
HuffDuff: Stealing Pruned DNNs from Sparse Accelerators
Dingqing Yang

University of British Columbia
Vancouver, BC, Canada
dingqingy@ece.ubc.ca

Prashant J. Nair
University of British Columbia

Vancouver, BC, Canada
prashantnair@ece.ubc.ca

Mieszko Lis
University of British Columbia

Vancouver, BC, Canada
mieszko@ece.ubc.ca

ABSTRACT

Deep learning models are a valuable “secret sauce” that confers a
significant competitive advantage. Many models are never visible to
the user and even publicly known state-of-the-art models are either
completely proprietary or only accessible via access-controlled APIs.
Increasingly, these models run directly on the edge, often using a low-
power DNN accelerator. This makes models particularly vulnerable,
as an attacker with physical access can exploit side channels like
off-chip memory access volumes. Indeed, prior work has shown
that this channel can be used to steal dense DNNs from edge devices
by correlating data transfer volumes with layer geometry.

Unfortunately, prior techniques become intractable when the
model is sparse in either weights or activations because off-chip
transfers no longer correspond exactly to layer dimensions. Could
it be that the many mobile-class sparse accelerators are inherently
safe from this style of attack?

In this paper, we show that it is feasible to steal a pruned DNN
model architecture from a mobile-class sparse accelerator using the
DRAM access volume channel. We describe HuffDuff, an attack
scheme with two novel techniques that leverage (i) the boundary
effect present in CONV layers, and (ii) the timing side channel of
on-the-fly activation compression. Together, these techniques dra-
matically reduce the space of possible model architectures up to 94
orders of magnitude, resulting in fewer than 100 candidate models
— a number that can be feasibly tested. Finally, we sample network
instances from our solution space and show that (i) our solutions
reach the victim accuracy under the iso-footprint constraint, and
(ii) significantly improve black-box targeted attack success rates.

CCS CONCEPTS

• Security and privacy → Side-channel analysis and coun-

termeasures; • Computer systems organization → Neural

networks.

KEYWORDS

Side-channel attacks, Sparse DNN accelerators
ACM Reference Format:

Dingqing Yang, Prashant J. Nair, and Mieszko Lis. 2023. HuffDuff: Stealing
Pruned DNNs from Sparse Accelerators. In Proceedings of the 28th ACM
International Conference on Architectural Support for Programming Languages

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9916-6/23/03. . . $15.00
https://doi.org/10.1145/3575693.3575738

and Operating Systems, Volume 2 (ASPLOS ’23), March 25–29, 2023, Vancouver,
BC, Canada. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/
3575693.3575738

1 INTRODUCTION

Commercial products that rely on deep learning (DNN) have be-
come common in both the cloud and mobile spaces. Thus, their
machine learning (ML) models and datasets used in DNN training
have become valuable intellectual property, vital for maintaining a
company’s competitive advantage. Consequently, key models are
often not published, and even non-profit institutions avoid releasing
their ML models, gate them behind invitation-only APIs, or delay
their release, ostensibly due to concerns about misuse [67–70].
Why steal DNN models: Most importantly, knowing the model
architecture enables followup attacks on DNN inference engines,
such as adversarial example generation [22], stealing weights [87],
or membership inference attacks [80]. Moreover, the desire to
“adapt” a competitor’s DNN model is perhaps unsurprising, as im-
provements on tasks like ImageNet [13] largely come from new
model architectures [29, 32, 82]. The alternative, such as developing
and training an in-house model, tends to be far more expensive.
However, if the adversary can reverse-engineer an unpublished
model’s architectural parameters (layer dimensions, pruning fac-
tors, etc.), their effort to develop an efficient model is dramatically
reduced [33].
DNN inference vulnerability — edge vs. datacentre: Our paper
focuses on models that are deployed on edge devices in the field,
as opposed to those in a datacentre. In this scenario, the attacker
can relatively easily obtain physical access to the device. Many
such devices do not offload computation (such as DNN inference)
to the cloud for privacy concerns and transmission power limita-
tions, instead performing their computation locally on-device. In
addition, such devices often have relatively limited compute capa-
bilities and low power envelopes [9, 10, 72, etc] compared to cloud
accelerators [45, etc], which encourages using pruned DNN models.

Many DNN edge deployment scenarios exist, including safety-
critical applications like autonomous driving [85] and robotics [47],
as well as wearable health applications [60] where privacy matters.
When DNNs are used for applications where safety and privacy are
paramount, they are often IP-protected, and deploy on devices with
extra security protections like memory encryption [25] or even
light-weight SGX-like secure enclaves [34, 54, 81] to protect the
DNN model from theft.

Edge-deployed DNNs invoke new security concerns as compared
to datacentre-deployed DNNs. Various side-channel attacks have
been showcased for CPUs [92] and GPUs [62, 89] in datacentres,
but these attacks are less applicable on edge devices. Attacks in

385

https://doi.org/10.1145/3575693.3575738
https://doi.org/10.1145/3575693.3575738
https://doi.org/10.1145/3575693.3575738
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3575693.3575738&domain=pdf&date_stamp=2023-01-30

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Dingqing Yang, Prashant J. Nair, and Mieszko Lis

a datacentre [62, 89, 92] typically leverage shared resource con-
tention between the adversary and the victim to compromise a
multi-user system. In contrast, edge devices typically lack support
for virtualization and have only a single user [40]. Thus, attacks and
threat models designed for datacentres are generally not applicable
to edge devices.

As edge devices are typically deployed in the field, they can be
physically accessible to an adversary (attacker) and are vulnerable to
a broad range of attacks [40]. For instance, a number of attacks have
been demonstrated on accelerators targeting Dynamic Random Ac-
cess Memory (DRAM) bus snooping [33, 35], coldboot attacks [90],
physical side channels like electromagnetic (EM) or power signa-
tures [4, 91]. Moreover, physical access to devices enables invasive
attacks such as decapsulation [5] and microprobing [88]. For exam-
ple, DeepLaser [5] decapsulates the chip and uses a laser to cause
bit flips to violate output integrity. Performing such attacks requires
a specialized lab and is usually destructive to the device. Overall,
as compared to the cloud (e.g., the attacker could be a datacentre
employee), physical access is typically easier in edge devices, as
attested by prior work [26, 33, 35, 37, 90].

In this paper, we focus on the threat model that places the fewest
limits on the attacker. Our threat model only requires physical access
to the device to monitor the DRAM bus. This is realistic, as typical
accelerator designs [2, 10, 20, 30, 46, 48, 53, 56, 72, 84, 93, 95, 96]
consist of an on-chip accelerator SoC and external off-chip DRAM,
with the off-chip DRAM either in a socket (e.g., via a DIMM) or
directly mounted on the same PCB. For the former, the Hybrid
Memory Trace Tool (HMTT) [39] can be used to probe; for the latter,
tools like [86] are able to perform measurements in the currently
dominant Surface Mount Technology (SMT) [74]. Edge devices that
fall in this category include Raspberry Pi 4, Google Nexus One, etc.
Limitations of prior attacks: (Un)fortunately, prior model steal-
ing attacks [33, 35] do not work on sparse accelerators that execute
pruned models (i.e., which skip zero weights and/or activations).
Pruning, however, is common in edge devices as it can dramati-
cally reduce the model size, with 90% or more of the weights set to
zero [17, 28]. A sparse accelerator can leverage pruning to signifi-
cantly reduce the energy and latency of inference [10, 20, 27, 72].

Irregular sparsity also makes reverse-engineering DNN archi-
tectures significantly more difficult. This is because the volume of
data transferred for each tensor is compressed (to eliminate the
zeros) and no longer directly corresponds to tensor dimensions;
thus, their memory-related side-channel information is obfuscated.

