm (VQA), addresses in-
tricate optimization problems in graph theory, supply chain
optimization, and machine learning [10–18]. To this end,
QAOA treats inputs as graphs and maps nodes of the graph
into qubits. However, modern NISQ machines, being inher-
ently noisy, struggle to provide meaningful outcomes for
large graphs as they use larger amounts of qubits [19, 20].
This leads to deep circuits that require a substantial number
of qubits. Additionally, the execution of larger graphs tends
to prolong processing times, reducing the overall throughput
of the NISQ machine. This paper seeks to enhance the execu-
tion of larger graphs while ensuring meaningful outcomes.
Our paper examines QAOA applied to the MaxCut prob-

lem in graphs. These problems are NP-hard and are practi-
cally important. QAOA implementations harness the synergy
between classical and NISQ computers. The classical com-
puter furnishes quantum circuit parameters, while the NISQ
computer maps the quantum circuit’s graph nodes to qubits,
executes it with the provided parameters, and generates op-
timization outcomes. The classical computer then updates
circuit parameters based on these outcomes. This iterative
feedback loop continues until the solution converges on op-
timal parameters [21]. The optimal parameters are then used
to compute the Max-Cut of the graph. Ideally, regardless
of the size of the input graph, the QAOA implementation
should seamlessly operate on NISQ computers. However,
practical NISQ machines encounter two critical concerns.
1. Noise-Induced Degradation: The approximation ratio,
determining the closeness of QAOA outcomes to the ground
truth, experiences significant degradation due to noise in the
system. This is particularly high for larger problem instances.
Figure 1 illustrates the QAOA convergence rate for 6-node
and 10-node graphs. When an ideal optimizer is employed,
the approximation ratio steadily increases for both graphs,
surpassing 90%, indicating excellent performance. However,
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Figure 1. Comparing QAOA MaxCut approximation ratios
(indicating outcome proximity to ground truth) between two
graphs (6-node and 10-node) with noisy and ideal optimiza-
tion. We perform 100 iterations for this comparison. The
comparison illustrates (a) divergence from the ideal scenario
as iterations increase (left) and (b) stagnating approximation
ratios when scaling from 6-node to 10-node graphs (right).

with noisy optimization (NISQ), the QAOA optimization’s
approximation ratio is markedly affected as the number of
iterations rises. Thus, the cumulative nature of noise influ-
ences the usability of NISQ computers [22]. Additionally, as
the graph size scales from 6 nodes to 10 nodes, the required
number of qubits also increases. As the impact of noise be-
comes severe at increased qubits, the approximation ratio for
the 10-node graph remains stagnant at around 60%. In con-
trast, the smaller 6-node graph maintains a relatively higher
ratio of approximately 80%. This highlights the heightened
impact of noise for larger QAOA problem instances.
2. Distorted Solution Space: Noise distorts the underlying
energy landscape [23–25]. It actively misguides the opti-
mization process and results in suboptimal outcomes. Fig-
ure 2 compares the ideal QAOA energy landscape (left) with
the noisy landscape executed on the 27-qubit ibmq_kolkata

system (right) for a 13-node graph. Figure 2 highlights the
substantial differences from noise-induced distortions.
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Figure 2. A comparison of the ideal QAOA energy land-
scape (left) and the noisy landscape executed on the 27-qubit
ibmq_kolkata system (right) for a 13-node graph. We can
observe that noise-induced distortions result in significant
differences between the two energy landscapes.

State-of-art approaches:One may substitute a large QAOA
problem with an equivalent smaller one sharing the same
optimal parameters. This leverages QAOA’s unique prop-
erty of similar instances having comparable energy land-
scapes [10, 26, 27]. Prior work has explored the practicality of
transferring optimal parameters between graphs [26, 28, 29].
However, existing frameworks encounter scalability hur-
dles due to stringent preconditions, limiting transferabil-
ity to small subgraphs. For larger graphs, parameters must
be transferable across multiple subgraphs within the larger
graph (donor graphs), which acceptor graphs can then utilize.
These approaches have two limitations: 1) Identifying and
transferring parameters for numerous subgraph combina-
tions is computationally hard, and 2) strict mutual transfer
conditions for large graphs restrict their practicality.
Our Proposal: We present Red-QAOA, a novel simulated
annealing-based approach designed to overcome these limi-
tations. Red-QAOA generates a reduced (distilled) graph for
optimal parameter search. Once the parameters are deter-
mined using this single distilled graph, they are transferred
back to the original graph. Subsequently, the optimization
process proceeds using the original graph to converge on
its precise optimal parameters. Red-QAOA ensures a less
error-prone and more efficient optimization process. This is
because using a distilled graph enables executing a smaller
quantum circuit for a significant portion of the optimization.

This paper makes four key contributions:

� We propose Red-QAOA, a novel approach to search for
optimal parameters with a reduced circuit for QAOA.
Red-QAOA addresses noise challenges and outper-
forms state-of-the-art graph reduction methods.

� We comprehensively examine the theoretical defini-
tion of similar instances in QAOA. Subsequently, we
integrate a dynamic simulated annealing-based graph
reduction algorithm within Red-QAOA to enable a
more generalized approach.

� We showcase the effectiveness of Red-QAOAby achiev-
ing a reduction of 28% nodes and 37% edges, along with
a low Mean Squared Error (MSE) of 2% between ideal
energy landscapes. These results are demonstrated
across both real-world datasets and random graphs.

� We assess Red-QAOA on real quantum devices, demon-
strating substantial improvements over noisy base-
lines. Moreover, Red-QAOA seamlessly integrates with
existing optimization methods, enhancing the perfor-
mance of quantum optimization algorithms.

2 Background

2.1 Basics of Quantum Computing

Quantum computing is a computational paradigm that lever-
ages the principles of quantum mechanics to perform calcu-
lations. The fundamental building blocks of quantum com-
puters are qubits, quantum gates, and quantum circuits.
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2.1.1 Qubits. Unlike classical bits, which can take the
value of either 0 or 1, a qubit can exist as a linear combi-
nation of its basis states, |0〉 and |1〉, as shown:

|𝜓 〉 = 𝛼 |0〉 + 𝛽 |1〉, (1)

where 𝛼 and 𝛽 are complex coefficients, subject to the
normalization condition |𝛼 |2 + |𝛽 |2 = 1.

2.1.2 Quantum Operations: Gates and Circuits. Quan-
tum gates are unitary transformations used to manipulate
the states of qubits. Common examples include the Pauli-X,
Y, Z, Hadamard, and CNOT gates. For instance, the Pauli-X
gate is represented by the following matrix:

𝑋 =

(
0 1
1 0

)
. (2)

When the Pauli-X gate acts on a qubit |𝜓 〉, it flips the
qubit’s state such that 𝑋 |0〉 = |1〉 and 𝑋 |1〉 = |0〉.
A quantum circuit is a sequence of gates applied to a set

of qubits [30, 31]. The circuit represents a computation that
transforms an input state into an output state.

2.2 Variational Quantum Algorithms

Variational Quantum Algorithms (VQAs) are a class of quan-
tum algorithms that aim to solve optimization problems us-
ing quantum computers [16–18, 32]. They harness quantum
parallelism and interference to search for optimal solutions
efficiently. VQAs use a parameterized quantum circuit to
find the optimal solution. This is done by minimizing a cost
function using classical optimization techniques.

