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QAOA for Combinatorial Optimization
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QAOA for Combinatorial Optimization
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Classical Optimization of QAOA
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Classical Optimization of QAOA
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Challenge: Noisy Optimization Landscape
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Red-QAOA: Insights
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Optimal Point

Smaller circuits -> fewer errors.

QAOA optimization landscape is not unique to individual graphs



Red-QAOA: Key Idea
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Optimize QAOA parameters with a 
reduced graph.

But how to find such graphs?



Red-QAOA: Heuristic for Finding Reduced Graphs
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1. QAOA operators             edges

2. Node degree                    edges

Can node degrees be used as a heuristic?



Red-QAOA: Heuristic for Finding Reduced Graphs
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Get random graphs

Get all subgraphs

…

Node degree vs landscape difference  



Red-QAOA: AND vs Landscape
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AND is a valid 
heuristic!



Red-QAOA: AND Threshold
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Goal: MSE <= 0.02 AND Ratio >= 0.75



Red-QAOA: Reduced Graph Construction
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Simulated Annealing

Repeats



Red-QAOA: Design
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Red-QAOA: Design
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Red-QAOA: Design
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Red-QAOA: Design
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Red-QAOA: Design
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Red-QAOA: Key Result
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Landscape differences Reduction of G’ over G



Red-QAOA: Key Result
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Red-QAOA: Compared to GNN-Based Pooling
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Summary

• Classical optimization finds optimal parameters.

• Reduced graph for parameter identification.

• Reductions: 28% (nodes) and 37% (edges).

• Maintains identical optimization landscapes.

• Outperforms GNN-based methods.

• Enables execution of larger QAOA.
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Thank you!
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