
ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Dingqing Yang, Prashant J. Nair, and Mieszko Lis

a datacentre [62, 89, 92] typically leverage shared resource con-
tention between the adversary and the victim to compromise a
multi-user system. In contrast, edge devices typically lack support
for virtualization and have only a single user [40]. ‘us, a‹acks and
threat models designed for datacentres are generally not applicable
to edge devices.

As edge devices are typically deployed in the €eld, they can be
physically accessible to an adversary (a‹acker) and are vulnerable to
a broad range of a‹acks [40]. For instance, a number of a‹acks have
been demonstrated on accelerators targeting Dynamic Random Ac-
cess Memory (DRAM) bus snooping [33, 35], coldboot a‹acks [90],
physical side channels like electromagnetic (EM) or power signa-
tures [4, 91]. Moreover, physical access to devices enables invasive
a‹acks such as decapsulation [5] and microprobing [88]. For exam-
ple, DeepLaser [5] decapsulates the chip and uses a laser to cause
bit ƒips to violate output integrity. Performing such a‹acks requires
a specialized lab and is usually destructive to the device. Overall,
as compared to the cloud (e.g., the a‹acker could be a datacentre
employee), physical access is typically easier in edge devices, as
a‹ested by prior work [26, 33, 35, 37, 90].

In this paper, we focus on the threat model that places thefewest
limits on the a‹acker. Our threat modelonly requires physical access
to the device to monitor the DRAM bus. ‘is is realistic, as typical
accelerator designs [2, 10, 20, 30, 46, 48, 53, 56, 72, 84, 93, 95, 96]
consist of an on-chip accelerator SoC and external o‚-chip DRAM,
with the o‚-chip DRAM either in a socket (e.g., via a DIMM) or
directly mounted on the same PCB. For the former, the Hybrid
Memory Trace Tool (HMTT) [39] can be used to probe; for the la‹er,
tools like [86] are able to perform measurements in the currently
dominant Surface Mount Technology (SMT) [74]. Edge devices that
fall in this category include Raspberry Pi 4, Google Nexus One, etc.

Limitations of prior attacks: (Un)fortunately, prior model steal-
ing a‹acks [33, 35] do not work on sparseaccelerators that execute
prunedmodels (i.e., which skip zero weights and/or activations).
Pruning, however, is common in edge devices as it can dramati-
cally reduce the model size, with 90% or more of the weights set to
zero [17, 28]. A sparse accelerator can leverage pruning to signi€-
cantly reduce the energy and latency of inference [10, 20, 27, 72].

Irregular sparsity also makes reverse-engineering DNN archi-
tectures signi€cantly more di•cult. ‘is is because the volume of
data transferred for each tensor is compressed (to eliminate the
zeros) and no longer directly corresponds to tensor dimensions;
thus, their memory-related side-channel information is obfuscated.

Table 1 illustrates the magnitude of the problem. We €rst apply
ReverseCNN [35], the state-of-the-art DRAM volume side-channel
a‹ack, to an Eyeriss-like [9] dense accelerator running ResNet-
18 [29]. ‘is a‹ack yields only 8 possible solutions. ‘en, we
straightforwardly extend this approach to a‹ack sparse models
on a variant of the Eyeriss that accommodates weight and activa-
tion sparsity. ‘is yields a whopping 4 � 1096solutions | a number
that is clearly impossible to train and evaluate.

Key insights: ‘is paper overcomes this problem by using a novel
a‹ack that leverages two key insights:

{ We observe that Convolutional (CONV) layers exhibit abound-
ary e‚ect [23,24,41,79]. ‘is means that features at theedges
arenot translationally equivariant with the shi‰ operations

Table 1: Solution space and resources required to reverse en-
gineer dense ResNet-18 using ReverseCNN [35] and sparse
ResNet-18 (pruned by 10�) using the Lottery Ticket Hypoth-
esis [17].

Number of solutions Resources required
Dense 8 16 GPU hours
Sparse 4 � 1096 9.1 � 1092 GPU years

as opposed to the features elsewhere. ‘erefore, probing the
accelerator with multiple carefully constructed images col-
lectively allows us to detect boundary e‚ects across many
layers. ‘is helps determine €lter dimensions, stride fac-
tors, and pooling parameters based on di‚erent boundary
responses.

{ A sparse accelerator's post-processing unit performs on-the-
ƒy encoding that compresses the dense partial sums into
sparse output feature maps. ‘is means that a timing side
channel can be used to reveal the ratio between the sizes of
dense partial sums across di‚erent layers.

‘ese generic insights apply to all inference accelerators with ir-
regular sparsity that we know of [2, 10, 20, 30, 46, 48, 53, 56, 72, 84,
93, 95], as well as a vast range of pruned DNN architectures.

Contributions: In developing our a‹ack,HuffDuff , we make the
following four contributions:

{ We identify pa‹erns of inputs that can be fed to a layer to
predictably trigger di‚erent o‚-chip tra•c volumes. ‘is
allows us to determine the €lter dimensions.

{ We show how to construct inputs that create such pa‹erns
many layers downstream, revealing geometries of layers for
which we cannot directly provide inputs.

{ We describe how to collectively use multiple probes to over-
come unobservable boundary e‚ects.

{ We identify a compression-time side channel that reveals the
ratio between partial sum footprint across all layers, which
further reveals their channel counts. Since the boundary
e‚ect is agnostic to channel counts, this €lls up the missing
component that the prober cannot identify.

HuffDuff can reverse-engineer pruned modern deep CNNs within
hours, typically yielding less than a hundred possibilities that can
be trained and tested in a reasonable time by an a‹acker. Our evalu-
ation shows thatHuffDuff solutions reach the victim accuracy and
raise the black-box targeted a‹ack success rate to a semi-white-box
level (in which the a‹acker knows the correct architecture).

2 THREAT MODEL
Our threat model reƒects a situation where anunstructured pruned
DNN model is executing inference tasks locally on anedgedevice.
‘e DNN accelerator supports 2-sidedunstructured sparsity with
o‚-chip DRAM. We assume that the a‹acker hasdevice accessand
can provide inputs (e.g., via a camera) and monitorchip$ DRAM
transfer volume(but not contents).

‘is threat model, illustrated in Fig. 1, is the same as that of prior
work [35], except that we allow the DNN accelerator to support

386

HuffDuff: Stealing Pruned DNNs from Sparse Accelerators ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

PE

GLB

Encryption/Decryption
Untrusted

Memory System

Weights
Input acts

Output acts

Adversary“Protected” Accelerator

PE

PE

PE

PE

PE

Side Channel

Input

Output

Figure 1: ‡e threat model of HuffDuff (inspired by [35]). It
consists of a trusted sparse DNN accelerator and an untrusted
external memory system.

sparse execution. We describe our threat model in more detail
below.

Attacker's objective: ‘e a‹acker aims to reverse-engineer the
DNN model architecture being used for inference such that the
a‹acker can (a) re-train to obtain a model with on-par or be‹er
accuracy and e•ciency, or (b) use the knowledge gained to mount
follow-up a‹acks, such as generating adversarial examples [22],
model extraction [87], or membership inference [80].

‘e aim is to determine all network architectural hyperparame-
ters including (a) thelayer geometry(input size, output dimensions,
€lter dimensions) of each layer in the DNN, (b) thedataƒow graph
among the layers, and (c) theweight sparsity factorsfor each layer.
Once these hyperparameters are determined, the a‹acker can re-
train the model on their own data, obtaining models with a similar
level of accuracy and resource e•ciency (e.g., sparse footprint).

Next, we explain how reverse-engineering these models can help
mount follow-up a‹acks using adversarial example generation [22]
as an example.

Adversarial example generation is a process of turning a benign
input sample into a malicious sample by adding small perturbations
that are indistinguishable to human eyes. ‘ere are well-established
adversarial example generation algorithms like FGSM [22] for the
white box se‹ing where the a‹acker has access to the victim model;
FGSM leverages gradient information to €nd perturbations that
maximize the loss versus the true label under the in€nite-norm
constraint.

However, in a black box se‹ing like our threat model, the at-
tacker usually has no access to any model information like model
architecture and parameters. Sometimes, the a‹acker can rely on
transferabilitybetween models [71]: adversarial examples gener-
ated from performing a white-box a‹ack on a random surrogate can
compromise the black-box victim models. Such transferability is,
however, limited to simple a‹acks [59] on small-scale datasets, and
non-targeted a‹acks where any misprediction counts as success. In
reality, targeted a‹acks are usually more threatening, with severe
consequences that are crucial to mitigate.

To boost the targeted a‹ack success rate, prior works [59, 65]
have identi€ed that network architecture similarity between the
surrogate and the victim plays an important role. Intuitively, this
makes sense, as an architecturally similar surrogate provides more

accurate gradient information than a random surrogate. Indeed,
Deepsni‚er [33] demonstrates that targeted a‹ack success rates
increase if the surrogate is from the same model family as the vic-
tim, and shows signi€cant improvement in targeted a‹ack success
rates with reverse-engineered surrogates (as compared to random
surrogates from a model zoo). ‘erefore, reverse-engineering the
victim architecture is crucial to improve (and even enable) follow-up
a‹acks.

Attacker's capabilities: ‘e a‹acker has physical access to the
device and can monitor the signals while the device is executing
through a DRAM tracing tool like HMTT [39] or other probes [86].
Speci€cally, we assume the a‹acker can observe distinct DRAM
accesses with addresses and operation types (read or write) for each
access; this is the same assumption made by prior a‹acks [33, 35].
‘e a‹acker can also construct bespoke inputs (e.g., images) to be
processed by the accelerator [35] (e.g., by faking camera inputs).

In contrast, we assume that the a‹acker isunableto observe or
manipulate thedatabeing read or wri‹en from DRAM (e.g., due to
data encryption), and cannot observe internal on-chip states.

Workload: We assume that our victim is a Convolution Neural
Network (CNN) that is statically pruned in an unstructured man-
ner [17, 28] for maximum compression. Structured pruning, while
also in use, is a simpler case, so we focus on unstructured prun-
ing here1. We assume that the victim uses ReLU activation where
negative values are clamped to zero; this enables accelerators to
transfer compressed activations to save energy. Additional opti-
mization such as magnitude-based dynamic activation pruning [57]
can be viewed as ReLU generalized to a non-zero cut-o‚. In con-
trast, dynamic activation pruning is rarely used compared to weight
pruning; unlike weights, ine‚ectual activations cannot be statically
pruned and detecting them adds runtime overhead. Overall, ReLU
generates a decent amount of zeros, and further dynamic pruning
only provides marginal savings.

Execution environment: We assume that the model executes on
a dedicated edge DNN accelerator comprising (a) a systolic-array-
like accelerator chip and (b) o‚-chip memory (Fig. 1 \protected"
accelerator). We allow the accelerator to support bothweightand
activationsparsity, with zero-skipping during execution. It also
supports compressing weight and activation tensors during o‚-chip
memory communication. We also assume the accelerator performs
layerwise execution so that the entire footprint of all data types
is present in the external DRAM memory system at least once.
‘is corresponds to a vast range of edge-class DNN accelerators
proposed in the literature [10, 20, 30, 46, 48, 53, 56, 72, 84, 93, 95].

We allow encrypted tensor data to be transferred o‚-chip. Mem-
ory encryption techniques have been studied to protect physical
memory a‹acks from mobile devices [25], and commercial products
like ZeroPoint Secure memory [94] have been deployed. SGX-like
secure enclaves [11, 12, 97] that further provide integrity and fresh-
ness guarantees also encrypt data transferred o‚-chip through a
Memory Encryption Engine (MEE). Although full SGX support
might be overkill and create huge performance overhead for DNN

1See alsoBroader Applicationbelow.

387

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Dingqing Yang, Prashant J. Nair, and Mieszko Lis

accelerators, light-weight SGX techniques have been used in acceler-
ators like GuardNN [34], TNPU [54], and Seculator [81], which pro-
vide con€dentiality, integrity, and freshness guarantees at coarser
(tile/layer) granularity. Meanwhile, we do not require memory ad-
dresses to be contiguous in DRAM. However, we assume that a
wri‹en DRAM address maintains its value (unlike in ORAM [19])
and tra•c volumes are not obfuscated by injecting random requests
(as they would be in ORAM). We believe ORAM-like measures that
inject faux requests and autonomously move data in DRAM are far
too energetically expensive to be practical in an edge accelerator.

Finally, as common practice, we assume that operations such as
batch normalization, ReLU, accumulator quantization, and on-the-
ƒy activation compression are handled within the post-processing
module on-chip [9, 10, 45, 63, 72].

Excluded con€gurations: We exclude SRAM-only accelerators [6,
15, 27]2, which do not have o‚-chip memory accesses. We also
exclude accelerators that execute multiple layers on-chip [3, 18, 38];
indeed, we are unaware of anysparseDNN accelerators that do
that.3

Broader application: Our choice of workloads and execution
environments correspond to the most challenging case where all
available side-channel information is blurred. Memory volume of all
data types (weights, input, and output activation) cannot directly
correspond to layer geometries due to the unknown amount of
pruned or compressed zeros. Execution time also cannot correspond
to layer geometries we have an unknown amount of skipped zeros.