2.2.1 QuantumApproximateOptimizationAlgorithm.

QuantumApproximateOptimizationAlgorithm (QAOA) [10]
is a popular VQA. QAOA is designed to solve combinatorial
optimization problems [33]. These problems involve find-
ing the best arrangement or order of objects or variables
given certain constraints or criteria. QAOA aims to maxi-
mize the expected value of the cost Hamiltonian 𝐻𝑐 and the
mixer Hamiltonian 𝐻𝑚 with respect to a trial state |𝜓 (𝜸 , 𝜷)〉
obtained from a parameterized quantum circuit. The trial
state is produced by applying p alternating layers of unitary
operators (called QAOA layers) as shown in Equation 3:

𝑈 (𝜸 , 𝜷) = 𝑒−𝑖𝛽𝑝𝐻𝑚𝑒−𝑖𝛾𝑝𝐻𝑐 · · · 𝑒−𝑖𝛽1𝐻𝑚𝑒−𝑖𝛾1𝐻𝑐 |𝑠〉 (3)

where |𝑠〉 is the uniform superposition over computational
basis states shown in Equation 4,

|𝑠〉 = 1√
2𝑛

∑
𝑧

|𝑧〉 (4)

where 𝑛 is the number of qubits. For the Maxcut problem,
the cost Hamiltonian 𝐻𝑐 and the mixer Hamiltonian 𝐻𝑚 can
be defined as follows:

𝐻𝑐 =
∑

〈𝑖, 𝑗 〉∈𝐸

1

2
(𝐼 − 𝜎𝑧

𝑖 𝜎
𝑧
𝑗 ), (5)

𝐻𝑚 =
𝑛∑
𝑖=1

𝜎𝑥
𝑖 , (6)

where 𝜎𝑧
𝑖 and 𝜎𝑥

𝑖 represent the Pauli-Z and Pauli-X oper-
ators acting on the 𝑖-th qubit, respectively, and 𝐸 signifies
the set of edges in the input graph. The Maxcut solutions
are encoded in the eigenstates of the problem Hamiltonian,
where each qubit denotes a vertex of the graph, with its state
indicating the partition (0 or 1) to which the vertex belongs.

2.2.2 Graph Reduction for QAOA. QAOA operates on
graphs, so reducing the problem size entails shrinking the
underlying graph representation. This reduction effectively
transforms the circuit reduction problem into a graph re-
duction problem. Graph reduction is a well-explored field
with techniques that simplify graphs while preserving their
structural or functional properties [34].

Graph neural network (GNN)-based graph pooling meth-
ods offer promising techniques for graph reduction while
maintaining graph structures. Attention-based Spectral Ag-
gregative (ASA) pooling [35] and Self-Attention Graph (SAG)
pooling [36, 37] utilize attention mechanisms to learn re-
duced representations of graphs. ASA pooling aggregates
node features across scales using attention coefficients and
multiscale Laplacian eigenvectors. In contrast, SAG pool-
ing learns soft hierarchical node clustering by computing
importance scores for each node. Another approach, Top-K
pooling [36, 38, 39], is a pooling method that selects the top-
K nodes based on learned importance scores, constructing a
smaller graph retaining the most relevant information.

3 Motivation: Equivalent Graph Instances

VQA executions involve two primary steps to solve the un-
derlying optimization problem: parameter optimization and
solution-finding. The first step aims to determine the optimal
parameters of a parameterized quantum circuit to minimize
a cost function. On the other hand, the second step, called
solution-finding, seeks to find the optimal solution using the
parameters obtained from the previous step.
Prior works have focused on finding equivalent graph

instances for the solution-finding step. However, we argue
that one can more efficiently optimize QAOA by finding
equivalent instances for parameter optimization.

3.1 Parameter Optimization

The parameter optimization step is significantly more prone
to errors and requires more computational resources. It en-
tails employing classical optimization algorithms, which in-
volve iteratively evaluating circuits with varying parameter
values on a NISQ machine. Errors within qubits may accu-
mulate during each circuit evaluation due to noise and im-
perfections inherent in the quantum (NISQ) hardware. These
accumulated errors can potentially impede the accuracy of
the parameter optimization process.
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Moreover, the optimization process might entail navigat-
ing through a vast parameter space, increasing the likelihood
of encountering local minima—suboptimal solutions that are
not the global minimum. This situation arises when the op-
timization algorithm becomes trapped within a specific re-
gion of the parameter space, neglecting exploration of other
regions that could potentially harbour superior solutions.
Furthermore, the combination of complex quantum circuits
with the iterative classical optimization process makes the
parameter optimization step more prone to errors.

3.2 Challenge: Finding Similar Graphs

The definition of equivalent instances differs between the
parameter optimization and solution-finding steps in VQA
due to their distinct objectives. In the solution-finding step,
instances are considered equivalent if their outcomes are
exactly the same [40]. This poses challenges, especially for
large graphs, as it requires converging on a few reduced
graphs that yield identical outcomes.
In contrast, instances are considered equivalent in the

parameter optimization step if they share similar (or nearly-
identical) optimal parameters that minimize the cost func-
tion [10, 26, 28]. This broader criterion allows for operat-
ing on significantly more reduced graphs in this step. Thus,
the equivalence requirements in parameter optimization are
more flexible than the solution-finding step. This relaxed
criterion enables the selection of instances that may not
be exactly identical but possess similar properties, enabling
more efficient optimization of larger problem instances.

3.3 Observation: Common Energy Landscape

When addressing the Maxcut problem for a specific graph
using QAOA, the operators in Equation 3 can be partitioned
into sub-terms. Each sub-term corresponds to an edge within
the graph. By commuting the terms, the resulting subterm
operators involve only qubits 𝑗 and 𝑘 and any other qubits
with a graph distance from 𝑗 or 𝑘 no greater than 𝑝 layers 1.

The expected value can be expressed as a sum of sub-
expected values, each calculated on a subgraph. The subterm
operators are also identical when comparing two graphs
with identical subgraphs. Consequently, the overall QAOA
for both graphs is indistinguishable, allowing for the direct
transfer of optimal parameters from one graph to the other.
Not only are the optimal parameters transferable in such
cases, but the entire energy landscapes of the two graphs also
coincide. In the context of QAOA, an energy landscape refers
to the distribution of energy values (or objective function
values) over possible solutions or configurations.

Figure 3 presents two energy landscapes acquired using 7-
and 10-node cycle graphs. A cycle graph comprises a single
closed loop of nodes and edges, with each node connecting

1For a more in-depth discussion, we refer the reader to the seminal QAOA

paper by Farhi et al. [10].
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Figure 3. QAOA energy landscapes for 7-node and 10-node
cycle graphs. 𝛽 and 𝛾 are in the ranges of [0, 𝜋] and [0, 2𝜋],
respectively. Since cycle graphs share the same sub-graphs,
they exhibit nearly identical energy landscapes.

to two other nodes. As a result, irrespective of the number
of nodes, they always share the same subgraphs, leading to
almost identical energy landscapes in the two cases.

3.4 Idea: Leverage Energy Landscape Similarity

When searching for optimal parameters for QAOA, we lever-
age the observation that we can substitute one energy land-
scape with another if the two landscapes are nearly identical.
This holds even if the landscape is from a reduced graph.
Thus, our key goal is to find the reduced graph efficiently.

We assess the similarity of the two energy landscapes’
shapes by calculating the mean square error (MSE) between
their normalized versions. Normalizing the energy land-
scapes ensures their energy ranges are comparable. Equa-
tion 12 presents theMSE calculation, discussed in more detail
in Section 5.1. A small value of MSE implies that the two
landscapes have a similar shape, while a large value of MSE
suggests a significant difference in shape. In Figure 3, the
MSE between the normalized energy landscapes is 1.6×10−5,
indicating that they are nearly identical.

4 Our Proposal: Red-QAOA

We propose Red-QAOA, a framework that addresses the chal-
lenges of noise and execution overhead in QAOA. Red-QAOA
seeks reduced graphs that maintain the energy landscape of
the original graph for efficient quantum computation.

Figure 4 presents a high-level overview of the Red-QAOA
design. The main components, depicted in the dashed block,
include the graph reduction step and optimal parameter

searching step—using the reduced graph (𝐺 ′). Red-QAOA
minimizes errors and improves accuracy by executing the
reduced graph on a smaller quantum processing unit (QPU).
After determining the final optimal parameters, Red-QAOA
executes the original graph (𝐺) on a larger QPU. This allows
the application of error mitigation techniques on 𝐺 , as 𝐺
executes only for the final optimal and accurate parameters.
Our design consists of two main components: (1) First,

we identify the key metric for selecting smaller equivalent
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Figure 4. High-level overview of the design of Red-QAOA. The dashed block indicates the main component of Red-QAOA,
which includes a graph reduction step and optimal parameter searching with the reduced graph (𝐺 ′). The reduced graph can be
executed on a smaller quantum processing unit (QPU) and is less prone to errors. For the final step, we find the solution with
the optimal parameter and the original graph (𝐺). This step is more prone to error as we execute this on a larger QPU. However,
since we only need to execute this only for final optimal and more accurate parameters, we can apply error mitigation to
improve the overall execution accuracy.

instances, and (2) Second, we develop a graph reduction
method based on this identified metric.