Table 1 illustrates the magnitude of the problem. We first apply
ReverseCNN [35], the state-of-the-art DRAM volume side-channel
attack, to an Eyeriss-like [9] dense accelerator running ResNet-
18 [29]. This attack yields only 8 possible solutions. Then, we
straightforwardly extend this approach to attack sparse models
on a variant of the Eyeriss that accommodates weight and activa-
tion sparsity. This yields a whopping 4 × 1096 solutions — a number
that is clearly impossible to train and evaluate.
Key insights: This paper overcomes this problem by using a novel
attack that leverages two key insights:

– We observe that Convolutional (CONV) layers exhibit a bound-
ary effect [23, 24, 41, 79]. This means that features at the edges
are not translationally equivariant with the shift operations

Table 1: Solution space and resources required to reverse en-

gineer dense ResNet-18 using ReverseCNN [35] and sparse

ResNet-18 (pruned by 10×) using the Lottery Ticket Hypoth-

esis [17].

Number of solutions Resources required
Dense 8 16 GPU hours
Sparse 4 × 1096 9.1 × 1092 GPU years

as opposed to the features elsewhere. Therefore, probing the
accelerator with multiple carefully constructed images col-
lectively allows us to detect boundary effects across many
layers. This helps determine filter dimensions, stride fac-
tors, and pooling parameters based on different boundary
responses.

– A sparse accelerator’s post-processing unit performs on-the-
fly encoding that compresses the dense partial sums into
sparse output feature maps. This means that a timing side
channel can be used to reveal the ratio between the sizes of
dense partial sums across different layers.

These generic insights apply to all inference accelerators with ir-
regular sparsity that we know of [2, 10, 20, 30, 46, 48, 53, 56, 72, 84,
93, 95], as well as a vast range of pruned DNN architectures.
Contributions: In developing our attack, HuffDuff, we make the
following four contributions:

– We identify patterns of inputs that can be fed to a layer to
predictably trigger different off-chip traffic volumes. This
allows us to determine the filter dimensions.

– We show how to construct inputs that create such patterns
many layers downstream, revealing geometries of layers for
which we cannot directly provide inputs.

– We describe how to collectively use multiple probes to over-
come unobservable boundary effects.

– We identify a compression-time side channel that reveals the
ratio between partial sum footprint across all layers, which
further reveals their channel counts. Since the boundary
effect is agnostic to channel counts, this fills up the missing
component that the prober cannot identify.

HuffDuff can reverse-engineer pruned modern deep CNNs within
hours, typically yielding less than a hundred possibilities that can
be trained and tested in a reasonable time by an attacker. Our evalu-
ation shows that HuffDuff solutions reach the victim accuracy and
raise the black-box targeted attack success rate to a semi-white-box
level (in which the attacker knows the correct architecture).

2 THREAT MODEL

Our threat model reflects a situation where an unstructured pruned
DNN model is executing inference tasks locally on an edge device.
The DNN accelerator supports 2-sided unstructured sparsity with
off-chip DRAM. We assume that the attacker has device access and
can provide inputs (e.g., via a camera) and monitor chip↔DRAM
transfer volume (but not contents).

This threat model, illustrated in Fig. 1, is the same as that of prior
work [35], except that we allow the DNN accelerator to support

386

HuffDuff: Stealing Pruned DNNs from Sparse Accelerators ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

PE

GLB

Encryption/Decryption
Untrusted

Memory System

Weights
Input acts

Output acts

Adversary“Protected” Accelerator

PE

PE

PE

PE

PE

Side Channel

Input

Output

Figure 1: The threat model of HuffDuff (inspired by [35]). It

consists of a trusted sparse DNN accelerator and an untrusted

external memory system.

sparse execution. We describe our threat model in more detail
below.
Attacker’s objective: The attacker aims to reverse-engineer the
DNN model architecture being used for inference such that the
attacker can (a) re-train to obtain a model with on-par or better
accuracy and efficiency, or (b) use the knowledge gained to mount
follow-up attacks, such as generating adversarial examples [22],
model extraction [87], or membership inference [80].

The aim is to determine all network architectural hyperparame-
ters including (a) the layer geometry (input size, output dimensions,
filter dimensions) of each layer in the DNN, (b) the dataflow graph
among the layers, and (c) the weight sparsity factors for each layer.
Once these hyperparameters are determined, the attacker can re-
train the model on their own data, obtaining models with a similar
level of accuracy and resource efficiency (e.g., sparse footprint).

Next, we explain how reverse-engineering these models can help
mount follow-up attacks using adversarial example generation [22]
as an example.

Adversarial example generation is a process of turning a benign
input sample into a malicious sample by adding small perturbations
that are indistinguishable to human eyes. There are well-established
adversarial example generation algorithms like FGSM [22] for the
white box setting where the attacker has access to the victim model;
FGSM leverages gradient information to find perturbations that
maximize the loss versus the true label under the infinite-norm
constraint.

However, in a black box setting like our threat model, the at-
tacker usually has no access to any model information like model
architecture and parameters. Sometimes, the attacker can rely on
transferability between models [71]: adversarial examples gener-
ated from performing a white-box attack on a random surrogate can
compromise the black-box victim models. Such transferability is,
however, limited to simple attacks [59] on small-scale datasets, and
non-targeted attacks where any misprediction counts as success. In
reality, targeted attacks are usually more threatening, with severe
consequences that are crucial to mitigate.

To boost the targeted attack success rate, prior works [59, 65]
have identified that network architecture similarity between the
surrogate and the victim plays an important role. Intuitively, this
makes sense, as an architecturally similar surrogate provides more

accurate gradient information than a random surrogate. Indeed,
Deepsniffer [33] demonstrates that targeted attack success rates
increase if the surrogate is from the same model family as the vic-
tim, and shows significant improvement in targeted attack success
rates with reverse-engineered surrogates (as compared to random
surrogates from a model zoo). Therefore, reverse-engineering the
victim architecture is crucial to improve (and even enable) follow-up
attacks.
Attacker’s capabilities: The attacker has physical access to the
device and can monitor the signals while the device is executing
through a DRAM tracing tool like HMTT [39] or other probes [86].
Specifically, we assume the attacker can observe distinct DRAM
accesses with addresses and operation types (read or write) for each
access; this is the same assumption made by prior attacks [33, 35].
The attacker can also construct bespoke inputs (e.g., images) to be
processed by the accelerator [35] (e.g., by faking camera inputs).

In contrast, we assume that the attacker is unable to observe or
manipulate the data being read or written from DRAM (e.g., due to
data encryption), and cannot observe internal on-chip states.
Workload: We assume that our victim is a Convolution Neural
Network (CNN) that is statically pruned in an unstructured man-
ner [17, 28] for maximum compression. Structured pruning, while
also in use, is a simpler case, so we focus on unstructured prun-
ing here1. We assume that the victim uses ReLU activation where
negative values are clamped to zero; this enables accelerators to
transfer compressed activations to save energy. Additional opti-
mization such as magnitude-based dynamic activation pruning [57]
can be viewed as ReLU generalized to a non-zero cut-off. In con-
trast, dynamic activation pruning is rarely used compared to weight
pruning; unlike weights, ineffectual activations cannot be statically
pruned and detecting them adds runtime overhead. Overall, ReLU
generates a decent amount of zeros, and further dynamic pruning
only provides marginal savings.
Execution environment: We assume that the model executes on
a dedicated edge DNN accelerator comprising (a) a systolic-array-
like accelerator chip and (b) off-chip memory (Fig. 1 “protected”
accelerator). We allow the accelerator to support both weight and
activation sparsity, with zero-skipping during execution. It also
supports compressing weight and activation tensors during off-chip
memory communication. We also assume the accelerator performs
layerwise execution so that the entire footprint of all data types
is present in the external DRAM memory system at least once.
This corresponds to a vast range of edge-class DNN accelerators
proposed in the literature [10, 20, 30, 46, 48, 53, 56, 72, 84, 93, 95].

We allow encrypted tensor data to be transferred off-chip. Mem-
ory encryption techniques have been studied to protect physical
memory attacks from mobile devices [25], and commercial products
like ZeroPoint Secure memory [94] have been deployed. SGX-like
secure enclaves [11, 12, 97] that further provide integrity and fresh-
ness guarantees also encrypt data transferred off-chip through a
Memory Encryption Engine (MEE). Although full SGX support
might be overkill and create huge performance overhead for DNN

1See also Broader Application below.