Our techniques apply to a broader range of workloads and envi-
ronments than the ones speci€ed above. In fact, relaxing some of
these assumptions makes the problem easier to solve: for example,
executing pre-activation batch-norm layers separately means that
additional side-channel information on the exact activation tensor
volumes (since partial sums are typically dense) is also revealed.
Similarly, accelerators with structured sparsity [14, 36, 64] can be
a‹acked by existing techniques for dense execution [33, 35], since
the transfer sizes do not vary with data content.

3 DENSE-CASE: APPROACH AND SOLUTIONS
We €rst formulate the task for the simpler case where the DNN
model is dense (not pruned) and the accelerator does not support
sparse execution. We then review the analytical solution approach
employed by prior work [35], which we refer to as ReverseCNN.

3.1 Problem Formulation
Recall from Section 2 that the a‹acker aims to determine the model's
architectural parameters, shown in Table 2. ‘is includes (1) input
activation tensor dimensions𝑋,𝑌,𝐶; (2) output activation tensor
dimensions𝑃,𝑄, 𝐾 ; (3) kernel dimensions𝑅, 𝑆,𝐶, 𝐾 ; (4) convolu-
tion stride STRIDE𝑋 and STRIDE𝑌 ; and (5) pooling layer factors
POOL𝑋 andPOOL𝑌 . ‘e a‹acker can observe the type, address,

2Cerebras wafer-scale accelerators (WSE-2) [6] are primarily for training large DNNs,
and they do have external DRAM called MemoryX [58] from which weights are
streamed into the accelerator. Nevertheless, WSE-2 has a huge 40 GB on-chip SRAM
that might €t the entire model during inference.
3[66] is a sparse accelerator that fuses bo‹leneck blocks, but they are then executed
as if they were single layers.

and transfer sizes to/from o‚-chip memory, but cannot decipher
the data.

Table 2: Symbols for Input, Output, and Weight tensors: up-
percase = actual; lowercase = unknown.

𝐼 and𝑂 input/output activation tensor transfer sizes
𝑊 weight tensor transfer size
𝐶 and𝐾 number of input and output channels
𝑋 � 𝑌 � 𝐶 output activation map dimensions
𝑃 � 𝑄 � 𝐾 input activation map dimensions
𝑅 � 𝑆 � 𝐶 � 𝐾 weight tensor dimensions
STRIDE𝑋 ,STRIDE𝑌 width and height convolution stride
POOL𝑋 ,POOL𝑌 width and height pooling factors

We use the convention that uppercase symbols indicate theactual
(possibly unknown) dimensions, while lowercase le‹ers indicate
the correspondingvariablesin constraint equations.

3.2 Prior Solution: ReverseCNN
ReverseCNN [35] €nds the hyperparameters of interest by formulat-
ing constraint equations that relate the observed o‚-chip memory
tra•c volumes to layer dimensions.

‘eir key observation is that the read-a…er-write (RAW) de-
pendency between layers must be preserved independent of any
micro-architectural details or mapping/scheduling choices. ‘us,
the output feature map of one layer becomes the input feature map
of one or more layers downstream. Because the a‹acker is able to
monitor the DRAM addresses, we can identify these dependencies
regardless of how the tensors are laid out in the address space.4

From this, one can also determine the memory footprint of the
input and output activation tensors (𝐼 and𝑂) as follows. For the
€rst layer, the size of𝐼 is known, as the a‹acker controls the inputs
to the accelerator (e.g., by spoo€ng camera outputs) [35]. For each
subsequent layer, each activation layer𝑂 is €rst wri‹en to some
memory addresses, and then the same addresses are later read (pos-
sibly more than once) as the input𝐼 of another layer. ‘is yields the
footprint of 𝐼 and𝑂, as well as the boundaries between processing
di‚erent layers. Weights are not modi€ed during inference, so the
footprint of tensor𝑊 for the layer can be determined by identifying
read-only addresses accessed during the layer's processing.

Once the tra•c volumes for𝐼 ,𝑂, and𝑊 are known, ReverseCNN
formulates the following set of equations for each layer to determine
the channel counts𝑐 and𝑘, the activation and dimensions𝑥 ,𝑦, 𝑝,
and𝑞, the €lter dimensions𝑟 and𝑠, convolution stridestride𝑥 and
stride𝑦 , and pooling factorspool𝑥 andpool𝑦 :

𝑥 � 𝑦 � 𝑐 = size¹𝐼 º (1)

𝑝 � 𝑞 � 𝑘
pool𝑥 � pool𝑦

= size¹𝑂º (2)

𝑟 � 𝑠 � 𝑐 � 𝑘 = size¹𝑊 º (3)

𝑥 = stride𝑥 � 𝑝 ¸ 𝑟 � stride𝑥 (4)

𝑦 = stride𝑦 � 𝑞 ¸ 𝑠 � stride𝑦 (5)

𝑟 = 𝑠; 𝑥 = 𝑦; stride𝑥 = stride𝑦 ; pool𝑥 = pool𝑦 (6)

4Note that this holds even if the memory is reused: each write generates a new name
or \version" for the address as is typically done when converting code to Static Single
Assignment (SSA) form [77].

388

HuffDuff: Stealing Pruned DNNs from Sparse Accelerators ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Following ReverseCNN [35], we assume that activations, €lters,
strides, and pooling layers are symmetric (Eq. 6); CNNs for vision
typically €t these assumptions [61].

‘is helps reverse-engineer a single layer. ReverseCNN [35] re-
lies on induction to extend this to multiple layers. First, recall that
𝑥 ,𝑦, and𝑐 for the €rst layer are known because the a‹acker can ob-
serve (and, indeed, cra‰) inputs to the chip. ‘en, any layer reading
the𝑂 tensor from the €rst layer will have the following dimensions
for its 𝐼 tensor (due to inter-layer RAW data dependency):

𝑥next =
𝑝

pool𝑥
, 𝑦next =

𝑞

pool𝑦
, and𝑐next = 𝑘 (7)

‘is allows ReverseCNN [35] to again apply Eqs. 2{6 and recur-
sively solve for the geometry of all layers.

In this way, ReverseCNN [35] can reverse-engineer most dense
DNNs: as shown in Table 1, it yields only 8 possible solutions for
dense ResNet-18.

4 TACKLING SPARSE MODELS
‘e problem becomes signi€cantly more complicated when pruned
models run on a sparse DNN accelerator [10, 20, 72] or a DNN
accelerator that compresses tensors when they are transferred to
and from o‚-chip memory [9].

4.1 Challenges
If we employ a sparse accelerator, the data blocks that are trans-
ferred to/from o‚-chip DRAM no longer correspond directly to
the relevant tensor dimensions . ‘is is because sparse accelera-
tors compress tensors for both evaluation and transfer by eliding
zeros. ‘is is the case for both weight tensors (where the a‹acker
does not know the pruning factor) and activation tensors (which
depend both on weight values and input activation values). Because
of this, ReverseCNN's Eqs. 1{3 no longer hold. Instead, we have
the following threeinequalities:

𝑥 � 𝑦 � 𝑐 � size¹𝐼 º (8)

𝑝 � 𝑞 � 𝑘
pool𝑥 � pool𝑦

� size¹𝑂º (9)

𝑟 � 𝑠 � 𝑐 � 𝑘 � size¹𝑊 º (10)

In other words, these inequalities state that the size of any tensor
is at leastas large as the corresponding DRAM transfer volume
observed by the a‹acker. However, as this is only alower bound,
these tensors could be much larger depending on the pruning factor
or activation sparsity. Note that there areno upper boundsfor any
of the unknowns, so solving this system of inequalities will yield
an in€nite number of solutions even for a single layer.

4.2 Na•�vely Handling Sparsity
One might think that solving Eqs. 8{10 is simply a ma‹er of es-
tablishing an upper bound for the expected sparsity | perhaps by
pro€ling many di‚erent models for a related task | and obtaining
a €nite number of solutions. To understand this, let's write𝛼 to
mean this maximum sparsity for the weight tensor, where𝛼 = 0.9
means that 90% of the weights have been pruned away. ‘is gives

us an additional equation that is denoted as follows:

𝑟 � 𝑠 � 𝑐 � 𝑘 �
size¹𝑊 º

1 � 𝛼
. (11)

Unfortunately, sparsity levels can vary signi€cantly among lay-
ers, even for some optimally pruned nets like a 10� compressed
ResNet-18 [29] | for example, the €rst and €nal layers are typically
hard to prune whereas intermediate layers can be quite sparse. ‘is
means that the upper bound is likely to be a very high sparsity fac-
tor (e.g.,𝛼 = 0.999); indeed, the Conv53 layer of our pruned version
of VGG-S has 3627 out of 2359296 weights that are retained, corre-
sponding to𝛼 = 0.9985 with no loss of accuracy. So the question is,
how well does such a bound constrain the solution space?

To be‹er understand this, let us consider solving for a layer's
output channel count𝑘 using Eqs. 10 and 11. Let us assume that we
have already solved the prior layer, so we know the actual value
of 𝑐 from the data dependency constraint on the previous layer's
output activations (Eq. 7). Again, we will denote actual values with
uppercase le‹ers and constraint variables as lowercase, so here we
know that 𝑐 = 𝐶. Let's for the moment imagine that we also know
that 𝑟 = 𝑅 and𝑠 = 𝑆 so that only𝑘 is unknown. We will denote the
actualweight sparsity as𝛽, and theassumedupper bound on the
sparsity as𝛼 . Substituting Eq. 11 into Eq. 10 yields:

size¹𝑊 º � 𝑅 � 𝑆 � 𝐶 � 𝑘 �
size¹𝑊 º

1 � 𝛼
(12)

Rewriting the observed weight footprint𝑊 in terms of the actual
sparsity𝛽 then gives us the following equations.

¹1 � 𝛽º𝑅𝑆𝐶𝐾 � 𝑅 � 𝑆 � 𝐶 � 𝑘 �
¹1 � 𝛽º𝑅𝑆𝐶𝐾

1 � 𝛼
(13)

¹1 � 𝛽º𝐾 � 𝑘 �
¹1 � 𝛽º𝐾

1 � 𝛼
(14)

Observe that the tightness of this bound is determined by (a) the
actual weight sparsity𝛽, and (b) how close the upper bound𝛼 is to
𝛽. While we now have a €nite number of solutions, typical ranges
for 𝛽 can be around 50% up to 99.9%, yielding very loose bounds.
For example, for VGG-S [82] and ResNet-18 [29], we have2.6 � 1074

and4 � 1096 of possible solutions for the whole network, a number
of possible geometries that is infeasible to train and evaluate.

In the next three sections, we show how to reduce the number
of solutions to a manageable level by (i) actively probing the accel-
erator with carefully constructed input pa‹erns and (ii) exploiting
architectural insights about DNN accelerators.

5 LEARNING VIA ACTIVE PROBING
5.1 Exploiting the Boundary E‚ect
Convolutional layers in modern CNNs are not fully translationally
equivariant, a phenomenon known as theboundary e‚ect[23, 24,
41, 79]. ‘is e‚ect arises on the edges of an input feature map,
where the part of the convolution €lter that is outside of the feature
map does not contribute to the output activation. Typically CNNs
perform zero padding in this case [61]. We will take advantage of
this to determine the dimensions of the convolutional €lters in the
model under a‹ack.

To understand this e‚ect, let us €rst examine how a single-
channel 1D convolution is a‚ected by di‚erent inputs. Fig. 2 shows
a 3� 1 €lter »3, 4, 5¼on three 5� 1 inputs,»1, 0, 0, 0, 0¼, »0, 1, 0, 0, 0¼,

389

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Dingqing Yang, Prashant J. Nair, and Mieszko Lis

and »0, 0, 1, 0, 0¼, to get a 5� 1 output. Note that, for the €rst input
(Fig. 2a), the le‰most element of the €lter (1) is always out of bounds,
and never involved in the convolution or reƒected in the output.
However, for the second and third inputs (Fig. 2b and Fig. 2c), all of
the €lter elements make it to the output vector.

1 1 1 1 14 534 53 4 53 4 53 4 53

5 4 0 03

(b) 00 001input: output: 00345 nnz: 3

1 1 4 534 53 1 4 53 1 4 53 1 4 53

4 3 0 00

(a) 01 00 0input: output: 00034 nnz: 2

11 1 1 1 14 534 53 4 53 4 53 4 53

0 5 3 04

(c) 00 010input: output: 03450 nnz: 3

Figure 2: Boundary e‚ect in 1D convolution and its outcome
on di‚erent inputs. nnz = # of non-zero elements in the out-
put. ReLU activation is omitted for clarity.