4.1 Theoretical Foundation of Red-QAOA

The energy corresponding to QAOA parameter values can be
expressed as a sum of local energies as shown in Equation 7:

𝐸 (𝛾, 𝛽) =
∑
< 𝑗𝑘>

𝐸< 𝑗𝑘> (𝛾, 𝛽) (7)

where 𝛾, 𝛽 are the QAOA parameters, <jk> is an edge in the
input graph, and 𝐸 𝑗𝑘 has the form:

𝐸< 𝑗𝑘> = 𝑈 †(𝐶,𝛾1)...𝑈 †(𝐵, 𝛽𝑝 )𝐶< 𝑗𝑘>𝑈 (𝐵, 𝛽𝑝 )...𝑈 (𝐶,𝛾1) (8)

The optimization process aims to find 𝛾 ′, 𝛽 ′ such that
𝐸 (𝛾 ′, 𝛽 ′) is minimized. This is done with gradient descent
and is guided by the gradient ∇𝐸, as shown in Equation 9:

∇𝐸 =
∑
< 𝑗𝑘>

∇𝐸< 𝑗𝑘> (9)

In prior works [28, 29], they identified that, if two energy
functions, 𝐸1 and 𝐸2 have their gradient functions meet the
criteria shown in Equation 10:

∇𝐸1 = 𝑛 ∗ ∇𝐸2 (10)

then, these two functions share the same optima. Thus, the
optimal parameters can be transferred between them. How-
ever, the likelihood of two random QAOA instances meeting
the criteria in Equation 10 is extremely rare.
Red-QAOA: The key insight in the design of Red-QAOA is
that we can potentially approximate ∇𝐸 by only a subset of
terms 𝐸< 𝑗𝑘>, if their gradient behaves similarly. That is:

∇𝐸 ≈
∑

< 𝑗𝑘>∈𝑆
∇𝐸< 𝑗𝑘> (11)

for some set 𝑆 ⊂ all edges. This would allow Red-QAOA to
reduce the number of qubits and quantum gates required
by eliminating local energy terms while adequately approxi-
mating the optimization landscape.
However, analytically determining which 𝐸< 𝑗𝑘> terms

can be eliminated is intractable due to their complex uni-
tary structure, as shown in Equation 8. The entanglement
between unitaries makes it challenging to rigorously model
the impact of removing individual 𝐸< 𝑗𝑘> terms. Therefore,
Red-QAOA relies on an empirical node degree heuristic to
select the dominant 𝐸< 𝑗𝑘> terms.

4.2 Identifying Equivalent Instances

In Section 3.3, we discussed that the overall expectation value
of QAOA is the sum of individual sub-terms. Each sub-term
corresponds to a subgraph encompassing all nodes and edges
within a distance of 𝑝 from the central edge. This formulation
leads to a generalized subgraph matching problem, where
finding another graph with comparable subgraphs can be
challenging due to the exponential search space.

The creation of each subgraph involves several steps. First,
we select a main edge connected to the problem we are
trying to solve, called the problem Hamiltonian. We then
add nearby nodes and edges to form the subgraph. This
expansion continues until a certain distance, denoted as 𝑝 ,
is reached from the main edge. The number of nodes and
edges added at each step depends on the degrees of the nodes
already present in the subgraph. If two graphs exhibit similar
average numbers of connections per node, called Average
Node Degrees (AND), they likely possess identical subgraphs.
To demonstrate this relation, we select 15 graphs at ran-

dom and extract all of their unique non-isomorphic sub-
graphs. We perform a 1-layer QAOA run for each subgraph
using a grid search with a width of 30, resulting in 900 sets
of parameters. We then normalize the expectation values
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Figure 5. Scatter plot illustrating the correlation between
the mean squared error (MSE) and the difference in Average
Node Degrees (AND) of the subgraph with its original graph,
the subgraphs are selected from a collection of all unique
non-isomorphic subgraphs for 15 graphs. A 6th-degree poly-
nomial was found to be the best-fit curse – essentially indi-
cating a correlation between MSE and AND.

and compute the mean squared error (MSE) between the sub-
graph results and its corresponding original graph. Figure 5
shows the resulting plot, where the y-axis shows MSE and
the x-axis shows the AND ratio, the proportion of the sub-
graph’s AND to that of the original graph. The plot reveals a
significant correlation between the variables, suggesting that
smaller graphs with AND values comparable to the original
graph can effectively identify optimal parameters.

4.3 Mean Square Error for Landscape Similarity

A lower Mean Squared Error (MSE) implies higher similar-
ity among instances during QAOA parameter optimization.
However, defining an ideal MSE target remains challenging.
To establish an acceptable MSE, we analyze the optimal

points’ positions on energy landscapes. Figure 6 displays
energy landscapes for six randomly selected graphs. One
graph serves as a reference, andwe calculate theMSE relative
to this baseline for the remaining graphs, with optimal points
denoted by blue stars. The normalized MSE can be viewed
as a percentage error – 0.01 MSE corresponds to a 1% error.

Our observations suggest that when the MSE exceeds 2%
(0.02), optimal point placement significantly deviates from
the reference landscape. In practice, we identify an equiva-
lent subgraph with an energy landscape deviating less than
0.02 from the original graph. In Figure 6, this 0.02 threshold
equates to a minimum acceptable AND ratio of 0.7, and this
ratio is used as the default value in the experiments. Users
can adjust this threshold to suit their specific needs and use
cases for equivalent instance searching.
To demonstrate the effectiveness of the MSE metric in

quantifying differences among energy landscapes, we con-
ducted a case study using random 15-node graphs and their
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Figure 6. Six QAOA energy landscapes compared, with opti-
mal points marked by blue stars. Mean Squared Error (MSE)
values indicate similarity or divergence from the baseline
landscape. A low MSE value, such as that of the 2nd graph
in the first row (MSE = 0.01), indicates a landscape closer to
the reference landscape. In contrast, a high MSE value, such
as that of the graph in the bottom left (MSE = 0.11), indicates
a landscape farther from the reference landscape. Our paper
aims to identify an equivalent subgraph with an energy land-
scape that deviates less than 0.02 from the original graph.

subgraphs. Energy landscapes were generated for the origi-
nal graph and its subgraphs using a 2-layer QAOA with 2048
random parameter sets. We computed the MSE between each
subgraph’s normalized landscape and that of the original
graph. Additionally, we determined the average distance be-
tween their optimal solutions. Figure 7 illustrates a strong
correlation between MSE and the distance between optimal
solutions. This correlation confirms that MSE accurately cap-
tures disparities in optimal solutions, making it a suitable
metric for comparing energy landscapes in QAOA.

4.4 Looking Beyond Pooling: Simulated Annealing

Simulated annealing (SA) is a stochastic optimization algo-
rithm inspired by metallurgical annealing [41, 42]. SA begins
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Figure 7. Scatter plot of MSE vs. average optimal point
distance for random 15-node graphs and subgraphs, showing
a strong correlation. This supports using MSE as a metric
for energy landscape divergences.
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with an initial solution and iteratively explores the solu-
tion space, accepting new solutions based on differences
in objective function values and a decreasing ’temperature’
parameter.
SA aligns well with our goal of identifying equivalent

graphs. SA offers a more flexible and adaptive approach than
graph pooling methods, which may impose rigid structures
or rely on specific graph properties. This flexibility allows
SA to discover subgraphs that better preserve the essential
characteristics of the original graph, potentially making it
a superior method. A key innovation of Red-QAOA is its
utilization of SA to identify high-quality equivalent reduced
graphs within the context of QAOA.