387

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Dingqing Yang, Prashant J. Nair, and Mieszko Lis

accelerators, light-weight SGX techniques have been used in acceler-
ators like GuardNN [34], TNPU [54], and Seculator [81], which pro-
vide confidentiality, integrity, and freshness guarantees at coarser
(tile/layer) granularity. Meanwhile, we do not require memory ad-
dresses to be contiguous in DRAM. However, we assume that a
written DRAM address maintains its value (unlike in ORAM [19])
and traffic volumes are not obfuscated by injecting random requests
(as they would be in ORAM). We believe ORAM-like measures that
inject faux requests and autonomously move data in DRAM are far
too energetically expensive to be practical in an edge accelerator.

Finally, as common practice, we assume that operations such as
batch normalization, ReLU, accumulator quantization, and on-the-
fly activation compression are handled within the post-processing
module on-chip [9, 10, 45, 63, 72].
Excluded configurations: We exclude SRAM-only accelerators [6,
15, 27]2, which do not have off-chip memory accesses. We also
exclude accelerators that execute multiple layers on-chip [3, 18, 38];
indeed, we are unaware of any sparse DNN accelerators that do
that.3

Broader application: Our choice of workloads and execution
environments correspond to the most challenging case where all
available side-channel information is blurred. Memory volume of all
data types (weights, input, and output activation) cannot directly
correspond to layer geometries due to the unknown amount of
pruned or compressed zeros. Execution time also cannot correspond
to layer geometries we have an unknown amount of skipped zeros.

Our techniques apply to a broader range of workloads and envi-
ronments than the ones specified above. In fact, relaxing some of
these assumptions makes the problem easier to solve: for example,
executing pre-activation batch-norm layers separately means that
additional side-channel information on the exact activation tensor
volumes (since partial sums are typically dense) is also revealed.
Similarly, accelerators with structured sparsity [14, 36, 64] can be
attacked by existing techniques for dense execution [33, 35], since
the transfer sizes do not vary with data content.

3 DENSE-CASE: APPROACH AND SOLUTIONS

We first formulate the task for the simpler case where the DNN
model is dense (not pruned) and the accelerator does not support
sparse execution. We then review the analytical solution approach
employed by prior work [35], which we refer to as ReverseCNN.

3.1 Problem Formulation

Recall from Section 2 that the attacker aims to determine the model’s
architectural parameters, shown in Table 2. This includes (1) input
activation tensor dimensions 𝑋,𝑌,𝐶; (2) output activation tensor
dimensions 𝑃,𝑄, 𝐾 ; (3) kernel dimensions 𝑅, 𝑆,𝐶, 𝐾 ; (4) convolu-
tion stride STRIDE𝑋 and STRIDE𝑌 ; and (5) pooling layer factors
POOL𝑋 and POOL𝑌 . The attacker can observe the type, address,

2Cerebras wafer-scale accelerators (WSE-2) [6] are primarily for training large DNNs,
and they do have external DRAM called MemoryX [58] from which weights are
streamed into the accelerator. Nevertheless, WSE-2 has a huge 40 GB on-chip SRAM
that might fit the entire model during inference.
3[66] is a sparse accelerator that fuses bottleneck blocks, but they are then executed
as if they were single layers.

and transfer sizes to/from off-chip memory, but cannot decipher
the data.

Table 2: Symbols for Input, Output, and Weight tensors: up-

percase = actual; lowercase = unknown.

𝐼 and𝑂 input/output activation tensor transfer sizes
𝑊 weight tensor transfer size
𝐶 and 𝐾 number of input and output channels
𝑋 × 𝑌 × 𝐶 output activation map dimensions
𝑃 × 𝑄 × 𝐾 input activation map dimensions
𝑅 × 𝑆 × 𝐶 × 𝐾 weight tensor dimensions
STRIDE𝑋 , STRIDE𝑌 width and height convolution stride
POOL𝑋 , POOL𝑌 width and height pooling factors

We use the convention that uppercase symbols indicate the actual
(possibly unknown) dimensions, while lowercase letters indicate
the corresponding variables in constraint equations.

3.2 Prior Solution: ReverseCNN

ReverseCNN [35] finds the hyperparameters of interest by formulat-
ing constraint equations that relate the observed off-chip memory
traffic volumes to layer dimensions.

Their key observation is that the read-after-write (RAW) de-

pendency between layers must be preserved independent of any
micro-architectural details or mapping/scheduling choices. Thus,
the output feature map of one layer becomes the input feature map
of one or more layers downstream. Because the attacker is able to
monitor the DRAM addresses, we can identify these dependencies
regardless of how the tensors are laid out in the address space.4

From this, one can also determine the memory footprint of the
input and output activation tensors (𝐼 and 𝑂) as follows. For the
first layer, the size of 𝐼 is known, as the attacker controls the inputs
to the accelerator (e.g., by spoofing camera outputs) [35]. For each
subsequent layer, each activation layer 𝑂 is first written to some
memory addresses, and then the same addresses are later read (pos-
sibly more than once) as the input 𝐼 of another layer. This yields the
footprint of 𝐼 and 𝑂 , as well as the boundaries between processing
different layers. Weights are not modified during inference, so the
footprint of tensor𝑊 for the layer can be determined by identifying
read-only addresses accessed during the layer’s processing.

Once the traffic volumes for 𝐼 ,𝑂 , and𝑊 are known, ReverseCNN
formulates the following set of equations for each layer to determine
the channel counts 𝑐 and 𝑘 , the activation and dimensions 𝑥 , 𝑦, 𝑝 ,
and 𝑞, the filter dimensions 𝑟 and 𝑠 , convolution stride stride𝑥 and
stride𝑦 , and pooling factors pool𝑥 and pool𝑦 :

𝑥 × 𝑦 × 𝑐 = size(𝐼) (1)
𝑝 × 𝑞 × 𝑘

pool𝑥 × pool𝑦
= size(𝑂) (2)

𝑟 × 𝑠 × 𝑐 × 𝑘 = size(𝑊) (3)
𝑥 = stride𝑥 × 𝑝 + 𝑟 − stride𝑥 (4)
𝑦 = stride𝑦 × 𝑞 + 𝑠 − stride𝑦 (5)

𝑟 = 𝑠; 𝑥 = 𝑦; stride𝑥 = stride𝑦 ; pool𝑥 = pool𝑦 (6)

4Note that this holds even if the memory is reused: each write generates a new name
or “version” for the address as is typically done when converting code to Static Single
Assignment (SSA) form [77].

388

HuffDuff: Stealing Pruned DNNs from Sparse Accelerators ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Following ReverseCNN [35], we assume that activations, filters,
strides, and pooling layers are symmetric (Eq. 6); CNNs for vision
typically fit these assumptions [61].

This helps reverse-engineer a single layer. ReverseCNN [35] re-
lies on induction to extend this to multiple layers. First, recall that
𝑥 , 𝑦, and 𝑐 for the first layer are known because the attacker can ob-
serve (and, indeed, craft) inputs to the chip. Then, any layer reading
the𝑂 tensor from the first layer will have the following dimensions
for its 𝐼 tensor (due to inter-layer RAW data dependency):

𝑥next =
𝑝

pool𝑥
, 𝑦next =

𝑞

pool𝑦
, and 𝑐next = 𝑘 (7)

This allows ReverseCNN [35] to again apply Eqs. 2–6 and recur-
sively solve for the geometry of all layers.

In this way, ReverseCNN [35] can reverse-engineer most dense
DNNs: as shown in Table 1, it yields only 8 possible solutions for
dense ResNet-18.

4 TACKLING SPARSE MODELS

The problem becomes significantly more complicated when pruned
models run on a sparse DNN accelerator [10, 20, 72] or a DNN
accelerator that compresses tensors when they are transferred to
and from off-chip memory [9].