Now, note that thenumber of non-zero elements(nnz) is the same
in panes (b) and (c), but di‚erent in pane (a). ‘is di‚erence tells us
something about the size of the €lter. Speci€cally, the di‚erence in
the nnzbetween (a) and (b) tells us that there is at least one €lter
element to the le‰ of the €lter center, and the fact that thennz is
the same for (b) and (c) tells us that there is at most one. Applying
the same reasoning on the right input boundary (not shown) allows
us to conclude that the €lter is 3� 1 and centered around the second
element. If the €lter were 1� 1, all cases would have the samennz,
and if the €lter were 5� 1, all cases would have di‚erentnnzs.

How can we take advantage of this? Our threat model allows the
a‹acker to cra‰ inputs to the accelerator, so we can certainly probe
at least the €rst layer of the CNN this way. In a dense accelerator, we
cannot observe this di‚erence, because an a‹acker can only observe
the volumeof memory transfers can be observed, not the actual
values (e.g., on account of encryption). But in asparseaccelerator
that compresses activations for storage [9, 10, 20, 72], the size of
the tensor being transferred will be di‚erent because the zeros will
be elided from the output activation tensor.

‘is gives us an intuition for determining the convolutional
€lter dimensions𝑟 and𝑠: we will probe the accelerator with inputs
cra‰ed to determine the €lter size (using the 2D equivalent of Fig. 2),
measure the transferred activation size to €nd the number of non-
zeros, and compare the di‚erent cases to determine the €lter size.

However, two di•culties arise in practice. First, the a‹acker has
direct control over the input queries for only the €rst layer, and
cannot directly cra‰ any of the intermediate feature maps. ‘e
inputs to the second layer will have passed through the €rst layer's
convolutional €lters, so there is no reliable way to create the pa‹ern
of single activations surrounded by zeros shown in Fig. 2. Stride
and pooling further obfuscate this.

Second, in practice convolution layers are a•ne, i.e., they either
have an additive bias or are followed by a batch normalization
layer. ‘is means that the input zeros may not propagate to the
output: for example, if there is a bias of +1 in Fig. 2, the output in
all three cases will have €ve non-zeros. We show how to address
these di•culties in the next sub-section.

5.2 Handling Bias and Batch Normalization
Bias and the additive term in batch normalization can render the
technique above ine‚ective. For example, if the convolution in-
cludes a bias term of̧2, the cases in Fig. 2 become:

01 00 0 22256 nnz: 54 53∗ + 2256 22

10 00 0 22567 nnz: 54 53∗ + 2267 52

00 01 0 25672 nnz: 54 53∗ + 2572 62

Now, these cases can no longer be distinguished, because the
number of non-zeros is the same for all three. To mitigate this, we
make two observations: (i) the probe inputs can be any number, not
just 1, and (ii) the ReLU activation function will make all negative
values zero in the output feature map. For example, if the probe
vector contains� 1 instead of 1, the €lter footprint will be negative
(and thus zero post-ReLU), while the bias terms will be non-zero:

0–1 00 0 222–1–2 nnz: 34 53∗ + 2200 22

–10 00 0 22–1–2–3 nnz: 24 53∗ + 2200 02

00 0–1 0 2–1–2–32 nnz: 24 53∗ + 2002 02

Note that, while thennz for the edge and non-edge cases is the
opposite from Fig. 2 (the edge case has more zeros, not fewer), the
two are still observably di‚erent, and this is enough to determine
the €lter size.

With all the examples discussed so far, we start to formalize
a single-layer a‹ack. Let's de€ne theconv layeroperation as the
composition ofCONV, BatchNorm, and ReLU. For features that do
not reside on the edge,conv layer is equivariant to shi‰ operations:

conv layer(shi‰¹𝑥ºº = shi‰(convlayer¹𝑥ºº

Counting thennzelements on both sides reveals that the number
of non-zero element responses is also invariant to shi‰ operations:

nnz(conv layer(shi‰¹𝑥ººº = nnz(shi‰(convlayer¹𝑥ººº

= nnz(conv layer¹𝑥ºº

Neither of these holds for features𝑥𝑒 that reside on the edge:

conv layer(shi‰¹𝑥𝑒 ºº ≠ shi‰(convlayer¹𝑥𝑒 ºº

While we can't observe the activations themselves (which might
be encrypted), we can measurennz. Di‚erent activation tensors are
likely to havennz, which allows us to observe the boundary e‚ect.

Rarely, the boundary e‚ect isobscured, and di‚erent activation
tensors can end up having the samennz even if their values are
di‚erent. Essentially, the boundary e‚ect always exists (due to non-
equivariance at the edge), but can either beobservable(di‚erent
nnzcount) orunobservable(samennzcount).

In practice, we €nd that this is not a problem, and boundary
e‚ects are usually observable. ‘is is because there are manyCONV
kernels, and the boundary e‚ect will be obscured only if all of the
kernels are unobservable, or their totalnnzdi‚erences cancel out

390

HuffDuff: Stealing Pruned DNNs from Sparse Accelerators ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

exactly | both unlikely situations. To estimate the likelihood that
the boundary e‚ect is observable, we randomly sampled kernels
in pruned models and applied random half-Gaussian inputs; the
boundary e‚ect was observable in 77% of the cases.

More importantly, the \unobservability" issue can only cause
false negatives, and never false positives, as it is impossible to ob-
serve a boundary e‚ect when one does not exist. ‘erefore, we can
simply make multiple independent random probes to amplify the
probability of observing the boundary e‚ect.

5.3 Probing Downstream Layers
In the bias discussion above, we used \probe vectors" with 0 in the
\inactive" positions, and either 1 or� 1 in the \active" position where
we wish to place the convolution kernel. However, the inputs do
not have to be 0, 1, or� 1: they can be any values as long as the
inactive and active positions have di‚erent values. ‘e boundary
e‚ect (where some of the €lter entries are unused) still occurs, and
from the previous section, we already know how to separate any
two values in the output activation tensor by taking advantage of
ReLU.

‘is observation gives us a way to probe layers downstream
even if we cannot directly inject inputs into those layers. ‘e in-
tuition is that the boundary e‚ect can survive multiple layers, but
the footprint of the probe impulse (the \active" position) will get
progressively blurred over a larger area as it passes through more
layers.

To develop some intuition, let us continue the running exam-
ple, this time propagating it through two 1D convolutional layers
without bias, and generalizing it to arbitrary weight values. For
clarity, we will omit ReLU here, but in general, ReLU can be used
to distinguish values as in the previous section.

A‰er the €rst layer, with €lter weights»𝑎, 𝑏, 𝑐¼, the output acti-
vations become:

001 00 0 b ca

010 00 0 b ca

000 01 0 b ca

0000ab

000abc

00abc0

000 00 1 b ca 00 abc0

∗
∗
∗
∗

Recall that we can observe the memory tra•c for each layer, so we
can determine that €lter in the €rst layer is 3� 1.

Note that in the €rst row, only a part of the €lter survives in
the output, which will cause problems downstream: we will not be
able to distinguish whether any observed boundary e‚ect comes
from the €rst or second layer. We therefore drop the €rst row and
proceed with the remaining rows.

Now, let us apply anotherCONVlayer, with €lter »𝑑, 𝑒, 𝑓¼:

∗
∗

000αβγδ

00αβγδε

0000abc

000abc0

e fd

e fd

∗ 0αβγδε0000 ac0 b e fd

α = da
β = db + ea
γ = dc + eb + fa
δ = ec + fb
ε = fc

Observe that our probe impulse is still visible in the output as
»𝜀, 𝛿,𝛾, 𝛽, 𝛼¼surrounded by zeros. Also, it is still located where the
original impulse was.

Finally, let us reintroduce non-zero bias into the problem. Probing
the €rst layer (€lter»𝑎, 𝑏, 𝑐¼, bias𝑢) yields:

uuuuua+ub+uc+u

uuuua+ub+uc+uu

uuuu a+ub+uc+uu

00010 00 0 b ca∗ + u

00000 01 0 b ca∗ + u

00000 00 1 b ca∗ + u

u uuu a+ub+uc+uu00000 10 0 b ca∗ + u

‘is is exactly what we saw a‰er the €rst layer above, except that
now we have added𝑢 everywhere.

‘e analysis is a bit more involved a‰er the second layer (€lter
»𝑑, 𝑒, 𝑓¼, bias𝑣):

uuuuua+ub+uc+u

uuuua+ub+uc+uu

uuuu a+ub+uc+uu

ζζζγχ ζβ αe fd∗ + v

ζζζδψ αγ βe fd∗ + v

ζζαεω βδ γe fd∗ + v

u uuu a+ub+uc+uu ζαβζω γε δe fd∗ + v

α = da+du+eu+fu+v β = db+du+ea+eu+fu+v γ = dc+du+eb+eu+fa+fu+v δ = du+ec+eu+fb+fu+v
ε = du+eu+fc+fu+v ζ = du+eu+fu+v χ = δ–du ψ = ε–du ω = ζ–du

‘is pa‹ern is almostthe same as the no-bias case above: the two-
layer impulse response»𝜀, 𝛿,𝛾, 𝛽, 𝛼¼surrounded by𝜁 , the second
layer's €lter response to the €rst layer's bias (this was 0 with no bias).
Also, as the €rst layer's bias𝑢 is distinguished from the implicit
padding of 0, the €rst element in each vector (shaded yellow) di‚ers
from its later corresponding occurrence later on { because the la‹er
includes the bias response𝑑𝑢.

Once we distinguish the various values (see Section 5.2 above),
we will conclude that the €lter size is 3� 1. If we wish to probe the
third layer, we again discard the rows where the €lter response is
partial; in this case, we would discard the €rst two rows.

Although the running example here is a 1D convolution, exactly
the same analysis applies to 2D convolutions, except with more edge
cases to distinguish. Other layer types (e.g., pooling) and e‚ects
such as stride are also amenable to this kind of analysis; we omit
the details for these layers here because of space limitations.

5.4 Handling \Errors" in Downstream Layers
Section 5.3 shows boundary e‚ects on downstream layers with a
running example. As discussed in Section 5.2, since we only have
partial observability by measuringnnz, some downstream layers
could have \errors" (i.e., unobservable boundary e‚ects). We €nd
that it is di•cult to €nd a random probe that has directly observable
boundary e‚ects in all layers.

To mitigate this, let us €rst consider a concrete example of \suc-
cess", that is, of an unobscured boundary e‚ect with all relevant
nnzs di‚erent:

uuuuua+ub+uc+u

uuuua+ub+uc+uu

uuuu a+ub+uc+uu

ζζζγχ ζβ αe fd∗ + v

ζζζδψ αγ βe fd∗ + v

ζζαεω βδ γe fd∗ + v

u uuu a+ub+uc+uu ζαβζω γε δe fd∗ + v

nnz = A

nnz = B

nnz = C

nnz = C

α = da+du+eu+fu+v β = db+du+ea+eu+fu+v γ = dc+du+eb+eu+fa+fu+v δ = du+ec+eu+fb+fu+v
ε = du+eu+fc+fu+v ζ = du+eu+fu+v χ = δ–du ψ = ε–du ω = ζ–du

Observe that thennzform the pa‹ern𝐴𝐵𝐶𝐶, where𝐴,𝐵, and𝐶 are
di‚erent nnzvalues. In this case, we have full observability, since
the content of the €rst row and the second row di‚ers from the
third or fourth row.

391

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Dingqing Yang, Prashant J. Nair, and Mieszko Lis

Now, non-observability occurs when annnzfor one row is equal
to that of another even if the values are di‚erent; here, this could be
𝐴𝐵𝐵𝐵 (partial observability) or𝐴𝐴𝐴𝐴 (no observability). ‘e last
case (𝐴𝐴𝐴𝐴) is particularly troublesome because it is the correct
output for pointwise layers.

Luckily, the error is one-sided again, becausennzcannot change
once the €lter has cleared the edge; e.g., it's impossible to observe
𝐴𝐵𝐶𝐷 in this example. ‘erefore, we only need to look for the
longest non-convergent pa‹ern among multiple random probes
(e.g., choose𝐴𝐵𝐶𝐶 over𝐴𝐵𝐵𝐵 and𝐴𝐴𝐴𝐴). With repeated probes,
the probability of failure on a layer (i.e., thatnoneof the probes
demonstrate observability) decreases exponentially with the num-
ber of independent random probes.

Next, we will generalize this intuition from this section and
present the complete a‹ack scheme.

6 AUTOMATING THE ATTACK
6.1 Generalized Input Pattern
Recall that the inputs observed by any layer in the model will con-
tain a \feature" segment that combines all of the previous layers'
€lters (»𝜀, 𝛿,𝛾, 𝛽, 𝛼¼in the examples in the previous section), sur-
rounded by zero or more responses to the bias term (𝜁 above). In
addition, the initial columns (one column in the example above)
contain constants generated by the edge e‚ect applied to the bias
term (𝜔 above).

