

Red-QAOA: Efficient Variational Optimization through Circuit Reduction

Meng Wang m.wang@ubc.ca

Bo Fang, Ang Li, Prashant Nair

ASPLOS 2024

THE UNIVERSITY OF BRITISH COLUMBIA

Proudly Operated by Battelle Since 1965

QAOA for Combinatorial Optimization

Social Network Analysis

VLSI Design

Supply Chain Management

QAOA for Combinatorial Optimization

QAOA for Combinatorial Optimization

Parameterized Quantum Circuit $U(\gamma, \beta)$

Classical Optimization of QAOA

Classical Optimization of QAOA

Classical Optimization of QAOA

Challenge: Noisy Optimization Landscape

Red-QAOA: Insights

Red-QAOA: Key Idea

Optimize QAOA parameters with a reduced graph.

But how to find such graphs?

Red-QAOA: Heuristic for Finding Reduced Graphs

- 1. QAOA operators edges
- 2. Node degree \longleftrightarrow edges

Can node degrees be used as a heuristic?

Red-QAOA: Heuristic for Finding Reduced Graphs

Get random graphs

...

Get all subgraphs

Node degree vs landscape difference

Red-QAOA: AND vs Landscape

Red-QAOA: AND Threshold

Goal: MSE <= 0.02 → *AND Ratio >= 0.75*

Input Graph

Red-QAOA: Reduced Graph Construction

1. Initialize with a random node

2. Choose a random neighboring node

- 3. Create the neighboring graph
- 4. Better neighboring graph (higher AND)? Yes! Accept it.

No! May accept it (with *probability*).

Simulated Annealing Initial stage: high (*exploration*) Later stages: **low** (*exploitation*) Repeats

Red-QAOA: Key Result

Landscape differences

Reduction of G' over G

Red-QAOA: Key Result

Red-QAOA: Compared to GNN-Based Pooling

 Ranjan, E., Sanyal, S. and Talukdar, P., 2020, April. Asap: Adaptive structure aware pooling for learning hierarchical graph representations. In *Proceedings of the AAAI conference on artificial intelligence* (Vol. 34, No. 04, pp. 5470-5477).
Lee, J., Lee, I. and Kang, J., 2019, May. Self-attention graph pooling. In *International conference on machine learning* (pp. 3734-3743). PMLR.

[3] Gao, H. and Ji, S., 2019, May. Graph u-nets. In *international conference on machine learning* (pp. 2083-2092). PMLR.

Summary

- Classical optimization finds optimal parameters.
- Reduced graph for parameter identification.
- Reductions: 28% (nodes) and 37% (edges).
- Maintains identical optimization landscapes.
- Outperforms GNN-based methods.
- Enables execution of larger QAOA.

Thank you!