4.1 Challenges

If we employ a sparse accelerator, the data blocks that are trans-
ferred to/from off-chip DRAM no longer correspond directly to

the relevant tensor dimensions. This is because sparse accelera-
tors compress tensors for both evaluation and transfer by eliding
zeros. This is the case for both weight tensors (where the attacker
does not know the pruning factor) and activation tensors (which
depend both on weight values and input activation values). Because
of this, ReverseCNN’s Eqs. 1–3 no longer hold. Instead, we have
the following three inequalities:

𝑥 × 𝑦 × 𝑐 ≥ size(𝐼) (8)
𝑝 × 𝑞 × 𝑘

pool𝑥 × pool𝑦
≥ size(𝑂) (9)

𝑟 × 𝑠 × 𝑐 × 𝑘 ≥ size(𝑊) (10)

In other words, these inequalities state that the size of any tensor
is at least as large as the corresponding DRAM transfer volume
observed by the attacker. However, as this is only a lower bound,
these tensors could be much larger depending on the pruning factor
or activation sparsity. Note that there are no upper bounds for any
of the unknowns, so solving this system of inequalities will yield
an infinite number of solutions even for a single layer.

4.2 Naı̈vely Handling Sparsity

One might think that solving Eqs. 8–10 is simply a matter of es-
tablishing an upper bound for the expected sparsity — perhaps by
profiling many different models for a related task — and obtaining
a finite number of solutions. To understand this, let’s write 𝛼 to
mean this maximum sparsity for the weight tensor, where 𝛼 = 0.9
means that 90% of the weights have been pruned away. This gives

us an additional equation that is denoted as follows:

𝑟 × 𝑠 × 𝑐 × 𝑘 ≤ size(𝑊)
1 − 𝛼 . (11)

Unfortunately, sparsity levels can vary significantly among lay-
ers, even for some optimally pruned nets like a 10× compressed
ResNet-18 [29] — for example, the first and final layers are typically
hard to prune whereas intermediate layers can be quite sparse. This
means that the upper bound is likely to be a very high sparsity fac-
tor (e.g., 𝛼 = 0.999); indeed, the Conv5 3 layer of our pruned version
of VGG-S has 3627 out of 2359296 weights that are retained, corre-
sponding to 𝛼 = 0.9985 with no loss of accuracy. So the question is,
how well does such a bound constrain the solution space?

To better understand this, let us consider solving for a layer’s
output channel count 𝑘 using Eqs. 10 and 11. Let us assume that we
have already solved the prior layer, so we know the actual value
of 𝑐 from the data dependency constraint on the previous layer’s
output activations (Eq. 7). Again, we will denote actual values with
uppercase letters and constraint variables as lowercase, so here we
know that 𝑐 = 𝐶 . Let’s for the moment imagine that we also know
that 𝑟 = 𝑅 and 𝑠 = 𝑆 so that only 𝑘 is unknown. We will denote the
actual weight sparsity as 𝛽 , and the assumed upper bound on the
sparsity as 𝛼 . Substituting Eq. 11 into Eq. 10 yields:

size(𝑊) ≤ 𝑅 × 𝑆 ×𝐶 × 𝑘 ≤ size(𝑊)
1 − 𝛼 (12)

Rewriting the observed weight footprint𝑊 in terms of the actual
sparsity 𝛽 then gives us the following equations.

(1 − 𝛽)𝑅𝑆𝐶𝐾 ≤ 𝑅 × 𝑆 ×𝐶 × 𝑘 ≤ (1 − 𝛽)𝑅𝑆𝐶𝐾1 − 𝛼 (13)

(1 − 𝛽)𝐾 ≤ 𝑘 ≤ (1 − 𝛽)𝐾1 − 𝛼 (14)

Observe that the tightness of this bound is determined by (a) the
actual weight sparsity 𝛽 , and (b) how close the upper bound 𝛼 is to
𝛽 . While we now have a finite number of solutions, typical ranges
for 𝛽 can be around 50% up to 99.9%, yielding very loose bounds.
For example, for VGG-S [82] and ResNet-18 [29], we have 2.6 × 1074

and 4 × 1096 of possible solutions for the whole network, a number
of possible geometries that is infeasible to train and evaluate.

In the next three sections, we show how to reduce the number
of solutions to a manageable level by (i) actively probing the accel-
erator with carefully constructed input patterns and (ii) exploiting
architectural insights about DNN accelerators.

5 LEARNING VIA ACTIVE PROBING

5.1 Exploiting the Boundary Effect

Convolutional layers in modern CNNs are not fully translationally
equivariant, a phenomenon known as the boundary effect [23, 24,
41, 79]. This effect arises on the edges of an input feature map,
where the part of the convolution filter that is outside of the feature
map does not contribute to the output activation. Typically CNNs
perform zero padding in this case [61]. We will take advantage of
this to determine the dimensions of the convolutional filters in the
model under attack.

To understand this effect, let us first examine how a single-
channel 1D convolution is affected by different inputs. Fig. 2 shows
a 3×1 filter [3, 4, 5] on three 5×1 inputs, [1, 0, 0, 0, 0], [0, 1, 0, 0, 0],

389

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Dingqing Yang, Prashant J. Nair, and Mieszko Lis

and [0, 0, 1, 0, 0], to get a 5×1 output. Note that, for the first input
(Fig. 2a), the leftmost element of the filter (1) is always out of bounds,
and never involved in the convolution or reflected in the output.
However, for the second and third inputs (Fig. 2b and Fig. 2c), all of
the filter elements make it to the output vector.

1 1 1 1 14 534 53 4 53 4 53 4 53

5 4 0 03

(b) 00 001input: output: 00345 nnz: 3

1 1 4 534 53 1 4 53 1 4 53 1 4 53

4 3 0 00

(a) 01 00 0input: output: 00034 nnz: 2

11 1 1 1 14 534 53 4 53 4 53 4 53

0 5 3 04

(c) 00 010input: output: 03450 nnz: 3

Figure 2: Boundary effect in 1D convolution and its outcome

on different inputs. nnz = # of non-zero elements in the out-

put. ReLU activation is omitted for clarity.

Now, note that the number of non-zero elements (nnz) is the same
in panes (b) and (c), but different in pane (a). This difference tells us
something about the size of the filter. Specifically, the difference in
the nnz between (a) and (b) tells us that there is at least one filter
element to the left of the filter center, and the fact that the nnz is
the same for (b) and (c) tells us that there is at most one. Applying
the same reasoning on the right input boundary (not shown) allows
us to conclude that the filter is 3×1 and centered around the second
element. If the filter were 1×1, all cases would have the same nnz,
and if the filter were 5×1, all cases would have different nnzs.

How can we take advantage of this? Our threat model allows the
attacker to craft inputs to the accelerator, so we can certainly probe
at least the first layer of the CNN this way. In a dense accelerator, we
cannot observe this difference, because an attacker can only observe
the volume of memory transfers can be observed, not the actual
values (e.g., on account of encryption). But in a sparse accelerator
that compresses activations for storage [9, 10, 20, 72], the size of
the tensor being transferred will be different because the zeros will
be elided from the output activation tensor.

This gives us an intuition for determining the convolutional
filter dimensions 𝑟 and 𝑠 : we will probe the accelerator with inputs
crafted to determine the filter size (using the 2D equivalent of Fig. 2),
measure the transferred activation size to find the number of non-
zeros, and compare the different cases to determine the filter size.

However, two difficulties arise in practice. First, the attacker has
direct control over the input queries for only the first layer, and
cannot directly craft any of the intermediate feature maps. The
inputs to the second layer will have passed through the first layer’s
convolutional filters, so there is no reliable way to create the pattern
of single activations surrounded by zeros shown in Fig. 2. Stride
and pooling further obfuscate this.

Second, in practice convolution layers are affine, i.e., they either
have an additive bias or are followed by a batch normalization
layer. This means that the input zeros may not propagate to the
output: for example, if there is a bias of +1 in Fig. 2, the output in
all three cases will have five non-zeros. We show how to address
these difficulties in the next sub-section.