We can generalize this pa‹ern asA¹𝑚,𝑛º, where𝑛 is the feature
length, and𝑚 is the number of the initial column constants:

A¹𝑚,𝑛º = f𝑥𝑖g
𝑞

𝑖=1 , where𝑞 = # of query pa‹erns, and

𝑥1 = 𝑠1, 𝑠2, . . . , 𝑠𝑚, 𝑓1, 𝑓2, . . . , 𝑓𝑛, 𝑏, 𝑏, 𝑏, . . . ,

𝑥2 = 𝑠1, 𝑠2, . . . , 𝑠𝑚, 𝑏, 𝑓1, 𝑓2, . . . , 𝑓𝑛, 𝑏, 𝑏, . . . ,

𝑥3 = 𝑠1, 𝑠2, . . . , 𝑠𝑚, 𝑏, 𝑏, 𝑓1, 𝑓2, . . . 𝑓𝑛, 𝑏, . . . , etc.

For example, our initial input sequence in the previous section can
be denoted byA¹ 0, 1º.

6.2 Symbolic Convolution Engine
To assist in probing multi-layer networks, we developed an engine
that evaluates convolutionssymbolically. ‘at is, rather than adding
and multiplying numbers, it constructs an algebraic expression for
the result of the convolution a‰er layer𝑙 given (a) a speci€c input
pa‹ern A¹𝑚,𝑛º for layer 1, and (b) a hypothesis for the geometry
of layer𝑙 (e.g., 3� 3 kernel, stride 1, pooling factor 2).

For example, consider again the second layer from the running
example, and let us hypothesize that the convolution is 3� 1 with no
pooling. Having analyzed the €rst layer, we know that the second
layer will receive the probe pa‹ernA¹ 0, 3º. ‘e symbolic convolu-
tion engine will yield:

uuuuua+ub+uc+u

uuuua+ub+uc+uu

uuuu a+ub+uc+uu

ζζζγχ ζβ αe fd∗ + v

ζζζδψ αγ βe fd∗ + v

ζζαεω βδ γe fd∗ + v

u uuu a+ub+uc+uu ζαβζω γε δe fd∗ + v

nnz = A

nnz = B

nnz = C

nnz = C

α = da+du+eu+fu+v β = db+du+ea+eu+fu+v γ = dc+du+eb+eu+fa+fu+v δ = du+ec+eu+fb+fu+v
ε = du+eu+fc+fu+v ζ = du+eu+fu+v χ = δ–du ψ = ε–du ω = ζ–du

From this, the engine will produce the pa‹ern of the expected
number of non-zeros (nnz) observed for each input once𝜁 has been
distinguished from the other values (see Section 5.2). In this case,
we have three possiblennzcounts, with the last one repeating as
the €lter leaves the edge; we write this pa‹ern as𝐴𝐵𝐶𝐶 . . .

On the other hand, let us hypothesize that the second layer is a
pointwise 1� 1 convolution. ‘e engine will yield:

uuuuua+ub+uc+u

uuuua+ub+uc+uu

uuuu a+ub+uc+uu

γ β ζζ ζζαg∗ + v

ζαζ γ ζζβg∗ + v

βζ α ζγ ζζg∗ + v

u uuu a+ub+uc+uu ζ βγζζ α ζg∗ + v

nnz = A

nnz = A

nnz = A

nnz = A

α = ga+gu+v β = gb+gu+v γ = gc+gu+v ζ = gu+v

which gives thennz pa‹ern 𝐴𝐴𝐴𝐴 . . . ‘e reader is invited to
verify that for a 3� 1 convolution followed by 2� 1 max pooling, the
expected pa‹ern would be𝐴𝐵𝐶𝐷𝐶𝐷

‘ese nnz pa‹erns allow us to distinguish di‚erent types of
layers. To do this, the symbolic convolution engine (1) generates
expectednnz pa‹erns for each geometry hypothesisfor the cur-
rent layer, (2) feeds the €rst-layer inputs to the accelerator, and
(3) compares the outputnnzs obtained by snooping on the o‚-chip
memory tra•c to determine which layer geometry is correct.

6.3 ‡e Probing Algorithm
Algorithm 1 shows the pseudocode for the probing algorithm.

Input: 𝑇 i.i.d. random probes where each corresponds to input queries
f 𝑥𝑖 g𝑙𝑖=1 2 A¹𝑚,𝑛º, #𝑙𝑎𝑦𝑒𝑟𝑠

Output: reverse engineered layer geometry inresult
for 𝑖 1 to 𝑙 do

for 𝑡 1 to 𝑇 do
nnz»𝑖¼»𝑡¼»𝑗¼ Inference ¹𝑥 º

end
end
result 𝐿𝑖𝑠𝑡 ¹º
for 𝑗 1 to #layersdo

select a probe𝑡 with the longestnnzconverging pa‹ern.
select the valid subset ofnnz»:¼»𝑡¼»𝑗¼to form test nnzs
paˆerns SymbolicConv¹𝑚,𝑛º
foreach 𝑘 2 all possible layer con€gsdo

if test nnzs matchespaˆerns»𝑘¼then
result»𝑗¼ 𝑘
𝑚,𝑛 DecodeOutPattern(paˆerns»𝑘¼)
break

end
end

end

Algorithm 1: ‘e HuffDuff probing a‹ack.

SymbolicConv(m,n)symbolically evaluates a given layer for the
sequenceA¹𝑚,𝑛º, andDecodeOutPaˆern(. . .) determines𝑚0, 𝑛0

for which the layer output matchesA¹𝑚0, 𝑛0º, so that this can be
used in analyzing the next layer.

6.4 Limitations of the Probing Attack
‘e HuffDuff probing a‹ack is quite powerful in practice: for
example, it works acrossall layers evaluated on VGG-S [82] and
ResNet-18 [29]. It is able to €nd the correct information about ker-
nel size, stride, and pooling within 2048 random probes. However,

392

HuffDuff: Stealing Pruned DNNs from Sparse Accelerators ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

the boundary e‚ect appears agnostic to the number of channels,
and therefore theHuffDuff probing a‹ack on its own cannot
determine𝑘.

7 USING ARCHITECTURAL PROPERTIES
To reverse-engineer the €nal piece of the puzzle | the channel (𝑘)
information | we rely on observations about (a) the dense nature
of partial sums, and (b) how partial sums are transferred between
an accelerator chip and DRAM.

7.1 DensePSUMs
We usepsumsto provide an additional architectural timing channel
and deduce the value of𝑘. We observe thatpsums| as opposed to
output activations | are extremely unlikely to contain zeros and
therefore are held dense during accumulation. ‘e zeros inpsum
can only arise (i) if all weights in the kernel or all input activations
within the kernel footprint are 0 (very unlikely), (ii) the Multiply
and Accumulate (MAC) operations exactly cancel each other out
(even more unlikely).

In addition, it is unsafe to clamp negativepsums and create spar-
sity beforethe accumulation process ends, because these values
might turn positive again before accumulation is complete. ‘ere-
fore, thepsumtile is held in the Global Bu‚er (GLB) in a dense
fashion during this process5. Only a‰er thepsumcalculations are
completed, will they be sent to the post-processing unit. ‘is unit
clamps, quantizes, and compresses the €nal values into sparse out-
put feature maps and sends them back to DRAM.

As the densepsumsare stored on-chip during accumulation to
exploit reuse, they do not need to be transferred back to DRAM.
However, a‰er the accumulation phase, the post-processing unit
exploits sparsity, compressingpsumsbefore sending them to o‚-
chip DRAM. ‘is allows us to create a timing side channel.

7.2 ‡e Timing Side-Channel

GLB row

DRAMEncoding
Module

Comp block

Buffer

Dense completed
Psum Sparse

compressed output
feature map

GLB

Figure 3: ‡e ƒow of psums into DRAM, depicting the on-the-
ƒy encoding for output activations.

Fig. 3 shows how densepsumvalues in GLB are compressed to a
sparse output feature map. First, a GLB row that contains multiple
psumwords is sent to the encoding module6 where negative values
are clamped and the compressed content is stored in its local bu‚ers.
Once there is enough data in the bu‚er, a compressed sparse block
will be wri‹en back to DRAM. ‘is continues until all dense psum
are processed.

5We exclude ReLU prediction type of accelerators [1, 83] that exploit output activation
sparsity based on additional predictions. To the best of our knowledge, no sparse
accelerators proposed to date employ this technique.
6More precisely, it is the post-processing module where other post-processing opera-
tions such as quantizing the accumulator to the actual activation width are performed.
We omit this for simplicity.

‘e execution time of the encoding process can be bounded by
either the GLB side the DRAM side, as shown below.

R1
t

W1

R2 R3 R4 R5 R6 R7 R8

W2 W3DRAM

GLB

R1

W1

R2 R3 R4

W2 W3DRAM

GLB
t

…

…

…

…
(a)

(b)

Panel(a) depicts a case where the encoding process is GLB-bound.
𝑅𝑖 represents distinct GLB rows being read, and𝑊𝑖 stands for dis-
tinct DRAM transfers. Multiple packed GLB rows generate a sin-
gle compressed block, and the DRAM has su•cient bandwidth to
quickly transfer those compressed blocks. ‘e total encoding time
is proportional to the number of GLB rows that are read, and thus
corresponds to densepsumsize. We approximate the total time as
the di‚erence between the last DRAM transfer time and the €rst
DRAM transfer time.

Panel (b) depicts a case where the encoding process is DRAM-
bound. ‘is could be because the GLB row is wide enough to con-
struct a large compressed block and the DRAM has only limited
bandwidth to write these blocks. In this case, the GLB row reads
will stall as the bu‚er within the encoding module will quickly
become full. Here, the total processing time is proportional to the
number of DRAM transfers, which corresponds to the size of the
sparse output feature map.

Fortunately, in practice, the encoding process tends to be GLB-
bound (see Section 8). ‘is is because the accumulators forpsum
typically have a larger bitwidth to avoid overƒow. For example,
Eyeriss v2 [10] and SCNN [72] use 20 bits and 24 bits respectively,
whereas their activation width is only 8 bits. Additionally, since
psums are dense, they naturally have more elements than output
feature maps, which are sparse: overall, the size of densepsums
tends to be 5� {6 � larger than sparse output feature maps. ‘us, we
can obtain thepsumsize ratio between di‚erent layers, and, with
known values of𝑃,𝑄 (from the prober), use this to reverse engineer
the ratio of𝑘 between those layers.

8 EVALUATION

8.1 Methods
To obtain the sparse victim model, we used the Lo‹ery Ticket
Hypothesis [17], pruning VGG-S [82] by a factor of 10� and ResNet-
18 [29] also by a factor of 10� , each trained on CIFAR-10 [50]. We
instrumented the PyTorch [73] code for each model to generate the
responses to the probing component of theHuffDuff a‹ack.

We build a custom analytic simulator for the on-the-ƒy encod-
ing process discussed in Section 7.2 based on runtime activation
snapshot captured from Pytorch [73] models. We used the avail-
able psum GLB bandwidth from Eyeriss v2 [10], an state-of-the-art
2-sided sparse accelerator, with LPDDR3 [42], LPDDR4 [44], and
LPDDR4X [43] memory.

To evaluate the e‚ectiveness of our a‹ack, we sample models
from the solution space and evaluate our accuracy as well as the
black box targeted adversarial a‹ack success rate. We generate ad-
versarial examples using BIM [52] method based on implementation
from TorchA‹acks [49].

393

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Dingqing Yang, Prashant J. Nair, and Mieszko Lis

8.2 E‚ectiveness of HuffDuff Components

Prober: Section 5 discusses how to reverse engineer €lter size,
stride, and pooling based on di‚erent probing responses. Although
\errors" (i.e., unobservable edge e‚ects) could occur on any down-
stream layers, the failure probability can be successfully decreased
based on probability ampli€cation via multiple independent ran-
dom trials: we keep increasing the number of random trials until
the identi€ed geometry converges. We €nd that 2048 random trials
are su•cient to correctly reveal all of the layer geometry such as
€lter size, stride, and pooling. In practice, we are able to obtain all
layer geometry information except output channel counts in less
than 10 minutes on an NVIDIA 2080Ti GPU.

Encoding the timing side-channel : Section 7 approximates dense
psum ratios between di‚erent layers based on the ratio of the timing
di‚erence between the €rst and last DRAM transfers. Our simula-
tion is based Eyeriss v2 [10], which has 8 psum GLB banks, where
each bank is 3 words wide (20-bit accumulator, running at 200MHz.
‘e evaluated DRAM includes both the single-channel and dual-
channel versions of LPDDR3 [42], LPDDR4 [44], and LPDDR4X [43].
Our evaluation is based on pro€led output activations from Py-
Torch [73]. We observe that the system is GLB-bound even with
the lowest-bandwidth DRAM (i.e., single-channel LPDDR3).

To further determine the limits of leveraging the GLB-bound
property, we also evaluated how much more GLB bandwidth is
required for Eyeriss v2 [10] for it to begin experiencing some DRAM-
bound layers for VGG-S and ResNet18; the results are shown below
(𝑠 for single channel and𝑑 for dual channel).