Algorithm 1 Simulated Annealing (SA) for Graph Reduction

1: procedure SA(𝐺,𝑘,𝑇0, 𝛼,𝑇𝑓 , is_adaptive)
2: 𝐴𝑁𝐷𝐺 ← CalculateAND(𝐺)
3: 𝑆 ← RandomSubgraph(𝐺,𝑘)
4: 𝑇 ← 𝑇0
5: while 𝑇 > 𝑇𝑓 do

6: 𝑆neighbor ← RandomNeighbor(𝑆,𝐺)
7: 𝑓𝑆 ← Objective(𝑆,𝐴𝑁𝐷𝐺 )
8: 𝑓𝑆neighbor ← Objective(𝑆neighbor, 𝐴𝑁𝐷𝐺 )
9: if 𝑓𝑆neighbor < 𝑓𝑆 then

10: 𝑆 ← 𝑆neighbor
11: else

12: 𝑝 ← Random(0, 1)
13: if 𝑝 < exp (−(𝑓𝑆neighbor − 𝑓𝑆 )/𝑇 ) then
14: 𝑆 ← 𝑆neighbor
15: end if

16: end if

17: if is_adaptive then

18: 𝑇 ← 𝛼 (𝑇 ) ∗𝑇
19: else

20: 𝑇 ← 𝛼 ∗𝑇
21: end if

22: end while

23: return 𝑆
24: end procedure

Red-QAOA utilizes an SA algorithm that supports ‘con-
stant’ and ‘adaptive’ cooling schedules to dynamically con-
struct reduced graphs and adjust the reduction ratio. The SA
algorithm is executedmultiple times. After each iteration, the
average node degree (AND) of the resulting reduced graph
is checked against the desired AND of the original graph. If
the AND requirement is unmet, our algorithm adjusts the
reduction ratio and reruns the SA algorithm until the desired
AND is achieved. The resulting reduced graphs are then eval-
uated using the Mean Squared Error (MSE) metric to assess
their similarity to the original graph.

Algorithm 1 shows the pseudocode of the proposed SA al-
gorithm. The inputs to the algorithm include an input graph

(𝐺), the desired subgraph size (𝑘), an initial temperature
(𝑇0), a cooling rate function or factor called 𝛼 , a stopping
temperature (𝑇𝑓 ), and a boolean flag called 𝑖𝑠_𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 that
determines which cooling schedule to use. The algorithm
starts by initializing a random subgraph as the initial solution
and setting the initial temperature. Then, at each iteration,
the algorithm explores a neighboring subgraph by replacing
one of the nodes in the current subgraph with a node out-
side of it. The quality of the subgraph is measured using an
objective function that calculates the difference between the
ANDs of the subgraph and the original graph.

The algorithm uses a temperature-dependent probabil-
ity function to accept or reject neighboring subgraphs. If a
neighboring subgraph has a better objective function value,
then, it is accepted as the new solution. Otherwise, if it has a
worse or equal objective function value, it is accepted with a
probability that decreases as the temperature decreases. This
probability function allows the algorithm to escape local
optima in the early stages of the search while converging to-
wards the global optimum as the temperature drops. It then
updates the current temperature either by a constant factor
or adaptively based on the number of rejected subgraphs.
The adaptive cooling schedule is a crucial component of

the algorithm, as it controls the exploration-exploitation trade-
off in the search process. By adjusting the cooling rate based
on the current temperature, the algorithm can be fine-tuned
to perform better on various graph pruning instances.

4.5 SA versus Graph Pooling Methods

We compare our SA-based methods to state-of-the-art graph
neural network (GNN) poolingmethods: Additive Self-Attention
(ASA) [35], Set Attentional Aggregation (SAG) [36, 37], and
Top-k Pooling (Top_k) [36, 38, 39]. These pooling methods
use fixed reduction ratios and do not dynamically check if the
reduced graph accurately approximates the original graph.
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Figure 8. The mean square error (MSE) of subgraphs com-
pared to the reduction ratio. We compare our Simulated An-
nealing (SA) methods to the state-of-the-art graph pooling
techniques. The SA-based methods almost always provide
lower MSE than prior techniques.
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Figure 9. The performance of the proposed SA (simulated annealing) algorithm with varying node reduction ratios. The x-axis
in each figure represents the mean square error, while the y-axis shows the percentage frequency. The algorithm, denoted as
Red-QAOA, consistently identifies one of the most effective subgraphs across different reduction ratios. This suggests that
Red-QAOA can consistently achieve desirable results for a given reduction ratio.

We test on the random graph dataset with 𝑝 = 3, using a
range of fixed reduction ratios from 0.1 to 0.7.
Figure 8 shows the experiment’s results, including both

‘constant’ and ‘adaptive’ cooling versions. The results show
that both these versions outperform all state-of-the-art GNN-
based graph pooling methods, except for constant cooling
when the reduction ratio is 0.7. However, this reduction ratio
is too extreme and impractical in real-world applications.
Overall, the adaptive cooling version of SA performs signifi-
cantly better than the other methods. Given that adaptive
cooling has a lower computational overhead, we equip Red-
QAOA to employ the adaptive cooling method in all cases.
The superior performance of Red-QAOA compared to

other GNN pooling methods highlights the importance of de-
veloping specialized graph reduction techniques tailored to
the needs and constraints of QAOA and quantum computing.

4.6 Effectiveness of Simulated Annealing

To demonstrate the effectiveness of our proposed algorithm,
we conducted an experiment using a random 15-node graph.
We analyze its unique connected subgraphs for node reduc-
tion ratios of 0.67, 0.53, and 0.40, and for each subgraph, we
perform a grid search with 900 data points and calculate
the normalized MSE. Figure 9 shows the results as a his-
togram, with the x-axis representing MSE values and the
y-axis indicating the frequency of subgraphs as a percentage.
A dashed red line is marked to show the MSE obtained using
the proposed SA algorithm. Across all reduction ratios, the
SA algorithm consistently achieves the lowest MSEs.

5 Methodology

5.1 Figure of Merit

We utilize two key performance metrics - Mean Square Error
(MSE) and Approximation Ratio - to evaluate Red-QAOA.
The MSE is primarily used to measure the similarity between
two QAOA instances, capturing discrepancies in the energy

landscapes. We apply MSE in two settings: ideal execution
to compare the energy landscapes of the baseline graph and
Red-QAOA graph, and noisy execution to compare both the
noisy baseline and Red-QAOA landscapes against the ideal
baseline. On the other hand, the Approximation Ratio is used
to evaluate the quality of QAOA outcomes relative to the
ground truth. This ratio assesses the performance of Red-
QAOA against the baseline in ideal and noisy conditions.

5.1.1 Mean Square Error (MSE). Our study primarily
uses the MSE to measure the similarity between two QAOA
instances. MSE serves as a tool to quantify how closely two
different QAOA-generated energy landscapes resemble each
other. The MSE is defined by the equation:

𝑀𝑆𝐸 =
1

𝑁

𝑁∑
𝑖=1

(𝐸𝑖 − 𝐸𝑖 )2 (12)

where 𝑁 is the total number of data points, the default is
set to 1024 in our experiments. 𝐸𝑖 represents the normalized
energy at the 𝑖𝑡ℎ data point in the first QAOA instance, and

𝐸𝑖 corresponds to the normalized energy at the same point
in the second QAOA instance. This formula effectively cap-
tures the discrepancy between the two energy landscapes,
providing a numerical measure of their similarity.
Our application of MSE occurs in two distinct settings.

In the ideal execution setup, MSE is employed to compare
the energy landscapes generated by the baseline graph and
Red-QAOA’s graph. The aim is to assess how closely the
Red-QAOA graph’s landscape mirrors the baseline under
ideal conditions. In the noisy execution setup, on the other
hand, two separate MSE values are computed. The first is
between the noisy baseline landscape and the ideal baseline
landscape. The second MSE is between the noisy Red-QAOA
landscape and the ideal baseline landscape. In this context,
the ideal baseline landscape serves as a benchmark, and our
goal is to demonstrate that the Red-QAOA graph under noisy
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conditions can produce a landscape more akin to this ideal
baseline than what is achieved with the noisy baseline.