5.2 Handling Bias and Batch Normalization

Bias and the additive term in batch normalization can render the
technique above ineffective. For example, if the convolution in-
cludes a bias term of +2, the cases in Fig. 2 become:

01 00 0 22256 nnz: 54 53∗ + 2256 22

10 00 0 22567 nnz: 54 53∗ + 2267 52

00 01 0 25672 nnz: 54 53∗ + 2572 62

Now, these cases can no longer be distinguished, because the
number of non-zeros is the same for all three. To mitigate this, we
make two observations: (i) the probe inputs can be any number, not
just 1, and (ii) the ReLU activation function will make all negative
values zero in the output feature map. For example, if the probe
vector contains −1 instead of 1, the filter footprint will be negative
(and thus zero post-ReLU), while the bias terms will be non-zero:

0–1 00 0 222–1–2 nnz: 34 53∗ + 2200 22

–10 00 0 22–1–2–3 nnz: 24 53∗ + 2200 02

00 0–1 0 2–1–2–32 nnz: 24 53∗ + 2002 02

Note that, while the nnz for the edge and non-edge cases is the
opposite from Fig. 2 (the edge case has more zeros, not fewer), the
two are still observably different, and this is enough to determine
the filter size.

With all the examples discussed so far, we start to formalize
a single-layer attack. Let’s define the conv layer operation as the
composition of CONV, BatchNorm, and ReLU. For features that do
not reside on the edge, conv layer is equivariant to shift operations:

conv layer(shift(𝑥)) = shift(conv layer(𝑥))
Counting the nnz elements on both sides reveals that the number
of non-zero element responses is also invariant to shift operations:

nnz(conv layer(shift(𝑥))) = nnz(shift(conv layer(𝑥)))
= nnz(conv layer(𝑥))

Neither of these holds for features 𝑥𝑒 that reside on the edge:

conv layer(shift(𝑥𝑒)) ≠ shift(conv layer(𝑥𝑒))
While we can’t observe the activations themselves (which might

be encrypted), we can measure nnz. Different activation tensors are
likely to have nnz, which allows us to observe the boundary effect.

Rarely, the boundary effect is obscured, and different activation
tensors can end up having the same nnz even if their values are
different. Essentially, the boundary effect always exists (due to non-
equivariance at the edge), but can either be observable (different
nnz count) or unobservable (same nnz count).

In practice, we find that this is not a problem, and boundary
effects are usually observable. This is because there are many CONV
kernels, and the boundary effect will be obscured only if all of the
kernels are unobservable, or their total nnz differences cancel out

390

HuffDuff: Stealing Pruned DNNs from Sparse Accelerators ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

exactly — both unlikely situations. To estimate the likelihood that
the boundary effect is observable, we randomly sampled kernels
in pruned models and applied random half-Gaussian inputs; the
boundary effect was observable in 77% of the cases.

More importantly, the “unobservability” issue can only cause
false negatives, and never false positives, as it is impossible to ob-
serve a boundary effect when one does not exist. Therefore, we can
simply make multiple independent random probes to amplify the
probability of observing the boundary effect.

5.3 Probing Downstream Layers

In the bias discussion above, we used “probe vectors” with 0 in the
“inactive” positions, and either 1 or−1 in the “active” position where
we wish to place the convolution kernel. However, the inputs do
not have to be 0, 1, or −1: they can be any values as long as the
inactive and active positions have different values. The boundary
effect (where some of the filter entries are unused) still occurs, and
from the previous section, we already know how to separate any
two values in the output activation tensor by taking advantage of
ReLU.

This observation gives us a way to probe layers downstream
even if we cannot directly inject inputs into those layers. The in-
tuition is that the boundary effect can survive multiple layers, but
the footprint of the probe impulse (the “active” position) will get
progressively blurred over a larger area as it passes through more
layers.

To develop some intuition, let us continue the running exam-
ple, this time propagating it through two 1D convolutional layers
without bias, and generalizing it to arbitrary weight values. For
clarity, we will omit ReLU here, but in general, ReLU can be used
to distinguish values as in the previous section.

After the first layer, with filter weights [𝑎, 𝑏, 𝑐], the output acti-
vations become:

001 00 0 b ca

010 00 0 b ca

000 01 0 b ca

0000ab

000abc

00abc0

000 00 1 b ca 00 abc0

∗
∗
∗
∗

Recall that we can observe the memory traffic for each layer, so we
can determine that filter in the first layer is 3×1.

Note that in the first row, only a part of the filter survives in
the output, which will cause problems downstream: we will not be
able to distinguish whether any observed boundary effect comes
from the first or second layer. We therefore drop the first row and
proceed with the remaining rows.

Now, let us apply another CONV layer, with filter [𝑑, 𝑒, 𝑓]:
∗
∗

000αβγδ

00αβγδε

0000abc

000abc0

e fd

e fd

∗ 0αβγδε0000 ac0 b e fd

α = da
β = db + ea
γ = dc + eb + fa
δ = ec + fb
ε = fc

Observe that our probe impulse is still visible in the output as
[𝜀, 𝛿,𝛾, 𝛽, 𝛼] surrounded by zeros. Also, it is still located where the
original impulse was.

Finally, let us reintroduce non-zero bias into the problem. Probing
the first layer (filter [𝑎, 𝑏, 𝑐], bias 𝑢) yields:

uuuuua+ub+uc+u

uuuua+ub+uc+uu

uuuu a+ub+uc+uu

00010 00 0 b ca∗ + u

00000 01 0 b ca∗ + u

00000 00 1 b ca∗ + u

u uuu a+ub+uc+uu00000 10 0 b ca∗ + u

This is exactly what we saw after the first layer above, except that
now we have added 𝑢 everywhere.

The analysis is a bit more involved after the second layer (filter
[𝑑, 𝑒, 𝑓], bias 𝑣):

uuuuua+ub+uc+u

uuuua+ub+uc+uu

uuuu a+ub+uc+uu

ζζζγχ ζβ αe fd∗ + v

ζζζδψ αγ βe fd∗ + v

ζζαεω βδ γe fd∗ + v

u uuu a+ub+uc+uu ζαβζω γε δe fd∗ + v

α = da+du+eu+fu+v β = db+du+ea+eu+fu+v γ = dc+du+eb+eu+fa+fu+v δ = du+ec+eu+fb+fu+v
ε = du+eu+fc+fu+v ζ = du+eu+fu+v χ = δ–du ψ = ε–du ω = ζ–du

This pattern is almost the same as the no-bias case above: the two-
layer impulse response [𝜀, 𝛿,𝛾, 𝛽, 𝛼] surrounded by 𝜁 , the second
layer’s filter response to the first layer’s bias (this was 0 with no bias).
Also, as the first layer’s bias 𝑢 is distinguished from the implicit
padding of 0, the first element in each vector (shaded yellow) differs
from its later corresponding occurrence later on – because the latter
includes the bias response 𝑑𝑢.

Once we distinguish the various values (see Section 5.2 above),
we will conclude that the filter size is 3×1. If we wish to probe the
third layer, we again discard the rows where the filter response is
partial; in this case, we would discard the first two rows.

Although the running example here is a 1D convolution, exactly
the same analysis applies to 2D convolutions, except with more edge
cases to distinguish. Other layer types (e.g., pooling) and effects
such as stride are also amenable to this kind of analysis; we omit
the details for these layers here because of space limitations.

5.4 Handling “Errors” in Downstream Layers

Section 5.3 shows boundary effects on downstream layers with a
running example. As discussed in Section 5.2, since we only have
partial observability by measuring nnz, some downstream layers
could have “errors” (i.e., unobservable boundary effects). We find
that it is difficult to find a random probe that has directly observable
boundary effects in all layers.

To mitigate this, let us first consider a concrete example of “suc-
cess”, that is, of an unobscured boundary effect with all relevant
nnzs different:

uuuuua+ub+uc+u

uuuua+ub+uc+uu

uuuu a+ub+uc+uu

ζζζγχ ζβ αe fd∗ + v

ζζζδψ αγ βe fd∗ + v

ζζαεω βδ γe fd∗ + v

u uuu a+ub+uc+uu ζαβζω γε δe fd∗ + v

nnz = A

nnz = B

nnz = C

nnz = C

α = da+du+eu+fu+v β = db+du+ea+eu+fu+v γ = dc+du+eb+eu+fa+fu+v δ = du+ec+eu+fb+fu+v
ε = du+eu+fc+fu+v ζ = du+eu+fu+v χ = δ–du ψ = ε–du ω = ζ–du

Observe that the nnz form the pattern𝐴𝐵𝐶𝐶 , where𝐴, 𝐵, and𝐶 are
different nnz values. In this case, we have full observability, since
the content of the first row and the second row differs from the
third or fourth row.