LPDDR4 3-𝑠 3-𝑑 4-𝑠 4-𝑑 4X-𝑠 4X-𝑑
VGG-S 2� 4� 2.3� 4.6� 2.7� 5.3�
ResNet18 1.8� 3.5� 2� 4.1� 2.3� 4.7�

While the accelerator designer can increase the available GLB
bandwidth by creating more banks, the bo‹leneck will only shi‰ to
the encoder as it is challenging to encode a large number of words
within a single cycle.

Although we have validated that encoding is GLB-bound, the side
channel information collected is only an approximation, because
the time between the €rst GLB row read and the €rst DRAM transfer
is unknown. We found this small inaccuracy to be acceptable in
practice without the need for additional denoising.

Finalizing the solution space : Since the encoding timing chan-
nel only provides ratios between di‚erent output channel counts
(𝑘), we would like to identify the channel count range for at least
one layer. We €nd the €rst layer is a good candidate as its weight
is much denser compared to other layers. First, €rst-layer €lters
directly process the input images, and an aggressive pruning on
the €rst layer weight compromises the accuracy more comparing
pruning other weights [28]. Second, €rst-layer weights are typically
tiny, and we €nd that pruning algorithms are more likely to prune
aggressively on layers with large weights. Empirically, we €nd that
€rst-layer sparsity is rarely beyond 60%, so we use this to establish
empirical sparsity bound, which gives an output channel count
range»30, 73¼and »58, 123¼for ResNet18 [29] and VGG-S [82] re-
spectively. Combining the encoder timing channel info, we get the
44 and 66 solutions for ResNet18 [29] and VGG-S [82] respectively.

B 1 2 3 4 5 6 7 8
Model instance

93.0

93.2

93.4

93.6

93.8

94.0

Ac
cu

ra
cy

 in
 %

VGG-S

B 1 2 3 4 5 6 7 8
Model instance

93.00
93.25
93.50
93.75
94.00
94.25
94.50

ResNet18

Figure 4: Accuracy for sampled instances on VGG-S (le…) and
ResNet-18 (right). Baseline accuracy is in the blue shaded bars
whereas the accuracy of 8 HuffDuff sampled instances are
in green dotted bars. ‡e original victim accuracy is depicted
in a blue dashed line. VGG baseline accuracy is 75.8% (not
shown in the €gure).

8.3 †ality of Reverse-Engineered Models
A good reverse-engineered model should have the following proper-
ties: (i) high classi€cation accuracy under the same model footprint
such that the a‹acker can use it, and (ii) usefulness in mounting
follow-up a‹acks, such as generating adversarial examples that
compromise the victim system. ‘erefore, we evaluated the quality
of the reverse-engineered models using two metrics: accuracy and
targeted adversarial a‹ack success rate. We performed uniform
sampling from the solution space, sampling 8 candidates each for
VGG-S [82] and ResNet18 [29].

Accuracy: We compare the accuracy of 8 sampled candidates
(model instance id sorted with respect to unpruned size in Fig. 4.
Our baselines are constructed as selecting a model from a prior
generation in the model zoo and pruned to the same footprint.
We choose a model from a prior generation because it does not
make sense for the a‹acker to steal a \worse" model if the goal
is to match iso-footprint accuracy. ‘us, to compare with candi-
dates obtained from reverse-engineering VGG-S [82], we selected
AlexNet [51] as the baseline, and we used VGG-S [82] as the baseline
for ResNet18 [29] candidates.

Our candidates for the VGG-S victim signi€cantly outperform
the baseline (75.8%, not shown in Fig. 4), with some even exceeding
the original victim. All candidates for ResNet18 exceed the baseline
and the best-performing model is within 0.1% of the victim.

Adversarial success rate: We examine the black box targeted
success rate among our sampled candidates and the baselines. We
follow prior works [33,59] where baselines are chosen from random
surrogates in the model zoo. Unlike the prior dense case, we further
prune them to di‚erent sparsity levels for a more thorough com-
parison. For our VGG-S victims (Fig. 5 le‰), we select ResNet18 [29]
and MobileNetV2 [78], each pruned 2� and 5� (B1 to B4 in Fig. 5
le‰). For Fig. 5 le‰ on ResNet18 victim, we include four baselines:
VGG-S and MobileNetV2, also pruned to 2� and 5� .

In terms of the target selection heuristic, prior works [33,59] pick
a random label as the transfer target that might not be challenging
enough if the randomly chosen target is similar to the original label.
Since transferability is harder to achieve with a more challenging
target, we choose the most challenging target selection heuristic:

394

HuffDuff: Stealing Pruned DNNs from Sparse Accelerators ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

B1 B2 B3 B4 1 2 3 4 5 6 7 8
Model instance

20

40

60

Su
cc

es
s r

at
e

in
%

VGG-S

B1 B2 B3 B4 1 2 3 4 5 6 7 8
Model instance

40

60

80

ResNet18

Figure 5: Black box targeted success rate (where max per pixel
disturbance 𝜀 bounded by 32) for sampled instances on VGG-
S (le…) and ResNet-18 (right). Instance B1 to B4 on the le…
(shaded light blue bars) corresponds to 4 baselines ResNet18
pruned 2x, ResNet18 pruned 5� , MobileNetV2 pruned 2 � , Mo-
bileNetV2 5� respectively. B1 to B4 on the right corresponds
to ResNet18 pruned 2� , ResNet18 pruned 5� , MobileNetV2
pruned 2� , MobileNetV2 5 � respectively. Instances 1 to 8
(dotted light green bars) correspond to 8 sampled instances
using HuffDuff. ‡e success rate for the one with identical
architecture is in a blue dashed line.

B1 B2 B3 B4 1 2 3 4 5 6 7 8
Model instance

10

20

30

40

50

Su
cc

es
s r

at
e

in
%

VGG-S

B1 B2 B3 B4 1 2 3 4 5 6 7 8
Model instance

20

40

60

ResNet18

Figure 6: Success rate over di‚erent model instances. We use
a similar setting to Fig. 5 except that we reduced the per pixel
disturbance 𝜀 to 16.

the least likely label. In this target, perturbation is added to trick
the model to predict the least likely label in the original prediction
(i.e. tricking the model to perform the worst prediction).

Notice here that measuring transferability on the victim model
using the victim itself is equivalent to the white-box a‹ack, so
instead, we compare with a model having the oracle structure
with the victim but trained with a di‚erent random seed. We €rst
demonstrate the targeted a‹ack success rate with allowed per pixel
disturbance (𝜀) to be 32 (follow to [59]) in Fig. 5. Our candidate
models transfer signi€cantly be‹er than most baselines, and many
even outperform an idealized se‹ing where the model architecture
is known to the a‹acker. Moreover, we evaluate the a‹ack with
𝜀 = 16 where such disturbance is considered imperceptible [52] in
Fig. 6 and observe a similar trend.

9 DISCUSSION AND FUTURE DIRECTIONS
9.1 HuffDuff Limitations
In this subsection, we summarize the scenarios whereHuffDuff
does not work well. ‘ose scenarios are not the common case, and
HuffDuff is su•cient for most cases.

In terms of the target accelerator, we exclude the SRAM-only
ones like EIE [27] and ShiDianNao [15], as well as Cerebras WSE-
2 [6] with its gigantic 40GB SRAM. ‘ese accelerators may not leave
visible footprints in DRAM, but they are prohibitively expensive
in terms of silicon area. We also exclude accelerators that perform
layer-fusion [3, 18, 38]. ‘is is because they do not leave the en-
tire footprint visible in DRAM, and thereforeHuffDuff or other
DRAM-snooping-based a‹acks [33, 35] are not e‚ective. Finally,
we exclude accelerators that are not sparse [7, 8, 45].

‘e HuffDuff prober does not provide any insight on convolu-
tions that do not exhibit the boundary e‚ect, so it does not work on
the transposed convolutions used in UNet [76] and GANs [21]. Nev-
ertheless, the prober applies to all padding modes (\valid", \same",
and \full" [16]) and strategies (\constant", \reƒect", \replicate", and
\circular", following PyTorch [73] terminology), as they do create
boundary e‚ects. However, theHuffDuff prober does not distin-
guish among them, and our implementation assumes the \same"
padding mode and the zero padding as the most common case in
TorchVision [61].

9.2 Potential Defence Strategies
Fully e‚ective defences, like ORAM [19], SRAM-only accelera-
tors [6, 15, 27], are prohibitively expensive in silicon area, especially
for edge accelerators. In theory, fused-layer accelerators [3, 18, 38]
would expand the search space, but no such sparse accelerators
exist, and dense accelerators are easy to crack [35]. We leave these
outside our threat model as unrealistic.

Hardware defences that might appear cheaper are also non-
trivial. ‘ere are two widely adapted defence strategies that could
apply: (i) blocking the source of the leak and (ii) obfuscating the
detection of the leak. For example, the victim could leave \sensitive"
pixels (i.e., positions that might reveal the boundary e‚ect com-
pared with other probes) uncompressed. ‘is leverages the €rst
approach that avoids the boundary e‚ect from being observed in
DRAM: for example, an𝐴𝐵𝐶𝐶 pa‹ern shown in Section 5.4 will
appear to be𝐴𝐴𝐴𝐴, and no €lter size information will be obtainable.
However, such a scheme is non-trivial because the \sensitive" posi-
tion is di‚erent for di‚erent a‹ack pa‹erns, and therefore would
require additionaldynamichardware support. Following the second
approach, the victim could randomly leave zeros uncompressed;
in this case, an𝐴𝐵𝐶𝐶 pa‹ern shown in Section 5.4 might become
𝐴𝐵𝐶𝐷 to obfuscate the detection of €lter size. However, this may
still not provide enough security guarantees, as this kind of noise
could be overcome with repeated trials. We believe a serious de-
fence study would be a paper unto itself, and therefore we leave
this to future work.

395

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Dingqing Yang, Prashant J. Nair, and Mieszko Lis

10 RELATED WORK

Model-stealing and corruption attacks: Prior work has inves-
tigated reverse engineering network architectures with IP protec-
tions. With the reverse-engineered model, one can stage other types
of a‹acks. For instance, Tramer et al. [75] try to duplicate the ML
model by exploiting the features of ML-as-a-Service. Rather than
using features of the service model,HuffDuff exploits the features
of the hardware to tailor speci€c inputs to reverse engineer the
model.

Oh et al. [65] proposed a so‰ware-based a‹ack that investigates
techniques to infer parameters and characteristics from a black-box
model. To enable this, they use multiple input queries to charac-
terize the decision boundary of the victim model and then employ
a \meta-model" to try to predict certain hyper-parameters. Unfor-
tunately, these black-box approaches have limited e•cacy as they
do not have access to any information related to side channels or
hardware architectures. On the other hand, asHuffDuff utilizes
the information of the underlying architecture, it can be relatively
more powerful.

Rather than stealing the model, prior work has also proposed de-
grading the model using fault injection a‹acks that ƒip a small num-
ber of bits to signi€cantly degrade the accuracy of the model [75].
‘ese a‹acks can be orchestrated on DRAM modules using the
Rowhammer vulnerability and can cause integrity violations [22,
31, 55, 75]. Such a‹acks are orthogonal toHuffDuff .

Hardware-based attacks: Yan et al. [92] use the insight that the
DNNs executed on CPUs heavily rely on blocked GEMM operations.
‘ey then use a cache side-channel a‹ack to extract this informa-
tion about GEMM. ‘ey can use this a‹ack to infer the number of
GEMM calls and the size of matrices that GEMM operates on. ‘ey
show that this can be used to reveal the DNN architecture. How-
ever, this a‹ack works very well with dense networks and unlike
HuffDuff it is ine‚ective with sparse networks. LeakyDNN [89]
exploits GPU context-switch side channels to steal DNNs. Other
GPU side channels [62] can also be potentially exploited. Several
prior works have also explored a‹acks using physical probing of
the hardware [33, 35]. ‘ese works do not translate to sparse accel-
erators.

In a similar vein, Deepsni‚er [33] tries to steal dense models on
GPUs. ‘ey use the insight that one can use an end-to-end learning-
based approach to handle a lot of system and architectural noises.
While Deepsni‚er has access to the entire so‰ware stack to create
training data to extract useful side-channel information,HuffDuff
does not require this. Furthermore, Deepsni‚er is an expensive
approach as they need to re-collect the training set and re-train the
model when they use di‚erent GPUs and runtimes. In contrast, for
HuffDuff the noise on side channel info (tensor sparsity) is also
part of the secret, and we do not need to construct the training set.

11 CONCLUSIONS
‘ere is an increasing trend of using sparse DNN models to run
directly and locally on edge devices using custom sparse DNN
accelerators. ‘ese devices are controlled by the users and can be
disassembled and monitored to measure o‚-chip access volume.