5.1.2 Approximation Ratio. In addition to MSE, we uti-
lize the approximation ratio 𝑟 to evaluate the quality of
QAOA outcomes. This ratio is defined as the ratio of the
optimal expectation value obtained by QAOA to the ground
truth result, determined classically via brute force:

𝑟 =
min𝜸 ,𝜷 〈𝜓 (𝜸 , 𝜷) |𝐶 |𝜓 (𝜸 , 𝜷)〉

𝐶ground truth
(13)

where |𝜓 (𝜸 , 𝜷)〉 represents the trial state prepared by the
QAOA operator given in Equation 3. Our experiments aim to
compare the approximation ratios obtained from the baseline
and Red-QAOA in both ideal and noisy execution setups. In
the ideal execution setup, we seek approximation ratios for
Red-QAOA that closely match the baseline. On the other
hand, in the noisy execution setup, our objective is to assess
the improvement brought by Red-QAOA in approximation
ratio over the noisy baseline.

5.2 Benchmark Graph Datasets

To comprehensively evaluate Red-QAOA, we selected four
diverse benchmark graph datasets: AIDS, Linux, IMDb, and
a collection of Random graphs spanning different domains.

� AIDS: A set of 700 chemical compound graphs from
the National Cancer Institute’s repository. Each graph
represents a chemical compound. Specifically, the nodes
of the graph are the atoms and its edges are chemical
bonds. The average graph size is eight nodes.

� Linux:Comprising 1,000 function call graphs extracted
from the Linux kernel source code. Nodes represent
functions, and edges denote function calls. The average
graph size is ten nodes.

� IMDb: Consisting of 1,500 movie collaboration net-
works from the Internet Movie Database. Nodes repre-
sent actors, and edges indicate collaborations between
them. The average graph size is six nodes, with most
containing fewer than ten nodes.

� Random graphs:We generated ten random graphs
using the NetworkX random graph generator, with
node counts ranging from 7 to 20. These graphs pro-
vide a versatile testing platform for our experiments.

This diverse dataset selection allows us to evaluate our
methods across various domains, offering insights into their
scalability and adaptability to different graph structures. Ta-
ble 1 summarizes the characteristics of benchmark graph
datasets used in our experiments.

5.3 Circuit Simulation and Noise Modeling

We use the Qiskit [47] framework for circuit simulations.
Ideal quantum circuit simulations are executed with the stat-
evector backend, while noisy simulations are performed with
the density matrix backend to account for potential noise

impact on quantum circuits. We employ the FakeToronto
backend, which emulates the noise characteristics of the IBM
Quantum Toronto device, incorporating gate errors, readout
errors, and relaxation times. FakeToronto provides realistic
quantum hardware conditions. Similar to prior work [48],
we transpile circuits using the SABRE algorithm [49] to op-
timize depth and execution time. It selects the circuit with
the shortest depth out of 100 repetitions. This process helps
ensure optimal performance and resource usage.

5.4 Hardware Platform

Perlmutter’s GPU nodes, each equipped with four Nvidia
A100 GPUs (40GB VRAM per GPU), are used for efficient
quantum circuit simulations, reducing the time required to
obtain results. For executing quantum circuits on real hard-
ware, we utilize the 27-qubit ibmq_kolkata backend from
IBM and the larger 79-qubit Aspen-M-3 from Rigetti. These
backends allow us to validate our simulation results in real-
world settings, providing insights into circuit performance
under hardware constraints and error rates. By comparing
the outcomes of our simulations with the results from the de-
vice backends, we can assess the accuracy and robustness of
our methodology in the presence of hardware imperfections.

5.5 Graph Pooling Methods

We compared our proposed method, which uses dynamic
checking to ensure accurate graph reduction, with three
fixed-ratio graph pooling methods: Additive Self-Attention
(ASA) [35], Set Attentional Aggregation (SAG) [36, 37], and
Top-k Pooling (Top_k) [36, 38, 39]. These methods were
chosen because they are widely used in the literature and
have been shown to achieve state-of-the-art performance in
various graph-related tasks [50].

All the graph pooling methods take the graph feature vec-
tor and a pooling ratio as inputs. In our case, the feature
vector is generated from the input graph, which is a nor-
malized vector that includes the node degrees, clustering
coefficient, betweenness centrality, closeness centrality, and
eigenvector centrality. These metrics provide insights into
the node’s connectivity, position within the network, and

Table 1. Description of Benchmark Graph Datasets

Dataset Description Number of

Graphs

Number of

Nodes

AIDS [43] Chemical

Compounds

700 2-10

LINUX [44] Program

Dependence

1000 4-10

IMDb [45] Ego

Networks

1500 7-89

Random [46] Erdős-Rényi 10 7-20
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influence. The pooling ratio is determined dynamically based
on the Red-QAOA reduced graph.We first generate a reduced
graph using the Red-QAOA method. Then, we calculate the
pooling ratio such that all pooled graphs are the same size as
the Red-QAOA graph. By ensuring all reduced/pooled graphs
are the same size, we enable a fair comparison between them.

5.6 Parameter Transfer

Previous studies on transferring optimal QAOA parameters
focused on random regular graphs [29]. To evaluate param-
eter transferability on non-regular graphs, we start with
random regular base graphs. We then randomly modify a
small portion, 10% in our case, of the edges in these base
graphs by removing some edges and adding new ones. This
process makes the graphs slightly irregular while retaining
similarities to the original regular base graphs. We generate
two graphs to test parameter transfer: 1) a Red-QAOA graph,
and 2) a smaller random regular graph with the same node
degrees as the original unmodified base graph and the same
number of nodes as the Red-QAOA graph. Comparing these
two graphs allows us to evaluate how Red-QAOA performs
on non-regular graphs compared to transferring parameters
directly between similar non-regular graphs.

6 Results

6.1 Effectiveness of Recovering the Ideal Landscape

Our initial investigation assesses Red-QAOA’s ability to re-
store the energy landscape distorted by noise. We compare
the noisy MSE of the Red-QAOA landscape with the ideal
QAOA landscape and contrast it with the noisy MSE be-
tween the baseline noisy QAOA landscape and the ideal
QAOA landscape. Noisy MSE values evaluate energy land-
scape preservation by comparing noisy landscapes to ideal
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Figure 10.Mean Squared Error (MSE) comparison of base-
line and Red-QAOA noisy landscapes for graphs of 7-14
nodes. As the number of qubits increases, the noisy MSEs for
both Red-QAOA and the baseline increase due to a higher de-
vice noise impact. Overall, with a more noise-tolerant circuit,
Red-QAOA consistently performs better than the baseline.
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Figure 11. Normalized energy landscapes of ideal, noisy
baseline, and Red-QAOA for the best-case scenario of the 10-
node graph. Blue stars indicate the globally optimal points on
each landscape. Red-QAOA outperforms the noisy baseline
by locating optimal points closer to the ideal scenario.

ones. Previously, we focused on ideal MSEs between differ-
ent QAOA instances, capturing their equivalency. Therefore,
the noisy and ideal MSEs should be interpreted separately.
We generate random graphs with 7 to 14 nodes and con-

duct noisy simulations. Figure 10 illustrates that Red-QAOA
consistently outperforms the baseline noisy QAOA landscape
in all scenarios. This improvement is primarily attributed to
Red-QAOA’ use of a reduced graph, reducing node counts
by an average of 36% and edge counts by an average of 50%,
significantly reducing the likelihood of noise interference.

Among the tested graphs, the 10-node graph exhibits the
most substantial reduction in MSE from the baseline to Red-
QAOA. Figure 11 displays the energy landscapes for the
ideal, Red-QAOA, and noisy baseline, with blue stars mark-
ing the globally optimal points. The baseline noisy landscape
is severely affected by noise, while the Red-QAOA energy
landscape closely retains the ideal landscape’s overall shape.
Importantly, the location of optimal points is crucial, repre-
senting final solutions. The baseline’s noise introduces false
global points, whereas Red-QAOA maintains optimal points
very close to the ideal landscape.
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Figure 12. Normalized energy landscapes of ideal, noisy
baseline, and Red-QAOA for the worst-case scenario of the
11-node graph. Blue stars indicate the globally optimal points
on each landscape. The optimal points on Red-QAOA land-
scape begin to deviate from the ideal scenario; however, even
with this deviation, Red-QAOA still outperforms the base-
line, which exhibits a much greater deviation in terms of the
location of optimal points from the ideal scenario.
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In contrast, Figure 12 illustrates a worst-case scenario for
11 nodes where we observe the slightest reduction in MSE
compared to the baseline. In this case, Red-QAOA landscape’s
overall shape is noticeably off from the ideal case. However,
its globally optimal points are still very close to the true
optimal, indicating the superior performance of Red-QAOA.
Interestingly, the ideal landscapes of the 10-node and 11-
node graphs are quite similar since they have very close
node and edge counts. This implies that the reduced graph
found by Red-QAOA for the 10-node case can be used for
the 11-node case to achieve a better result. However, due
to the constraints on searching for subgraphs, the reduced
graph was rejected by Red-QAOA. This indicates a potential
opportunity for further improvements.