391

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Dingqing Yang, Prashant J. Nair, and Mieszko Lis

Now, non-observability occurs when an nnz for one row is equal
to that of another even if the values are different; here, this could be
𝐴𝐵𝐵𝐵 (partial observability) or 𝐴𝐴𝐴𝐴 (no observability). The last
case (𝐴𝐴𝐴𝐴) is particularly troublesome because it is the correct
output for pointwise layers.

Luckily, the error is one-sided again, because nnz cannot change
once the filter has cleared the edge; e.g., it’s impossible to observe
𝐴𝐵𝐶𝐷 in this example. Therefore, we only need to look for the
longest non-convergent pattern among multiple random probes
(e.g., choose 𝐴𝐵𝐶𝐶 over 𝐴𝐵𝐵𝐵 and 𝐴𝐴𝐴𝐴). With repeated probes,
the probability of failure on a layer (i.e., that none of the probes
demonstrate observability) decreases exponentially with the num-
ber of independent random probes.

Next, we will generalize this intuition from this section and
present the complete attack scheme.

6 AUTOMATING THE ATTACK

6.1 Generalized Input Pattern

Recall that the inputs observed by any layer in the model will con-
tain a “feature” segment that combines all of the previous layers’
filters ([𝜀, 𝛿,𝛾, 𝛽, 𝛼] in the examples in the previous section), sur-
rounded by zero or more responses to the bias term (𝜁 above). In
addition, the initial columns (one column in the example above)
contain constants generated by the edge effect applied to the bias
term (𝜔 above).

We can generalize this pattern asA(𝑚,𝑛), where 𝑛 is the feature
length, and𝑚 is the number of the initial column constants:

A(𝑚,𝑛) = {𝑥𝑖 }𝑞𝑖=1 , where 𝑞 = # of query patterns, and
𝑥1 = 𝑠1, 𝑠2, . . . , 𝑠𝑚, 𝑓1, 𝑓2, . . . , 𝑓𝑛, 𝑏, 𝑏, 𝑏, . . . ,

𝑥2 = 𝑠1, 𝑠2, . . . , 𝑠𝑚, 𝑏, 𝑓1, 𝑓2, . . . , 𝑓𝑛, 𝑏, 𝑏, . . . ,

𝑥3 = 𝑠1, 𝑠2, . . . , 𝑠𝑚, 𝑏, 𝑏, 𝑓1, 𝑓2, . . . 𝑓𝑛, 𝑏, . . . , etc.

For example, our initial input sequence in the previous section can
be denoted by A(0, 1).

6.2 Symbolic Convolution Engine

To assist in probing multi-layer networks, we developed an engine
that evaluates convolutions symbolically. That is, rather than adding
and multiplying numbers, it constructs an algebraic expression for
the result of the convolution after layer 𝑙 given (a) a specific input
pattern A(𝑚,𝑛) for layer 1, and (b) a hypothesis for the geometry
of layer 𝑙 (e.g., 3×3 kernel, stride 1, pooling factor 2).

For example, consider again the second layer from the running
example, and let us hypothesize that the convolution is 3×1 with no
pooling. Having analyzed the first layer, we know that the second
layer will receive the probe pattern A(0, 3). The symbolic convolu-
tion engine will yield:

uuuuua+ub+uc+u

uuuua+ub+uc+uu

uuuu a+ub+uc+uu

ζζζγχ ζβ αe fd∗ + v

ζζζδψ αγ βe fd∗ + v

ζζαεω βδ γe fd∗ + v

u uuu a+ub+uc+uu ζαβζω γε δe fd∗ + v

nnz = A

nnz = B

nnz = C

nnz = C

α = da+du+eu+fu+v β = db+du+ea+eu+fu+v γ = dc+du+eb+eu+fa+fu+v δ = du+ec+eu+fb+fu+v
ε = du+eu+fc+fu+v ζ = du+eu+fu+v χ = δ–du ψ = ε–du ω = ζ–du

From this, the engine will produce the pattern of the expected
number of non-zeros (nnz) observed for each input once 𝜁 has been
distinguished from the other values (see Section 5.2). In this case,
we have three possible nnz counts, with the last one repeating as
the filter leaves the edge; we write this pattern as 𝐴𝐵𝐶𝐶 . . .

On the other hand, let us hypothesize that the second layer is a
pointwise 1×1 convolution. The engine will yield:

uuuuua+ub+uc+u

uuuua+ub+uc+uu

uuuu a+ub+uc+uu

γ β ζζ ζζαg∗ + v

ζαζ γ ζζβg∗ + v

βζ α ζγ ζζg∗ + v

u uuu a+ub+uc+uu ζ βγζζ α ζg∗ + v

nnz = A

nnz = A

nnz = A

nnz = A

α = ga+gu+v β = gb+gu+v γ = gc+gu+v ζ = gu+v

which gives the nnz pattern 𝐴𝐴𝐴𝐴 . . . The reader is invited to
verify that for a 3×1 convolution followed by 2×1 max pooling, the
expected pattern would be 𝐴𝐵𝐶𝐷𝐶𝐷

These nnz patterns allow us to distinguish different types of
layers. To do this, the symbolic convolution engine (1) generates
expected nnz patterns for each geometry hypothesis for the cur-
rent layer, (2) feeds the first-layer inputs to the accelerator, and
(3) compares the output nnzs obtained by snooping on the off-chip
memory traffic to determine which layer geometry is correct.

6.3 The Probing Algorithm

Algorithm 1 shows the pseudocode for the probing algorithm.

Input:𝑇 i.i.d. random probes where each corresponds to input queries
{𝑥𝑖 }𝑙𝑖=1 ∈ A(𝑚,𝑛) , #𝑙𝑎𝑦𝑒𝑟𝑠

Output: reverse engineered layer geometry in result
for 𝑖 ← 1 to 𝑙 do

for 𝑡 ← 1 to𝑇 do

nnz[𝑖] [𝑡] [𝑗] ← Inference (𝑥)
end

end

result ← 𝐿𝑖𝑠𝑡 ()
for 𝑗 ← 1 to #layers do

select a probe 𝑡 with the longest nnz converging pattern.
select the valid subset of nnz[:] [𝑡] [𝑗] to form test nnzs
patterns← SymbolicConv (𝑚,𝑛)
foreach 𝑘 ∈ all possible layer configs do

if test nnzs matches patterns[𝑘] then

result [𝑗] ← 𝑘

𝑚,𝑛 ← DecodeOutPattern (patterns[𝑘])
break

end

end

end

Algorithm 1: The HuffDuff probing attack.

SymbolicConv(m,n) symbolically evaluates a given layer for the
sequence A(𝑚,𝑛), and DecodeOutPattern(. . .) determines 𝑚′, 𝑛′
for which the layer output matches A(𝑚′, 𝑛′), so that this can be
used in analyzing the next layer.

6.4 Limitations of the Probing Attack

The HuffDuff probing attack is quite powerful in practice: for
example, it works across all layers evaluated on VGG-S [82] and
ResNet-18 [29]. It is able to find the correct information about ker-
nel size, stride, and pooling within 2048 random probes. However,

392

HuffDuff: Stealing Pruned DNNs from Sparse Accelerators ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

the boundary effect appears agnostic to the number of channels,
and therefore the HuffDuff probing attack on its own cannot
determine 𝑘 .

7 USING ARCHITECTURAL PROPERTIES

To reverse-engineer the final piece of the puzzle — the channel (𝑘)
information — we rely on observations about (a) the dense nature
of partial sums, and (b) how partial sums are transferred between
an accelerator chip and DRAM.