In this paper, we show that this physical access is su•cient to
enable the the‰ of the DNN models within. We demonstrate a novel
a‹ack scheme, calledHuffDuff , which leverages (i) the boundary
e‚ect present inCONVlayers, and (ii) the timing side channel created
by on-the-ƒy activations compression.

Together, these techniques o‚er a practical method to dramat-
ically reduce the space of possible model architectures by up to
94 orders-of-magnitude, o‰en yielding fewer than a hundred solu-
tions. Our evaluation shows that candidate models sampled from
the HuffDuff solution space reach the accuracy of the victim, and
raise black-box targeted a‹ack success rates to a semi-white-box
level (where the a‹acker knows the correct architecture) while
remaining black-box techniques.

ACKNOWLEDGMENTS
‘e authors are grateful to the anonymous reviewers and the shep-
herd for insightful feedback and helpful suggestions.

‘is material is based on research sponsored by Air Force Re-
search Laboratory (AFRL) and Defense Advanced Research Project
Agency (DARPA) under agreement number FA8650-20-2-7007, and
by the Natural Sciences and Engineering Research Council of Canada
(NSERC) under award number NETGP 485577-15. ‘e U.S. Govern-
ment is authorized to reproduce and distribute reprints for Govern-
mental purposes notwithstanding any copyright notation thereon.
‘e views and conclusions contained herein are those of the au-
thors and should not be interpreted as necessarily representing the
o•cial policies or endorsements, either expressed or implied, of Air
Force Research Laboratory (AFRL), Defense Advanced Research
Project Agency (DARPA), the U.S. Government, the Natural Sci-
ences and Engineering Research Council of Canada (NSERC), or
the Government of Canada.

REFERENCES
[1] Vahideh Akhlaghi, Amir Yazdanbakhsh, Kambiz Samadi, Rajesh K. Gupta, and

Hadi Esmaeilzadeh. 2018. SnaPEA: Predictive Early Activation for Reducing
Computation in Deep Convolutional Neural Networks. In2018 ACM/IEEE 45th
Annual International Symposium on Computer Architecture (ISCA). 662{673. h‹ps:
//doi.org/10.1109/ISCA.2018.00061

[2] Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt, Natalie Enright
Jerger, and Andreas Moshovos. 2016. Cnvlutin: Ine‚ectual-Neuron-Free Deep
Neural Network Computing. In2016 ACM/IEEE 43rd Annual International Sympo-
sium on Computer Architecture (ISCA). 1{13. h‹ps://doi.org/10.1109/ISCA.2016.11

[3] Manoj Alwani, Han Chen, Michael Ferdman, and Peter Milder. 2016. Fused-layer
CNN accelerators. In2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). 1{12. h‹ps://doi.org/10.1109/MICRO.2016.7783725

[4] Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan Picek. 2019. CSI NN:
Reverse Engineering of Neural Network Architectures through Electromagnetic
Side Channel. InProceedings of the 28th USENIX Conference on Security Symposium
(Santa Clara, CA, USA)(SEC'19). USENIX Association, USA, 515{532.

[5] Jakub Breier, Xiaolu Hou, Dirmanto Jap, Lei Ma, Shivam Bhasin, and Yang Liu.
2018. Practical Fault A‹ack on Deep Neural Networks. InProceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security(Toronto,
Canada)(CCS '18). Association for Computing Machinery, New York, NY, USA,
2204{2206. h‹ps://doi.org/10.1145/3243734.3278519

[6] Cerebras. 2021. Wafer-Scale Engine: ‘e Largest Chip Ever Built. h‹ps://f.
hubspotusercontent30.net/hubfs/8968533/WSE-2%20Datasheet.pdf

[7] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,
and Olivier Temam. 2014. DianNao: a small-footprint high-throughput accelera-
tor for ubiquitous machine-learning. InArchitectural Support for Programming
Languages and Operating Systems, ASPLOS 2014, Salt Lake City, UT, USA, March
1-5, 2014, Rajeev Balasubramonian, Al Davis, and Sarita V. Adve (Eds.). ACM,
269{284. h‹ps://doi.org/10.1145/2541940.2541967

[8] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li,
Tianshi Chen, Zhiwei Xu, Ninghui Sun, and Olivier Temam. 2014. DaDianNao: A
Machine-Learning Supercomputer. In2014 47th Annual IEEE/ACM International

396

https://doi.org/10.1109/ISCA.2018.00061
https://doi.org/10.1109/ISCA.2018.00061
https://doi.org/10.1109/ISCA.2016.11
https://doi.org/10.1109/MICRO.2016.7783725
https://doi.org/10.1145/3243734.3278519
https://f.hubspotusercontent30.net/hubfs/8968533/WSE-2%20Datasheet.pdf
https://f.hubspotusercontent30.net/hubfs/8968533/WSE-2%20Datasheet.pdf
https://doi.org/10.1145/2541940.2541967

HuffDuff: Stealing Pruned DNNs from Sparse Accelerators ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Symposium on Microarchitecture. 609{622. h‹ps://doi.org/10.1109/MICRO.2014.
58

[9] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: A Spatial Architec-
ture for Energy-E•cient Dataƒow for Convolutional Neural Networks. In2016
ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA).
367{379. h‹ps://doi.org/10.1109/ISCA.2016.40

[10] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. 2019. Eyeriss v2: A
Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices.
IEEE Journal on Emerging and Selected Topics in Circuits and Systems9, 2 (2019),
292{308. h‹ps://doi.org/10.1109/JETCAS.2019.2910232

[11] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained.IACR Cryptol.
ePrint Arch.2016, 86 (2016), 1{118.

[12] Tom Woller David Kaplan, Jeremy Powell. 2016. AMD Memory Encryption
{ A White Paper. h‹ps://developer.amd.com/wordpress/media/2013/12/AMD
Memory Encryption Whitepaperv7-Public.pdf. [Online; accessed 7-July-2022].

[13] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Im-
ageNet: A large-scale hierarchical image database. In2009 IEEE Computer So-
ciety Conference on Computer Vision and Paˆern Recognition (CVPR 2009), 20-
25 June 2009, Miami, Florida, USA. IEEE Computer Society, 248{255. h‹ps:
//doi.org/10.1109/CVPR.2009.5206848

[14] Caiwen Ding, Siyu Liao, Yanzhi Wang, Zhe Li, Ning Liu, Youwei Zhuo, Chao
Wang, Xuehai Qian, Yu Bai, Geng Yuan, Xiaolong Ma, Yipeng Zhang, Jian Tang,
Qinru Qiu, Xue Lin, and Bo Yuan. 2017. CirCNN: Accelerating and Compressing
Deep Neural Networks Using Block-Circulant Weight Matrices. In2017 50th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 395{
408.

[15] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao Luo,
Xiaobing Feng, Yunji Chen, and Olivier Temam. 2015. ShiDianNao: Shi‰ing
vision processing closer to the sensor. In2015 ACM/IEEE 42nd Annual International
Symposium on Computer Architecture (ISCA). 92{104. h‹ps://doi.org/10.1145/
2749469.2750389

[16] Vincent Dumoulin and Francesco Visin. 2016. A guide to convolution arithmetic
for deep learning.CoRRabs/1603.07285 (2016). arXiv:1603.07285 h‹p://arxiv.
org/abs/1603.07285

[17] Jonathan Frankle and Michael Carbin. 2019. ‘e Lo‹ery Ticket Hypothesis:
Finding Sparse, Trainable Neural Networks. In7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. Open-
Review.net. h‹ps://openreview.net/forum?id=rJl-b3RcF7

[18] Mingyu Gao, Xuan Yang, Jing Pu, Mark Horowitz, and Christos Kozyrakis. 2019.
TANGRAM: Optimized Coarse-Grained Dataƒow for Scalable NN Accelerators. In
Proceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS 2019, Providence, RI,
USA, April 13-17, 2019, Iris Bahar, Maurice Herlihy, Emme‹ Witchel, and Alvin R.
Lebeck (Eds.). ACM, 807{820. h‹ps://doi.org/10.1145/3297858.3304014

[19] Oded Goldreich and Rafail Ostrovsky. 1996. So‰ware Protection and Simulation
on Oblivious RAMs.J. ACM43, 3 (1996), 431{473. h‹ps://doi.org/10.1145/233551.
233553

[20] Ashish Gondimalla, Noah Chesnut, Mithuna ‘o‹ethodi, and T. N. Vijaykumar.
2019. SparTen: A Sparse Tensor Accelerator for Convolutional Neural Networks.
In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microar-
chitecture(Columbus, OH, USA)(MICRO '52). Association for Computing Ma-
chinery, New York, NY, USA, 151{165. h‹ps://doi.org/10.1145/3352460.3358291

[21] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. 2014.
Generative Adversarial Nets. InAdvances in Neural Information Process-
ing Systems 27: Annual Conference on Neural Information Processing Sys-
tems 2014, December 8-13 2014, Montreal, ‹ebec, Canada, Zoubin Ghahra-
mani, Max Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q. Wein-
berger (Eds.). 2672{2680. h‹ps://proceedings.neurips.cc/paper/2014/hash/
5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html

[22] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and
Harnessing Adversarial Examples. In3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, Yoshua Bengio and Yann LeCun (Eds.). h‹p://arxiv.org/abs/1412.6572

[23] D Gri•th and Carl Amrhein. 1983. An Evaluation of Correction Techniques for
Boundary E‚ects in Spatial Statistical Analysis: Traditional Methods.Geographi-
cal Analysis15, 4 (1983), 352.

[24] Daniel A Gri•th. 1983. ‘e Boundary Value Problem in Spatial Statistical Analy-
sis. Journal of Regional Science23, 3 (1983), 377{387.

[25] Le Guan, Chen Cao, Sencun Zhu, Jingqiang Lin, Peng Liu, Yubin Xia, and Bo
Luo. 2019. Protecting Mobile Devices from Physical Memory A‹acks with
Targeted Encryption. InProceedings of the 12th Conference on Security and Privacy
in Wireless and Mobile Networks(Miami, Florida)(WiSec '19). Association for
Computing Machinery, New York, NY, USA, 34{44. h‹ps://doi.org/10.1145/
3317549.3319721

[26] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William
Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W.

Felten. 2009. Lest We Remember: Cold-Boot A‹acks on Encryption Keys.Com-
mun. ACM52, 5 (may 2009), 91{98. h‹ps://doi.org/10.1145/1506409.1506429

[27] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz,
and William J. Dally. 2016. EIE: E•cient Inference Engine on Compressed Deep
Neural Network. In2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA). 243{254. h‹ps://doi.org/10.1109/ISCA.2016.30

[28] Song Han, Huizi Mao, and William J. Dally. 2016. Deep Compression: Compress-
ing Deep Neural Network with Pruning, Trained •antization and Hu‚man
Coding. In4th International Conference on Learning Representations, ICLR 2016,
San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, Yoshua Bengio
and Yann LeCun (Eds.). h‹p://arxiv.org/abs/1510.00149

[29] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In2016 IEEE Conference on Computer Vision and
Paˆern Recognition (CVPR). 770{778. h‹ps://doi.org/10.1109/CVPR.2016.90

[30] Kartik Hegde, Hadi Asghari Moghaddam, Michael Pellauer, Neal Clayton Crago,
Aamer Jaleel, Edgar Solomonik, Joel S. Emer, and Christopher W. Fletcher. 2019.
ExTensor: An Accelerator for Sparse Tensor Algebra. InProceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 2019,
Columbus, OH, USA, October 12-16, 2019. ACM, 319{333. h‹ps://doi.org/10.1145/
3352460.3358275

[31] Sanghyun Hong, Pietro Frigo, Yi�gitcan Kaya, Cristiano Giu‚rida, and Tudor
Dumitras� . 2019. Terminal Brain Damage: Exposing the Graceless Degradation
in Deep Neural Networks under Hardware Fault A‹acks. InProceedings of the
28th USENIX Conference on Security Symposium(Santa Clara, CA, USA)(SEC'19).
USENIX Association, USA, 497{514.