Overall, with a smaller circuit, Red-QAOA is more robust
to noise than the baseline approach and can perform better
in practical quantum computing implementations.

6.2 Reductions and Ideal MSEs on Small Graphs

To thoroughly assess Red-QAOA performance, we selected
real-world graphs with up to 10 nodes from Aids, Linux, and
IMDb datasets for graph reduction and MSE experiments.
We analyze larger IMDb graphs in Section 6.3 to evaluate
Red-QAOA scalability and effectiveness. Figure 13 shows the
three graph datasets’ node and edge reduction ratios. Each
dataset is represented by two bars, one for the node reduction
ratio and one for the edge reduction ratio. On average, 28%
of nodes were reduced, and 37% of edges were eliminated,
resulting in substantially smaller graphs for execution.

Figure 14 displays the Mean Squared Error (MSE) for the
three graph datasets, plotting results for different QAOA
circuit layer parameter values: 𝑝 = 1, 𝑝 = 2, and 𝑝 = 3. For
each 𝑝 value, we randomly selected 1024 parameter sets and
computed the MSE relative to the baseline. Each dataset is
represented in the figure by three bars corresponding to the
distinct 𝑝 values. The data indicates that as 𝑝 increases, the
MSE experiences a slight increase, suggesting that adding
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Figure 13. Graph reductions, measured in terms of node and
edge reduction ratios, for graphs from Aids, Linux, and IMDb
graph datasets with up to 10 nodes. On average, Red-QAOA
achieves 28% node reductions and 37% edge reductions.
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Figure 14.Mean Squared Error (MSE) for Aids, Linux, and
IMDb Graph Datasets with Up to 10 Nodes for 𝑝 = 1, 𝑝 = 2,
and 𝑝 = 3. The MSE achieved with the Aids and Linux
datasets is below 0.01, while for IMDb, it is around 0.05.
Section 6.3 presents more detailed information about this.

more layers to the QAOA circuit introduces complexity into
the graph reduction process. However, this growth rate re-
mains relatively low and manageable.

6.3 Scaling Up to Larger Graphs

Figure 13 and Figure 14 reveal a significant observation: the
IMDb dataset has the lowest reduction ratios among the
three datasets and its MSE values are notably higher. This
difference primarily stems from IMDb’s considerably higher
average node degrees than AIDS and Linux datasets. Since
our analysis focuses on graphs with a maximum of 10 nodes,
removing a single node from IMDb’s graphs results in a
larger loss of edges. This discrepancy is evident in Figure 13,
where the gap between edge and node reduction ratios is
about 5% for AIDS and Linux but exceeds 10% for IMDb.

Figure 15 and Figure 16 show the results for IMDb graphs
in two categories: IMDb small (up to 10 nodes) and IMDb
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Figure 15. Node and edge reduction ratios for IMDb, clas-
sified into small (up to 10 nodes) and medium (up to 20
nodes) graph categories. When scaling from small to medium
graphs, the node reduction ratio increased from 15% to 25%
and the edge reduction ratio rose from 28% to 35%.
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Figure 16. Mean Squared Error (MSE) for IMDb datasets
for 𝑝 = 1, 𝑝 = 2, and 𝑝 = 3. Graphs are divided into small
(up to 10 nodes) and medium (up to 20 nodes) graphs. We
observed a notable reduction in overall MSEs, dropping from
approximately 0.05 to below 0.02.

medium (10 to 20 nodes). As graph size increases, the re-
duction ratio improves, and MSEs decrease. In this case, the
IMDb medium graph set exhibits a similar performance as
compared to Aids and Linux datasets. This suggests that
Red-QAOA has a relatively worse performance for small,
dense graphs. However, for these graphs, the noise impact
and execution overhead are considerably smaller than in
larger graphs, making it beyond the scope of Red-QAOA.

6.4 Scalability of Red-QAOA

6.4.1 Effectiveness. To assess the scalability of Red-QAOA,
we conducted tests on 100 randomly generated graphs, each
containing 30 nodes. We utilized the COBYLA classical opti-
mizer with 20, 50, and 150 restarts for 1, 2, and 3 QAOA layers,
respectively. Two key performance metrics were evaluated:
the best result among all restarts for a given layer and the
average result across restarts. Figure 17 demonstrates that
Red-QAOA consistently achieved near-optimal best results,
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Figure 17.Red-QAOA achieves near-optimal solutions for all
testing cases when considering the best results achieved. On
average, Red-QAOA achieves over 97% performance relative
to baseline QAOA on a set of 100 large 30-node graphs.

exceeding 99% across all cases compared to the baseline. Re-
markably, even with an average reduction of 30.7% in nodes
and 44.3% in edges, Red-QAOA maintained over 97% of the
baseline’s average performance.

6.4.2 Runtime Analysis. Red-QAOA imposes minimal
preprocessing overhead, scaling as 𝑛 log𝑛 due to its binary
search approach over graph sizes. Figure 18 confirms this
asymptotically efficient complexity on random graphs rang-
ing from 10 to 1000 nodes. For a small 10-node graph, Red-
QAOA requires just 0.004 seconds of preprocessing time. In
contrast, executing a corresponding 1-layer QAOA circuit
on ibm_sherbrooke processor takes 4.2 seconds. Therefore,
Red-QAOA has negligible overhead, around 0.1% of the total
QAOA runtime, even for modest problem sizes. Theoretical
𝑛 log𝑛 scaling suggests Red-QAOA will maintain efficient
preprocessing as problem dimensions and quantum system
sizes increase. This negligible overhead makes Red-QAOA
well-suited for time-critical applications.
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Figure 18. The runtime overhead of Red-QAOA scales
as O(𝑛 log𝑛), showing asymptotic efficiency. Using limited
benchmark data from [51], we extrapolated the per-circuit
execution time up to 65 qubits and compared Red-QAOA
against it. Overall, Red-QAOA introduces a negligible graph
processing overhead as compared to circuit execution time.

6.5 End to End Evaluation

To evaluate graph pooling methods for generating surrogate
problems to train QAOA, we tested four techniques: Red-
QAOA, SAG, Top-K, and ASAPooling. We generated 10-node
random graphs and reduced versions using each method.
We performed grid searches to find the optimal QAOA

parameters on the original and surrogate graphs. The key
metric is the relative improvement in the approximation ratio
over the original graphs under the noisy execution setup.

Figure 19 shows that Red-QAOA provides consistent pos-
itive improvements, with a 4.2% median increase over the
baseline. This outperformed the other techniques, with SAG
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and Top-K pooling showing high variability. ASAPooling
consistently decreased performance.
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Figure 19. Box plots of relative improvement in approxi-
mation ratio over noisy baselines for Red-QAOA and three
GNN-based graph pooling techniques. Red-QAOA showed
consistently positive improvements across all testing cases,
outperforming the highly variable SAG and Top-K pooling.
The ASAPooling performs the worst overall.

To evaluate the convergence rate improvement of QAOA
using Red-QAOA, a 10-node random graph was selected,
and classical optimization with five random restarts was
performed using the COBYLA optimizer [52]. Figure 20 illus-
trates the convergence behaviour of noisy QAOA simulations
on this problem instance using both the original graph and
the Red-QAOA graph. To enable a direct comparison of con-
vergence rates, the QAOA parameters were recorded at each
iteration and then used to re-calculate the expected energy
with an ideal noiseless simulator. Overall, Red-QAOA shows
substantially faster and better convergence to high-energy
solutions than the standard QAOA optimization.
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Figure 20. Comparison of convergence between standard
QAOA and Red-QAOA on noisy quantum simulations. Five
restarts are performed using the baseline and reduced graphs
from Red-QAOA. Red-QAOA demonstrates substantially
faster and better convergence to optimal-energy solutions
compared to the standard QAOA optimization.