7.1 Dense PSUMs

We use psums to provide an additional architectural timing channel
and deduce the value of 𝑘 . We observe that psums — as opposed to
output activations — are extremely unlikely to contain zeros and
therefore are held dense during accumulation. The zeros in psum
can only arise (i) if all weights in the kernel or all input activations
within the kernel footprint are 0 (very unlikely), (ii) the Multiply
and Accumulate (MAC) operations exactly cancel each other out
(even more unlikely).

In addition, it is unsafe to clamp negative psums and create spar-
sity before the accumulation process ends, because these values
might turn positive again before accumulation is complete. There-
fore, the psum tile is held in the Global Buffer (GLB) in a dense
fashion during this process5. Only after the psum calculations are
completed, will they be sent to the post-processing unit. This unit
clamps, quantizes, and compresses the final values into sparse out-
put feature maps and sends them back to DRAM.

As the dense psums are stored on-chip during accumulation to
exploit reuse, they do not need to be transferred back to DRAM.
However, after the accumulation phase, the post-processing unit
exploits sparsity, compressing psums before sending them to off-
chip DRAM. This allows us to create a timing side channel.

7.2 The Timing Side-Channel

GLB row

DRAMEncoding
Module

Comp block

Buffer

Dense completed
Psum Sparse

compressed output
feature map

GLB

Figure 3: The flow of psums into DRAM, depicting the on-the-

fly encoding for output activations.

Fig. 3 shows how dense psum values in GLB are compressed to a
sparse output feature map. First, a GLB row that contains multiple
psum words is sent to the encoding module6 where negative values
are clamped and the compressed content is stored in its local buffers.
Once there is enough data in the buffer, a compressed sparse block
will be written back to DRAM. This continues until all dense psum
are processed.
5We exclude ReLU prediction type of accelerators [1, 83] that exploit output activation
sparsity based on additional predictions. To the best of our knowledge, no sparse
accelerators proposed to date employ this technique.
6More precisely, it is the post-processing module where other post-processing opera-
tions such as quantizing the accumulator to the actual activation width are performed.
We omit this for simplicity.

The execution time of the encoding process can be bounded by
either the GLB side the DRAM side, as shown below.

R1
t

W1

R2 R3 R4 R5 R6 R7 R8

W2 W3DRAM

GLB

R1

W1

R2 R3 R4

W2 W3DRAM

GLB
t

…

…

…

…
(a)

(b)

Panel(a) depicts a case where the encoding process is GLB-bound.
𝑅𝑖 represents distinct GLB rows being read, and𝑊𝑖 stands for dis-
tinct DRAM transfers. Multiple packed GLB rows generate a sin-
gle compressed block, and the DRAM has sufficient bandwidth to
quickly transfer those compressed blocks. The total encoding time
is proportional to the number of GLB rows that are read, and thus
corresponds to dense psum size. We approximate the total time as
the difference between the last DRAM transfer time and the first
DRAM transfer time.

Panel (b) depicts a case where the encoding process is DRAM-
bound. This could be because the GLB row is wide enough to con-
struct a large compressed block and the DRAM has only limited
bandwidth to write these blocks. In this case, the GLB row reads
will stall as the buffer within the encoding module will quickly
become full. Here, the total processing time is proportional to the
number of DRAM transfers, which corresponds to the size of the
sparse output feature map.

Fortunately, in practice, the encoding process tends to be GLB-
bound (see Section 8). This is because the accumulators for psum
typically have a larger bitwidth to avoid overflow. For example,
Eyeriss v2 [10] and SCNN [72] use 20 bits and 24 bits respectively,
whereas their activation width is only 8 bits. Additionally, since
psums are dense, they naturally have more elements than output
feature maps, which are sparse: overall, the size of dense psums
tends to be 5×–6× larger than sparse output feature maps. Thus, we
can obtain the psum size ratio between different layers, and, with
known values of 𝑃,𝑄 (from the prober), use this to reverse engineer
the ratio of 𝑘 between those layers.

8 EVALUATION

8.1 Methods

To obtain the sparse victim model, we used the Lottery Ticket
Hypothesis [17], pruning VGG-S [82] by a factor of 10× and ResNet-
18 [29] also by a factor of 10×, each trained on CIFAR-10 [50]. We
instrumented the PyTorch [73] code for each model to generate the
responses to the probing component of the HuffDuff attack.

We build a custom analytic simulator for the on-the-fly encod-
ing process discussed in Section 7.2 based on runtime activation
snapshot captured from Pytorch [73] models. We used the avail-
able psum GLB bandwidth from Eyeriss v2 [10], an state-of-the-art
2-sided sparse accelerator, with LPDDR3 [42], LPDDR4 [44], and
LPDDR4X [43] memory.

To evaluate the effectiveness of our attack, we sample models
from the solution space and evaluate our accuracy as well as the
black box targeted adversarial attack success rate. We generate ad-
versarial examples using BIM [52] method based on implementation
from TorchAttacks [49].

393

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Dingqing Yang, Prashant J. Nair, and Mieszko Lis

8.2 Effectiveness of HuffDuff Components

Prober: Section 5 discusses how to reverse engineer filter size,
stride, and pooling based on different probing responses. Although
“errors” (i.e., unobservable edge effects) could occur on any down-
stream layers, the failure probability can be successfully decreased
based on probability amplification via multiple independent ran-
dom trials: we keep increasing the number of random trials until
the identified geometry converges. We find that 2048 random trials
are sufficient to correctly reveal all of the layer geometry such as
filter size, stride, and pooling. In practice, we are able to obtain all
layer geometry information except output channel counts in less
than 10 minutes on an NVIDIA 2080Ti GPU.
Encoding the timing side-channel: Section 7 approximates dense
psum ratios between different layers based on the ratio of the timing
difference between the first and last DRAM transfers. Our simula-
tion is based Eyeriss v2 [10], which has 8 psum GLB banks, where
each bank is 3 words wide (20-bit accumulator, running at 200MHz.
The evaluated DRAM includes both the single-channel and dual-
channel versions of LPDDR3 [42], LPDDR4 [44], and LPDDR4X [43].
Our evaluation is based on profiled output activations from Py-
Torch [73]. We observe that the system is GLB-bound even with
the lowest-bandwidth DRAM (i.e., single-channel LPDDR3).

To further determine the limits of leveraging the GLB-bound
property, we also evaluated how much more GLB bandwidth is
required for Eyeriss v2 [10] for it to begin experiencing some DRAM-
bound layers for VGG-S and ResNet18; the results are shown below
(𝑠 for single channel and 𝑑 for dual channel).

LPDDR4 3-𝑠 3-𝑑 4-𝑠 4-𝑑 4X-𝑠 4X-𝑑
VGG-S 2× 4× 2.3× 4.6× 2.7× 5.3×
ResNet18 1.8× 3.5× 2× 4.1× 2.3× 4.7×

While the accelerator designer can increase the available GLB
bandwidth by creating more banks, the bottleneck will only shift to
the encoder as it is challenging to encode a large number of words
within a single cycle.

Although we have validated that encoding is GLB-bound, the side
channel information collected is only an approximation, because
the time between the first GLB row read and the first DRAM transfer
is unknown. We found this small inaccuracy to be acceptable in
practice without the need for additional denoising.
Finalizing the solution space: Since the encoding timing chan-
nel only provides ratios between different output channel counts
(𝑘), we would like to identify the channel count range for at least
one layer. We find the first layer is a good candidate as its weight
is much denser compared to other layers. First, first-layer filters
directly process the input images, and an aggressive pruning on
the first layer weight compromises the accuracy more comparing
pruning other weights [28]. Second, first-layer weights are typically
tiny, and we find that pruning algorithms are more likely to prune
aggressively on layers with large weights. Empirically, we find that
first-layer sparsity is rarely beyond 60%, so we use this to establish
empirical sparsity bound, which gives an output channel count
range [30, 73] and [58, 123] for ResNet18 [29] and VGG-S [82] re-
spectively. Combining the encoder timing channel info, we get the
44 and 66 solutions for ResNet18 [29] and VGG-S [82] respectively.