[32] Jie Hu, Li Shen, and Gang Sun. 2018. Squeeze-and-Excitation Networks. In2018
IEEE Conference on Computer Vision and Paˆern Recognition, CVPR 2018, Salt Lake
City, UT, USA, June 18-22, 2018. Computer Vision Foundation / IEEE Computer
Society, 7132{7141. h‹ps://doi.org/10.1109/CVPR.2018.00745

[33] Xing Hu, Ling Liang, Shuangchen Li, Lei Deng, Pengfei Zuo, Yu Ji, Xinfeng Xie,
Yufei Ding, Chang Liu, Timothy Sherwood, and Yuan Xie. 2020. DeepSni‚er: A
DNN Model Extraction Framework Based on Learning Architectural Hints. In
Proceedings of the Twenty-Fi‡h International Conference on Architectural Support
for Programming Languages and Operating Systems(Lausanne, Switzerland)(AS-
PLOS '20). Association for Computing Machinery, New York, NY, USA, 385{399.
h‹ps://doi.org/10.1145/3373376.3378460

[34] Weizhe Hua, Muhammad Umar, Zhiru Zhang, and G. Edward Suh. 2022. GuardNN:
Secure Accelerator Architecture for Privacy-Preserving Deep Learning. InPro-
ceedings of the 59th ACM/IEEE Design Automation Conference(San Francisco,
California) (DAC '22). Association for Computing Machinery, New York, NY,
USA, 349{354. h‹ps://doi.org/10.1145/3489517.3530439

[35] Weizhe Hua, Zhiru Zhang, and G. Edward Suh. 2018. Reverse Engineering
Convolutional Neural Networks ‘rough Side-channel Information Leaks. In
2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC). 1{6. h‹ps:
//doi.org/10.1109/DAC.2018.8465773

[36] Weizhe Hua, Yuan Zhou, Christopher De Sa, Zhiru Zhang, and G. Edward Suh.
2019. Boosting the Performance of CNN Accelerators with Dynamic Fine-Grained
Channel Gating. InProceedings of the 52nd Annual IEEE/ACM International Sym-
posium on Microarchitecture, MICRO 2019, Columbus, OH, USA, October 12-16,
2019. ACM, 139{150. h‹ps://doi.org/10.1145/3352460.3358283

[37] Andrew Huang. 2002. Hacking the Xbox: An Introduction to Reverse Engineering.
(2002).

[38] Chao-Tsung Huang, Yu-Chun Ding, Huan-Ching Wang, Chi-Wen Weng, Kai-Ping
Lin, Li-Wei Wang, and Li-De Chen. 2019. eCNN: A Block-Based and Highly-
Parallel CNN Accelerator for Edge Inference. InProceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO 2019, Columbus,
OH, USA, October 12-16, 2019. ACM, 182{195. h‹ps://doi.org/10.1145/3352460.
3358263

[39] Yongbing Huang, Licheng Chen, Zehan Cui, Yuan Ruan, Yungang Bao, Mingyu
Chen, and Ninghui Sun. 2014. HMTT: A Hybrid Hardware/So‰ware Tracing
System for Bridging the DRAM Access Trace's Semantic Gap.ACM Trans. Archit.
Code Optim.11, 1, Article 7 (feb 2014), 25 pages. h‹ps://doi.org/10.1145/2579668

[40] Mihailo Isakov, Vijay Gadepally, Karen M. Ge‹ings, and Michel A. Kinsy. 2019.
Survey of A‹acks and Defenses on Edge-Deployed Neural Networks. In2019
IEEE High Performance Extreme Computing Conference (HPEC). 1{8. h‹ps://doi.
org/10.1109/HPEC.2019.8916519

[41] Bernd Jahne. 2004.Practical Handbook on Image Processing for Scienti€c and
Technical Applications. CRC Press.

[42] JEDEC Standard. 2015. Lpw Power Double Data Rate 3 SDRAM (LPDDR3). In
JESD209-3C.

[43] JEDEC Standard. 2021. Addendum No. 1 to JESD209-4, Low Power Double Data
Rate 4X (LPDDR4X). InJESD209-4-1A.

[44] JEDEC Standard. 2021. Low Power Double Data Rate 4 (LPDDR4). InJESD209-4D.
[45] Norman P. Jouppi, Cli‚ Young, Nishant Patil, David A. Pa‹erson, Gaurav Agrawal,

Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,
Pierre-luc Cantin, Cli‚ord Chao, Chris Clark, Jeremy Coriell, Mike Daley, Ma‹
Dau, Je‚rey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Go‹ipati,
William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu,

397

https://doi.org/10.1109/MICRO.2014.58
https://doi.org/10.1109/MICRO.2014.58
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1109/JETCAS.2019.2910232
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1145/2749469.2750389
https://doi.org/10.1145/2749469.2750389
https://arxiv.org/abs/1603.07285
http://arxiv.org/abs/1603.07285
http://arxiv.org/abs/1603.07285
https://openreview.net/forum?id=rJl-b3RcF7
https://doi.org/10.1145/3297858.3304014
https://doi.org/10.1145/233551.233553
https://doi.org/10.1145/233551.233553
https://doi.org/10.1145/3352460.3358291
https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
http://arxiv.org/abs/1412.6572
https://doi.org/10.1145/3317549.3319721
https://doi.org/10.1145/3317549.3319721
https://doi.org/10.1145/1506409.1506429
https://doi.org/10.1109/ISCA.2016.30
http://arxiv.org/abs/1510.00149
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1145/3352460.3358275
https://doi.org/10.1145/3352460.3358275
https://doi.org/10.1109/CVPR.2018.00745
https://doi.org/10.1145/3373376.3378460
https://doi.org/10.1145/3489517.3530439
https://doi.org/10.1109/DAC.2018.8465773
https://doi.org/10.1109/DAC.2018.8465773
https://doi.org/10.1145/3352460.3358283
https://doi.org/10.1145/3352460.3358263
https://doi.org/10.1145/3352460.3358263
https://doi.org/10.1145/2579668
https://doi.org/10.1109/HPEC.2019.8916519
https://doi.org/10.1109/HPEC.2019.8916519

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Dingqing Yang, Prashant J. Nair, and Mieszko Lis

Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Ja‚ey, Alek Jaworski, Alexander
Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve
Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle
Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran
Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, ‘omas Norrie,
Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Ma‹ Ross,
Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Ma‹hew Snelham,
Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory ‘orson, Bo
Tian, Horia Toma, Erick Tu‹le, Vijay Vasudevan, Richard Walter, Walter Wang,
Eric Wilcox, and Doe Hyun Yoon. 2017. In-Datacenter Performance Analysis of a
Tensor Processing Unit. InProceedings of the 44th Annual International Symposium
on Computer Architecture, ISCA 2017, Toronto, ON, Canada, June 24-28, 2017. ACM,
1{12. h‹ps://doi.org/10.1145/3079856.3080246

[46] Patrick Judd, Alberto Delmas Lascorz, Sayeh Sharify, and Andreas Moshovos.
2017. Cnvlutin2: Ine‚ectual-Activation-and-Weight-Free Deep Neural Network
Computing.CoRRabs/1705.00125 (2017). arXiv:1705.00125 h‹p://arxiv.org/abs/
1705.00125

[47] Changhyeon Kim, Sanghoon Kang, Dongjoo Shin, Sungpill Choi, Youngwoo
Kim, and Hoi-Jun Yoo. 2019. A 2.1TFLOPS/W Mobile Deep RL Accelerator with
Transposable PE Array and Experience Compression. In2019 IEEE International
Solid- State Circuits Conference - (ISSCC). 136{138. h‹ps://doi.org/10.1109/ISSCC.
2019.8662447

[48] Dongyoung Kim, Junwhan Ahn, and Sungjoo Yoo. 2018. ZeNA: Zero-Aware
Neural Network Accelerator.IEEE Design & Test35, 1 (2018), 39{46. h‹ps:
//doi.org/10.1109/MDAT.2017.2741463

[49] Hoki Kim. 2020. Torcha‹acks : A Pytorch Repository for Adversarial A‹acks.
CoRRabs/2010.01950 (2020). arXiv:2010.01950 h‹ps://arxiv.org/abs/2010.01950

[50] Alex Krizhevsky. 2009.Learning Multiple Layers of Features from Tiny Images.
Master's thesis. University of Toronto.

[51] Alex Krizhevsky, Ilya Sutskever, and Geo‚rey E. Hinton. 2012. ImageNet
Classi€cation with Deep Convolutional Neural Networks. InAdvances in
Neural Information Processing Systems 25: 26th Annual Conference on Neural
Information Processing Systems 2012. Proceedings of a meeting held Decem-
ber 3-6, 2012, Lake Tahoe, Nevada, United States, Peter L. Bartle‹, Fernando
C. N. Pereira, Christopher J. C. Burges, L�eon Bo‹ou, and Kilian Q. Wein-
berger (Eds.). 1106{1114. h‹ps://proceedings.neurips.cc/paper/2012/hash/
c399862d3b9d6b76c8436e924a68c45b-Abstract.html

[52] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. 2017. Adversarial examples
in the physical world. In5th International Conference on Learning Representa-
tions, ICLR 2017, Toulon, France, April 24-26, 2017, Workshop Track Proceedings.
OpenReview.net. h‹ps://openreview.net/forum?id=HJGU3Rodl

[53] Ching-En Lee, Yakun Sophia Shao, Jie-Fang Zhang, Angshuman Parashar, Joel
Emer, Stephen W Keckler, and Zhengya Zhang. 2018. Stitch-X: An Accelerator
Architecture for Exploiting Unstructured Sparsity in Deep Neural Networks. In
SysML Conference, Vol. 120.

[54] Sunho Lee, Jungwoo Kim, Seonjin Na, Jongse Park, and Jaehyuk Huh. 2022. TNPU:
Supporting Trusted Execution with Tree-less Integrity Protection for Neural
Processing Unit. In2022 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). 229{243. h‹ps://doi.org/10.1109/HPCA53966.
2022.00025

[55] Guanpeng Li, Siva Kumar Sastry Hari, Michael Sullivan, Timothy Tsai, Karthik
Pa‹abiraman, Joel Emer, and Stephen W. Keckler. 2017. Understanding Error
Propagation in Deep Learning Neural Network (DNN) Accelerators and Ap-
plications. InSC17: International Conference for High Performance Computing,
Networking, Storage and Analysis. 1{12.

[56] Jiajun Li, Shuhao Jiang, Shijun Gong, Jingya Wu, Junchao Yan, Guihai Yan, and
Xiaowei Li. 2019. SqueezeFlow: A Sparse CNN Accelerator Exploiting Concise
Convolution Rules.IEEE Trans. Comput.68, 11 (2019), 1663{1677. h‹ps://doi.
org/10.1109/TC.2019.2924215

[57] Tailin Liang, Lei Wang, Shaobo Shi, and John Glossner. 2018. Dynamic runtime
feature map pruning.arXiv preprint arXiv:1812.09922(2018).

[58] Sean Lie. 2022. Cerebras Architecture Deep Dive: First Look Inside the HW/SW
Co-Design for Deep Learning : Cerebras Systems. In2022 IEEE Hot Chips 34
Symposium (HCS). 1{34. h‹ps://doi.org/10.1109/HCS55958.2022.9895479

[59] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. 2017. Delving into
Transferable Adversarial Examples and Black-box A‹acks. In5th International
Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net. h‹ps://openreview.net/
forum?id=Sys6GJqxl

[60] Johnson Loh, Jianan Wen, and Tobias Gemmeke. 2020. Low-Cost DNN Hardware
Accelerator for Wearable, High-•ality Cardiac Arrythmia Detection. In2020
IEEE 31st International Conference on Application-speci€c Systems, Architectures
and Processors (ASAP). 213{216. h‹ps://doi.org/10.1109/ASAP49362.2020.00042

[61] S�ebastien Marcel and Yann Rodriguez. 2010. Torchvision the Machine-Vision
Package of Torch. InProceedings of the 18th ACM International Conference on
Multimedia(Firenze, Italy)(MM '10). Association for Computing Machinery, New
York, NY, USA, 1485{1488. h‹ps://doi.org/10.1145/1873951.1874254

[62] Hoda Naghibijouybari, Ajaya Neupane, Zhiyun Qian, and Nael Abu-Ghazaleh.
2018. Rendered Insecure: GPU Side Channel A‹acks Are Practical. InProceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security
(Toronto, Canada)(CCS '18). Association for Computing Machinery, New York,
NY, USA, 2139{2153. h‹ps://doi.org/10.1145/3243734.3243831

[63] NVIDIA. 2017. NVIDIA Deep Learning Accelerator (NVDLA). h‹p://nvdla.org/
[64] NVIDIA. 2020. NVIDIA A100 Tensor Core GPU Architecture.

h‹ps://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-
ampere-architecture-whitepaper.pdf.

[65] Seong Joon Oh, Max Augustin, Mario Fritz, and Bernt Schiele. 2018. Towards
Reverse-Engineering Black-Box Neural Networks. In6th International Conference
on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May
3, 2018, Conference Track Proceedings. OpenReview.net. h‹ps://openreview.net/
forum?id=BydjJte0-

[66] MohammadHossein Olyaiy, Christopher Ng, and Mieszko Lis. 2021. Accel-
erating DNNs inference with predictive layer fusion. InICS '21: 2021 Inter-
national Conference on Supercomputing, Virtual Event, USA, June 14-17, 2021,
Huiyang Zhou, Jose Moreira, Frank Mueller, and Yoav Etsion (Eds.). ACM, 291{
303. h‹ps://doi.org/10.1145/3447818.3460378

[67] OpenAI. 2019. Be‹er Language Models and ‘eir Implications. h‹ps://openai.
com/blog/be‹er-language-models/.