6.6 Comparison: Parameter Transfer

Previous research [28] demonstrated QAOA parameter trans-
ferability on random regular graphs. Our experiments eval-
uated this transferability on various graphs up to 60 nodes,
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Figure 21. MSE between ideal and transferred QAOA land-
scapes using Red-QAOA and parameter transfer, evaluated
on real-world and non-regular graphs. Red-QAOA reliably
outperforms transfer across graph types.

including real-world and non-regular graphs from AIDS,
Linux, and IMDb datasets. We also tested modified regular
and non-regular star/4-array graphs. We transferred optimal
parameters between graphs with even/odd degree nodes for
parameter transfer. To ensure fairness, we initially reduced
the graph using Red-QAOA and then created a random reg-
ular graph with a similar node count and average degree.
Figure 21 displays the MSE between ideal and transferred
landscapes for both methods. Parameter transfer works well
for regular or near-regular graphs but struggles with in-
creased randomness. In contrast, Red-QAOA consistently
maintains a low MSE across all graph types, demonstrating
robust performance regardless of regularity.

6.7 Execution on Real Quantum Devices

IBM Device: We demonstrate Red-QAOA’s effectiveness in
addressing noise and hardware limitations on a real quan-
tum device. We employ QAOA on the 27-qubit ibmq_kolkata
backend with a 13-node random graph. Scaling to larger
graphs is currently challenging due to the significant device
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Figure 22. Normalized energy landscapes of an ideal sce-
nario, a noisy baseline, and Red-QAOA for a random 13-node
graph executed on the 27-qubit ibmq_kolkata backend are
compared. The optimal points on the Red-QAOA energy
landscape are much closer to the ideal case, whereas the
baseline shows a significant deviation.
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error rate. Though we have not extensively optimized the cir-
cuit beyond transpile the circuit using SABRE [49] multiple
times and selecting the minimum-depth one. Further opti-
mizations [53, 54] and error mitigation strategies [55] can
potentially reduce noise impact for larger circuits. However,
our primary aim is to showcase the improvement achieved
with Red-QAOA over noisy baseline under the same execu-
tion conditions. This enhancement is expected to persist for
larger instances and with more rigorous optimizations.
Figure 22 presents normalized energy landscapes for the

ideal scenario, a noisy baseline, and Red-QAOA. This set of
results showcases Red-QAOA’s accuracy and reliability in
identifying equivalent instances and reducing noise impact
in QAOA parameter optimization. Red-QAOA outperforms
the noisy baseline in identifying optimal points in the en-
ergy landscape, substantiating its effectiveness in addressing
noise and hardware constraints during QAOA parameter
optimization. This noise reduction leads to more accurate
and reliable energy landscapes, resulting in more efficient
solutions for large-scale optimization problems.
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Figure 23. Red-QAOA outperforms noisy baseline QAOA on
the 79-qubit Rigetti Aspen-M-3 device by achieving a lower
MSE across all evaluated cases.

Rigetti Device: To further evaluate the performance of Red-
QAOA on near-term quantum hardware, we employed it
on the Rigetti Aspen-M-3 system with 79 qubits. Due to
this device’s higher error rates and limited access time, we
benchmarked smaller graphs, 5 to 10 nodes, with a 1-layer
QAOA. We compared the MSE between the ideal and noisy
energy landscapes for Red-QAOA versus the baseline QAOA.
As shown in Figure 23, Red-QAOA consistently achieved
lower MSE across all evaluated cases on the Rigetti machine.
By using a reduced QAOA circuit and obtaining enhanced
performance, Red-QAOA showcases higher noise resilience
even on today’s noisy quantum devices.

6.8 Varying Noise Models

To demonstrate the noise tolerance of Red-QAOA, we con-
ducted an experiment using a random 10-node test graph
and 1-layer QAOA with 1024 parameter sets. We calculated
the mean squared error (MSE) between the noise-free energy
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Figure 24. ours demonstrates enhanced noise tolerance ver-
sus baseline QAOA across devices with a wide range of error
rates. MSE between the noise-free and noisy energy land-
scapes is consistently lower for Red-QAOA.

landscape and landscapes generated under different noise
models. The noise models were sampled from real IBM quan-
tum device backends covering a wide range of error rates. As
shown in Figure 24, Red-QAOA consistently achieves a lower
MSE than the baseline across all noise levels. This included
noise models from the Kolkata backend, which has one of
the lowest error rates among the existing IBM devices, and
the retired Toronto device with substantially higher errors.
By using a smaller QAOA circuit, Red-QAOA is inherently
more tolerant of all types of noise.

6.9 Increased Execution Throughput
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Figure 25. Expected throughput improvement of Red-QAOA
compared to the baseline on 27, 33, 65, and 127-qubit devices
using aids, Linux, and IMDb benchmarks. We observed sig-
nificant improvements: around 1.85x for aids, 2.1x for Linux,
and 1.4x for IMDb in terms of system throughput.

Figure 25 shows the substantial throughput enhancement
achieved with Red-QAOA, resulting in reduced execution
time. We evaluated this improvement on large-scale quan-
tum devices running multiple quantum circuits concurrently
to optimize their utilization. The analyzed devices include
Falcon 27-qubit, Eagle 33-qubit, Hummingbird 65-qubit, and
Eagle 127-qubit. Notably, we observed throughput improve-
ments of 1.85× for AIDS, 2.1× for Linux, and 1.4× for IMDb.
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7 Related Work

7.1 Parameter Transfer

Previous research [26, 28, 29] has observed similar findings
regarding input instances. However, their typical approach
involves using a set of small, computationally feasible in-
put graphs and optimized parameters as a reference. When
encountering a new input, they search the pre-optimized
dataset, find the most similar graph, and apply its parameters
directly. This approach for transferring optimal parameters
between graphs has two significant limitations. Firstly, iden-
tifying transferability for a vast set of subgraphs becomes
impractical due to the exponential growth of possible sub-
graph combinations with increasing graph size. Secondly,
achieving mutual transfer conditions for large graphs is chal-
lenging, as it necessitates meeting the condition for every
subgraph pair, limiting the concept’s applicability. Therefore,
these limitations raise doubts about the effectiveness and
feasibility of existing theoretical frameworks for optimal
QAOA parameter transferability.

Previous studies have shown transferability between reg-
ular graphs with uniform degree distribution. The precondi-
tion is automatically satisfied for two regular graphs with
the same degree of parity. However, real-world data typically
consists of irregular graphs. In particular, only 1.14% and
0% of the graphs from the AIDS and LINUX datasets that
are used in this study are regular graphs respectively, while
about 54% of the graphs in the IMDb dataset are regular.

7.2 Enhancing QAOA Performance

Variouswarm start techniques are proposed to enhance quan-
tum optimization algorithms by initializing them with ed-
ucated guesses, leading to faster convergence and better
solutions. Jain et al. [56] proposed a graph neural network-
based warm start for QAOA that is effective on various com-
binatorial optimization problems. CAFQA[57] is a hybrid
classical-quantum algorithm that improves solutions and
convergence by finding parameters for a variational quantum
algorithm. Egger et al. [58] introduced warm-starting quan-
tum optimization using classical relaxations of optimization
problems and showed effectiveness in portfolio optimization
and MAXCUT problems. Other works [54, 59, 60] have also
utilized domain-specific knowledge of QAOA to enhance ex-
ecution fidelity, while some works [61, 62] proposed efficient
Hamiltonian transitions and expectation calculations.

Our work focuses on a complementary approach to these
warm start and domain-specific techniques. By combining
our approach with these methods, we can improve the per-
formance of quantum optimization algorithms even further.

7.3 Classical Optimization

Using reduced or surrogate models to expedite optimization
and learning is a well-established concept in classical do-
mains. It has found applications in hyperparameter tuning

for machine learning [63], approximating expensive black-
box functions [64], discovering suitable initializations in
topology optimization [65], serving as substitutes for costly
real-world experiments [66], and facilitating policy transfer
from simpler to more complex environments in reinforce-
ment learning [67]. Additionally, the challenge posed by sad-
dle points in high-dimensional non-convex optimization has
led to the development of saddle-free Newton approaches to
optimize neural networks more efficiently [68]. While these
reduced model methods expedite optimization and transfer
in complex domains, Red-QAOA is specifically tailored to
address the challenges of quantum tasks.

8 Conclusion

In the NISQ era, noise-resilient techniques are crucial, espe-
cially for variational algorithms like Quantum Approximate
Optimization Algorithm (QAOA). This paper introduces Red-
QAOA, a framework designed to mitigate noise effects on
QAOA in NISQ devices. Red-QAOA utilizes a reduced graph
for parameter optimization, enhancing resilience to errors
and yielding superior results. Experimental findings demon-
strate a substantial improvement in the noise-affected energy
landscape, resulting in improved outcomes.

This overall improvement can be attributed to 28% reduc-
tion in node counts and 37% reduction in edge counts. We
tested Red-QAOA on real quantum devices and showcased
promising results. Our findings highlight the efficacy of our
methodology in optimizing quantum circuits, offering valu-
able insights for future research in quantum computing ap-
plications. By integrating our method with complementary
techniques, we can further boost the efficiency and accuracy
of quantum optimization algorithms, paving the way for new
advancements in quantum computing.
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A Artifact Appendix

A.1 Abstract

Red-QAOA introduces an innovative approach to optimizing
the Quantum Approximate Optimization Algorithm (QAOA)
by substituting the standard QAOA circuit with a smaller,
less error-prone version. This reduced circuit maintains sim-
ilar optimal circuit parameters while offering enhanced ef-
ficiency and reduced computational errors, making it more
suitable for execution on quantum devices and classical sim-
ulations. Red-QAOA is implemented in Python, utilizing the
Qiskit framework for quantum circuit operations and Net-
workX for graph-related computations.

A.2 Description

• How to access:

https://github.com/meng-ubc/Red-QAOA

• Hardware Dependencies: The experiments can be
accelerated using NVIDIA GPUs, though this is not a
requirement for basic execution.

• Software Dependencies: The following Python pack-
ages are essential for running the experiments:
– Qiskit: Used for circuit simulation.
– Networkx: Provides graph-related utilities.
– Scipy: Employed for classical optimization tasks.
– (Optional) torch-geometric: This package offers
Graph Neural Network (GNN) based graph pooling
methods that are compared to Red-QAOA.

• Data Sets: The following graph data sets are included
within the repository and are utilized in our experi-
ments:
– Linux: A dataset representing Linux kernel interac-
tion networks.

– AIDS: A dataset involving molecular structures re-
lated to AIDS research.

– IMDb: Contains data from the IMDb movie data-
base.

• Installation: To install the necessary software for
running the experiments, follow these steps:
1. Python Version: The scripts and tools have been

tested with Python 3.11.
2. Required Packages: A requirements.txt file is

provided for installing required python packages.
3. Optional GPU Support: For systems with CUDA

capabilities, the optional package ‘qiskit-aer-gpu‘
can be installed separately to enable GPU accelera-
tion. Note that the default ‘qiskit-aer‘ package has
to be uninstalled before installing ‘qiskit-aer-gpu‘.

A.3 Experiment workflow

Running Experiments: Each experiment is provided with
a Python script. The script requires specific command-line
arguments and can be executed as:

python experiment_script.py [--arguments]

Output and Analysis: The script outputs the numerical
result that can be directly compared to the numbers reported
in the paper.

A.4 Evaluation and expected results

Our study employs two key metrics: Mean Square Error
(MSE) and Approximation Ratio.

• Mean Square Error (MSE): Utilized to measure the
differences between two QAOA landscapes, this metric
is applied in:
1. Ideal Execution with MSE: Assessing the MSE be-

tween ideal QAOA landscapes.
2. Noisy Execution with MSE: Comparing the MSE in

noisy QAOA landscapes to evaluate the impact of
noise.

• Approximation Ratio: This metric assesses the end-
to-end performance of Red-QAOA, with distinct objec-
tives in ideal and noisy scenarios:
1. Ideal Execution with Approximation Ratio: In ideal

conditions, Red-QAOA aims to achieve results as
close to the baseline QAOA performance.

In evaluating Red-QAOA, we have prepared a suite of
experiments. Among these, three key experiments are crucial
for understanding the efficacy and robustness of Red-QAOA,
and they are:

A.4.1 MSE Analysis of Red-QAOA under Noisy Exe-

cution. This experiment reproduces Section 6.1 results in
the paper.

Script and Arguments:

• Script: mse_noisy.py
• Required Arguments:

– -n: Specifies the number of nodes, ranging from 7
to 14, as used in the paper.

– –width: Sets the width of the landscape, defaulting
to 32 (totalling 1024 executions).

– –shots: Defines the number of circuit executions,
with a default of 8192.

– –use_gpu: An optional flag to utilize GPU comput-
ing, with CPU as the default.

Result Analysis: The script produces two MSE values:

1. The MSE between the noisy and ideal baseline land-
scapes.

2. The MSE between the noisy Red-QAOA and ideal base-
line landscapes.

This analysis examines the relative difference between
these MSE values. Due to the randomness in graph gener-
ation, absolute MSE values may vary; however, the focus
should be on comparing the relative performance of Red-
QAOA against the baselines under noisy conditions.

A.4.2 MSEAnalysis of Red-QAOA in Ideal Conditions.

This experiment reproduces results presented in Sections 6.2
and 6.3 in the paper.
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Script and Arguments:

• Script: mse_ideal.py
• Required Arguments:

– –graph_set: Specifies the graph dataset; options
include aids, Linux, and IMDb.

– –num_graphs: Defines the number of graphs for test-
ing (it is recommended to test with at least ten graphs).

– –p: Sets the number of QAOA layers.
• Optional Arguments:

– –num_points: The number of points sampled for the
landscape, defaulting to 1024.

– –shots: The number of shots for circuit execution,
with a default of 8192.

– –use_gpu: Indicates whether to use a GPU backend;
the default is CPU.

– –min_nodes and –max_nodes: Specifies the range of
nodes, defaulting to 0 to 10 for Section 6.2 and 10 to
20 for Section 6.3.

Interpreting Results: The output should include MSE
values along with node and edge reductions, which can be
directly compared with the figures and data presented in the
paper.

A.4.3 End-to-End Performance Evaluation of Red-

QAOA in Ideal Conditions. This experiment evaluates
the end-to-end performance of the Red-QAOA under ideal,
noise-free conditions, which is discussed in Section 6.4.1 in
the paper.

Script and Arguments:

• Script: end_to_end.py
• Required Argument:

– –p: Specifies the number of QAOA layers.
• Optional Arguments:

– –num_graphs: Sets the number of graphs for testing,
with a default of 100.

– –num_nodes: Determines the number of nodes in
each graph; the default is 30 to align with the paper’s
setting. A smaller value, like 10, is suggested for
reduced computational overhead.

– –shots: Number of shots for circuit execution, de-
faulting to 8192.

– –use_gpu: Allows the option to use a GPU backend,
with CPU as the default.

Interpreting Results: The script conducts multiple op-
timization restarts for each test case. It reports the average
optimization result for Red-QAOA across all restarts, com-
paring these to the baseline and the optimal results. These
values can be directly compared with those reported in the
paper to validate Red-QAOA’s performance in ideal scenar-
ios.

A.4.4 Reproducing the Figures. The figures in the pa-
per are generated using matplotlib package. The repository

contains documentation (README_plot.md) to reproduce
the corresponding figures in the paper.

A.5 Experiment Customization

The experiments in our paper, including variations like dif-
ferent numbers of QAOA layers, are designed with flexibility
in mind. Key experiment parameters are set as required argu-
ments in our scripts, ensuring consistency with the study’s
main findings. Additionally, a range of optional arguments
is available, allowing for fine-tuning and more detailed, sen-
sitive testing scenarios.
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