[68] OpenAI. 2019. GPT-2: 1.5B Release. h‹ps://openai.com/blog/gpt-2-1-5b-release/.
[69] OpenAI. 2019. GPT-2: 6-Month Follow-Up. h‹ps://openai.com/blog/gpt-2-6-

month-follow-up/.
[70] OpenAI. 2020. OpenAI API. h‹ps://openai.com/blog/openai-api/.
[71] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z. Berkay

Celik, and Ananthram Swami. 2017. Practical Black-Box A‹acks against Machine
Learning. InProceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security(Abu Dhabi, United Arab Emirates)(ASIA CCS '17).
Association for Computing Machinery, New York, NY, USA, 506{519. h‹ps:
//doi.org/10.1145/3052973.3053009

[72] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rang-
harajan Venkatesan, Brucek Khailany, Joel Emer, Stephen W. Keckler, and
William J. Dally. 2017. SCNN: An accelerator for compressed-sparse convolu-
tional neural networks. In2017 ACM/IEEE 44th Annual International Symposium
on Computer Architecture (ISCA). 27{40. h‹ps://doi.org/10.1145/3079856.3080254

[73] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas K•opf, Edward Z. Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. InAdvances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada, Hanna M. Wallach, Hugo
Larochelle, Alina Beygelzimer, Florence d'Alch�e-Buc, Emily B. Fox, and Ro-
man Garne‹ (Eds.). 8024{8035. h‹ps://proceedings.neurips.cc/paper/2019/hash/
bdbca288fee7f92f2bfa9f7012727740-Abstract.html

[74] Ray Prasad. 2013.Surface Mount Technology: Principles and Practice. Springer
Science & Business Media.

[75] Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. 2019. Bit-Flip A‹ack: Crushing
Neural Network With Progressive Bit Search. In2019 IEEE/CVF International
Conference on Computer Vision (ICCV). 1211{1220. h‹ps://doi.org/10.1109/ICCV.
2019.00130

[76] Olaf Ronneberger, Philipp Fischer, and ‘omas Brox. 2015. U-Net: Convolutional
Networks for Biomedical Image Segmentation. InMedical Image Computing and
Computer-Assisted Intervention { MICCAI 2015, Nassir Navab, Joachim Horneg-
ger, William M. Wells, and Alejandro F. Frangi (Eds.). Springer International
Publishing, Cham, 234{241.

[77] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. 1988. Global Value Numbers
and Redundant Computations. InProceedings of the 15th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages(San Diego, California, USA)
(POPL '88). Association for Computing Machinery, New York, NY, USA, 12{27.
h‹ps://doi.org/10.1145/73560.73562

[78] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. MobileNetV2: Inverted Residuals and Linear Bo‹lenecks. In
2018 IEEE/CVF Conference on Computer Vision and Paˆern Recognition. 4510{4520.
h‹ps://doi.org/10.1109/CVPR.2018.00474

[79] Osman Semih Kayhan and Jan C. van Gemert. 2020. On Translation Invariance
in CNNs: Convolutional Layers Can Exploit Absolute Spatial Location. In2020
IEEE/CVF Conference on Computer Vision and Paˆern Recognition (CVPR). 14262{
14273. h‹ps://doi.org/10.1109/CVPR42600.2020.01428

[80] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017. Mem-
bership Inference A‹acks Against Machine Learning Models. In2017 IEEE Sym-
posium on Security and Privacy (SP). 3{18. h‹ps://doi.org/10.1109/SP.2017.41

[81] Nivedita Shrivastava and Smruti R. Sarangi. 2022. Seculator: A Fast and Secure
Neural Processing Unit.CoRRabs/2204.08951 (2022). h‹ps://doi.org/10.48550/
arXiv.2204.08951 arXiv:2204.08951

398

https://doi.org/10.1145/3079856.3080246
https://arxiv.org/abs/1705.00125
http://arxiv.org/abs/1705.00125
http://arxiv.org/abs/1705.00125
https://doi.org/10.1109/ISSCC.2019.8662447
https://doi.org/10.1109/ISSCC.2019.8662447
https://doi.org/10.1109/MDAT.2017.2741463
https://doi.org/10.1109/MDAT.2017.2741463
https://arxiv.org/abs/2010.01950
https://arxiv.org/abs/2010.01950
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://openreview.net/forum?id=HJGU3Rodl
https://doi.org/10.1109/HPCA53966.2022.00025
https://doi.org/10.1109/HPCA53966.2022.00025
https://doi.org/10.1109/TC.2019.2924215
https://doi.org/10.1109/TC.2019.2924215
https://doi.org/10.1109/HCS55958.2022.9895479
https://openreview.net/forum?id=Sys6GJqxl
https://openreview.net/forum?id=Sys6GJqxl
https://doi.org/10.1109/ASAP49362.2020.00042
https://doi.org/10.1145/1873951.1874254
https://doi.org/10.1145/3243734.3243831
http://nvdla.org/
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://openreview.net/forum?id=BydjJte0-
https://openreview.net/forum?id=BydjJte0-
https://doi.org/10.1145/3447818.3460378
https://openai.com/blog/better-language-models/
https://openai.com/blog/better-language-models/
https://openai.com/blog/gpt-2-1-5b-release/
https://openai.com/blog/gpt-2-6-month-follow-up/
https://openai.com/blog/gpt-2-6-month-follow-up/
https://openai.com/blog/openai-api/
https://doi.org/10.1145/3052973.3053009
https://doi.org/10.1145/3052973.3053009
https://doi.org/10.1145/3079856.3080254
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.1109/ICCV.2019.00130
https://doi.org/10.1109/ICCV.2019.00130
https://doi.org/10.1145/73560.73562
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/CVPR42600.2020.01428
https://doi.org/10.1109/SP.2017.41
https://doi.org/10.48550/arXiv.2204.08951
https://doi.org/10.48550/arXiv.2204.08951
https://arxiv.org/abs/2204.08951

HuffDuff: Stealing Pruned DNNs from Sparse Accelerators ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

[82] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. In3rd International Conference on Learn-
ing Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, Yoshua Bengio and Yann LeCun (Eds.). h‹p://arxiv.org/abs/1409.1556

[83] Mingcong Song, Jiechen Zhao, Yang Hu, Jiaqi Zhang, and Tao Li. 2018. Prediction
Based Execution on Deep Neural Networks. In2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA). 752{763. h‹ps://doi.
org/10.1109/ISCA.2018.00068

[84] Rastislav Struharik, Bogdan Vukobratovi�c, Andrea Erdeljan, and Damjan
Rakanovi�c. 2018. CoNNA { Compressed CNN Hardware Accelerator. In2018
21st Euromicro Conference on Digital System Design (DSD). 365{372. h‹ps:
//doi.org/10.1109/DSD.2018.00070

[85] Hsin-Hsuan Sung, Yuanchao Xu, Jiexiong Guan, Wei Niu, Bin Ren, Yanzhi Wang,
Shaoshan Liu, and Xipeng Shen. 2022. Brief Industry Paper: Enabling Level-4
Autonomous Driving on a Single$1k O‚-the-Shelf Card. In28th IEEE Real-Time
and Embedded Technology and Applications Symposium, RTAS 2022, Milano, Italy,
May 4-6, 2022. IEEE, 297{300. h‹ps://doi.org/10.1109/RTAS54340.2022.00032

[86] Keysight Technologies. 2014. W2637A, W2638A and W2639A LPDDR BGA
Probes for Logic Analyzers and Oscilloscopes. Retrieved November 3, 2022 from
h‹ps://www.keysight.com/us/en/assets/7018-02123/data-sheets/5990-3892.pdf

[87] Florian Tram�er, Fan Zhang, Ari Juels, Michael K. Reiter, and ‘omas Ristenpart.
2016. Stealing Machine Learning Models via Prediction APIs. InProceedings of
the 25th USENIX Conference on Security Symposium(Austin, TX, USA)(SEC'16).
USENIX Association, USA, 601{618.

[88] Assia Tria and Hamid Choukri. 2011. Invasive A‹acks. InEncyclopedia of
Cryptography and Security, 2nd Ed, Henk C. A. van Tilborg and Sushil Jajodia
(Eds.). Springer, 623{629. h‹ps://doi.org/10.1007/978-1-4419-5906-5511

[89] Junyi Wei, Yicheng Zhang, Zhe Zhou, Zhou Li, and Mohammad Abdullah
Al Faruque. 2020. Leaky DNN: Stealing Deep-Learning Model Secret with
GPU Context-Switching Side-Channel. In2020 50th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks (DSN). 125{137. h‹ps:
//doi.org/10.1109/DSN48063.2020.00031

[90] Yoo-Seung Won, Soham Cha‹erjee, Dirmanto Jap, Arindam Basu, and Shivam
Bhasin. 2021. DeepFreeze: Cold Boot A‹acks and High Fidelity Model Recovery
on Commercial EdgeML Device. In2021 IEEE/ACM International Conference On

Computer Aided Design (ICCAD). 1{9. h‹ps://doi.org/10.1109/ICCAD51958.2021.
9643512

[91] Yun Xiang, Zhuangzhi Chen, Zuohui Chen, Zebin Fang, Haiyang Hao, Jinyin
Chen, Yi Liu, Zhefu Wu, Qi Xuan, and Xiaoniu Yang. 2020. Open DNN Box by
Power Side-Channel A‹ack.IEEE Transactions on Circuits and Systems II: Express
Briefs67, 11 (2020), 2717{2721. h‹ps://doi.org/10.1109/TCSII.2020.2973007

[92] Mengjia Yan, Christopher W. Fletcher, and Josep Torrellas. 2020. Cache Telepathy:
Leveraging Shared Resource A‹acks to Learn DNN Architectures. InProceed-
ings of the 29th USENIX Conference on Security Symposium (SEC'20). USENIX
Association, USA, Article 113, 18 pages.

[93] Zhe Yuan, Jinshan Yue, Huanrui Yang, Zhibo Wang, Jinyang Li, Yixiong Yang,
Qingwei Guo, Xueqing Li, Meng-Fan Chang, Huazhong Yang, and Yongpan
Liu. 2018. Sticker: A 0.41-62.1 TOPS/W 8Bit Neural Network Processor with
Multi-Sparsity Compatible Convolution Arrays and Online Tuning Acceleration
for Fully Connected Layers. In2018 IEEE Symposium on VLSI Circuits. 33{34.
h‹ps://doi.org/10.1109/VLSIC.2018.8502404

[94] ZeroPoint. 2022. ZeroPoint Technologies Signs Memory Encryption Con-
tract. h‹ps://www.zeropoint-tech.com/news/zeropoint-technologies-signs-
memory-encryption-contract.

[95] Jie-Fang Zhang, Ching-En Lee, Chester Liu, Yakun Sophia Shao, Stephen W.
Keckler, and Zhengya Zhang. 2019. SNAP: A 1.67 | 21.55TOPS/W Sparse Neural
Acceleration Processor for Unstructured Sparse Deep Neural Network Inference
in 16nm CMOS. In2019 Symposium on VLSI Circuits. C306{C307. h‹ps://doi.
org/10.23919/VLSIC.2019.8778193

[96] Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling Li, Qi Guo,
Tianshi Chen, and Yunji Chen. 2016. Cambricon-X: An accelerator for sparse
neural networks. In2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). 1{12. h‹ps://doi.org/10.1109/MICRO.2016.7783723

[97] Pengfei Zuo, Yu Hua, Ling Liang, Xinfeng Xie, Xing Hu, and Yuan Xie. 2021.
SEALing Neural Network Models in Encrypted Deep Learning Accelerators. In
2021 58th ACM/IEEE Design Automation Conference (DAC). 1255{1260. h‹ps:
//doi.org/10.1109/DAC18074.2021.9586199

Received 2022-07-07; accepted 2022-09-22

399

http://arxiv.org/abs/1409.1556
https://doi.org/10.1109/ISCA.2018.00068
https://doi.org/10.1109/ISCA.2018.00068
https://doi.org/10.1109/DSD.2018.00070
https://doi.org/10.1109/DSD.2018.00070
https://doi.org/10.1109/RTAS54340.2022.00032
https://www.keysight.com/us/en/assets/7018-02123/data-sheets/5990-3892.pdf
https://doi.org/10.1007/978-1-4419-5906-5_511
https://doi.org/10.1109/DSN48063.2020.00031
https://doi.org/10.1109/DSN48063.2020.00031
https://doi.org/10.1109/ICCAD51958.2021.9643512
https://doi.org/10.1109/ICCAD51958.2021.9643512
https://doi.org/10.1109/TCSII.2020.2973007
https://doi.org/10.1109/VLSIC.2018.8502404
https://www.zeropoint-tech.com/news/zeropoint-technologies-signs-memory-encryption-contract
https://www.zeropoint-tech.com/news/zeropoint-technologies-signs-memory-encryption-contract
https://doi.org/10.23919/VLSIC.2019.8778193
https://doi.org/10.23919/VLSIC.2019.8778193
https://doi.org/10.1109/MICRO.2016.7783723
https://doi.org/10.1109/DAC18074.2021.9586199
https://doi.org/10.1109/DAC18074.2021.9586199