B 1 2 3 4 5 6 7 8
Model instance

93.0

93.2

93.4

93.6

93.8

94.0

Ac
cu

ra
cy

 in
 %

VGG-S

B 1 2 3 4 5 6 7 8
Model instance

93.00
93.25
93.50
93.75
94.00
94.25
94.50

ResNet18

Figure 4: Accuracy for sampled instances on VGG-S (left) and

ResNet-18 (right). Baseline accuracy is in the blue shaded bars

whereas the accuracy of 8 HuffDuff sampled instances are

in green dotted bars. The original victim accuracy is depicted

in a blue dashed line. VGG baseline accuracy is 75.8% (not

shown in the figure).

8.3 Quality of Reverse-Engineered Models

A good reverse-engineered model should have the following proper-
ties: (i) high classification accuracy under the same model footprint
such that the attacker can use it, and (ii) usefulness in mounting
follow-up attacks, such as generating adversarial examples that
compromise the victim system. Therefore, we evaluated the quality
of the reverse-engineered models using two metrics: accuracy and
targeted adversarial attack success rate. We performed uniform
sampling from the solution space, sampling 8 candidates each for
VGG-S [82] and ResNet18 [29].
Accuracy: We compare the accuracy of 8 sampled candidates
(model instance id sorted with respect to unpruned size in Fig. 4.
Our baselines are constructed as selecting a model from a prior
generation in the model zoo and pruned to the same footprint.
We choose a model from a prior generation because it does not
make sense for the attacker to steal a “worse” model if the goal
is to match iso-footprint accuracy. Thus, to compare with candi-
dates obtained from reverse-engineering VGG-S [82], we selected
AlexNet [51] as the baseline, and we used VGG-S [82] as the baseline
for ResNet18 [29] candidates.

Our candidates for the VGG-S victim significantly outperform
the baseline (75.8%, not shown in Fig. 4), with some even exceeding
the original victim. All candidates for ResNet18 exceed the baseline
and the best-performing model is within 0.1% of the victim.
Adversarial success rate: We examine the black box targeted
success rate among our sampled candidates and the baselines. We
follow prior works [33, 59] where baselines are chosen from random
surrogates in the model zoo. Unlike the prior dense case, we further
prune them to different sparsity levels for a more thorough com-
parison. For our VGG-S victims (Fig. 5 left), we select ResNet18 [29]
and MobileNetV2 [78], each pruned 2× and 5× (B1 to B4 in Fig. 5
left). For Fig. 5 left on ResNet18 victim, we include four baselines:
VGG-S and MobileNetV2, also pruned to 2× and 5×.

In terms of the target selection heuristic, prior works [33, 59] pick
a random label as the transfer target that might not be challenging
enough if the randomly chosen target is similar to the original label.
Since transferability is harder to achieve with a more challenging
target, we choose the most challenging target selection heuristic:

394

HuffDuff: Stealing Pruned DNNs from Sparse Accelerators ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

B1 B2 B3 B4 1 2 3 4 5 6 7 8
Model instance

20

40

60

Su
cc

es
s r

at
e

in
%

VGG-S

B1 B2 B3 B4 1 2 3 4 5 6 7 8
Model instance

40

60

80

ResNet18

Figure 5: Black box targeted success rate (where max per pixel

disturbance 𝜀 bounded by 32) for sampled instances on VGG-

S (left) and ResNet-18 (right). Instance B1 to B4 on the left

(shaded light blue bars) corresponds to 4 baselines ResNet18

pruned 2x, ResNet18 pruned 5×, MobileNetV2 pruned 2×, Mo-

bileNetV2 5× respectively. B1 to B4 on the right corresponds

to ResNet18 pruned 2×, ResNet18 pruned 5×, MobileNetV2

pruned 2×, MobileNetV2 5× respectively. Instances 1 to 8

(dotted light green bars) correspond to 8 sampled instances

using HuffDuff. The success rate for the one with identical

architecture is in a blue dashed line.

B1 B2 B3 B4 1 2 3 4 5 6 7 8
Model instance

10

20

30

40

50

Su
cc

es
s r

at
e

in
%

VGG-S

B1 B2 B3 B4 1 2 3 4 5 6 7 8
Model instance

20

40

60

ResNet18

Figure 6: Success rate over different model instances. We use

a similar setting to Fig. 5 except that we reduced the per pixel

disturbance 𝜀 to 16.

the least likely label. In this target, perturbation is added to trick
the model to predict the least likely label in the original prediction
(i.e. tricking the model to perform the worst prediction).

Notice here that measuring transferability on the victim model
using the victim itself is equivalent to the white-box attack, so
instead, we compare with a model having the oracle structure
with the victim but trained with a different random seed. We first
demonstrate the targeted attack success rate with allowed per pixel
disturbance (𝜀) to be 32 (follow to [59]) in Fig. 5. Our candidate
models transfer significantly better than most baselines, and many
even outperform an idealized setting where the model architecture
is known to the attacker. Moreover, we evaluate the attack with
𝜀 = 16 where such disturbance is considered imperceptible [52] in
Fig. 6 and observe a similar trend.

9 DISCUSSION AND FUTURE DIRECTIONS

9.1 HuffDuff Limitations

In this subsection, we summarize the scenarios where HuffDuff
does not work well. Those scenarios are not the common case, and
HuffDuff is sufficient for most cases.

In terms of the target accelerator, we exclude the SRAM-only
ones like EIE [27] and ShiDianNao [15], as well as Cerebras WSE-
2 [6] with its gigantic 40GB SRAM. These accelerators may not leave
visible footprints in DRAM, but they are prohibitively expensive
in terms of silicon area. We also exclude accelerators that perform
layer-fusion [3, 18, 38]. This is because they do not leave the en-
tire footprint visible in DRAM, and therefore HuffDuff or other
DRAM-snooping-based attacks [33, 35] are not effective. Finally,
we exclude accelerators that are not sparse [7, 8, 45].

The HuffDuff prober does not provide any insight on convolu-
tions that do not exhibit the boundary effect, so it does not work on
the transposed convolutions used in UNet [76] and GANs [21]. Nev-
ertheless, the prober applies to all padding modes (“valid”, “same”,
and “full” [16]) and strategies (“constant”, “reflect”, “replicate”, and
“circular”, following PyTorch [73] terminology), as they do create
boundary effects. However, the HuffDuff prober does not distin-
guish among them, and our implementation assumes the “same”
padding mode and the zero padding as the most common case in
TorchVision [61].

9.2 Potential Defence Strategies

Fully effective defences, like ORAM [19], SRAM-only accelera-
tors [6, 15, 27], are prohibitively expensive in silicon area, especially
for edge accelerators. In theory, fused-layer accelerators [3, 18, 38]
would expand the search space, but no such sparse accelerators
exist, and dense accelerators are easy to crack [35]. We leave these
outside our threat model as unrealistic.

Hardware defences that might appear cheaper are also non-
trivial. There are two widely adapted defence strategies that could
apply: (i) blocking the source of the leak and (ii) obfuscating the
detection of the leak. For example, the victim could leave “sensitive”
pixels (i.e., positions that might reveal the boundary effect com-
pared with other probes) uncompressed. This leverages the first
approach that avoids the boundary effect from being observed in
DRAM: for example, an 𝐴𝐵𝐶𝐶 pattern shown in Section 5.4 will
appear to be𝐴𝐴𝐴𝐴, and no filter size information will be obtainable.
However, such a scheme is non-trivial because the “sensitive” posi-
tion is different for different attack patterns, and therefore would
require additional dynamic hardware support. Following the second
approach, the victim could randomly leave zeros uncompressed;
in this case, an 𝐴𝐵𝐶𝐶 pattern shown in Section 5.4 might become
𝐴𝐵𝐶𝐷 to obfuscate the detection of filter size. However, this may
still not provide enough security guarantees, as this kind of noise
could be overcome with repeated trials. We believe a serious de-
fence study would be a paper unto itself, and therefore we leave
this to future work.

395

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Dingqing Yang, Prashant J. Nair, and Mieszko Lis

10 RELATED WORK

Model-stealing and corruption attacks: Prior work has inves-
tigated reverse engineering network architectures with IP protec-
tions. With the reverse-engineered model, one can stage other types
of attacks. For instance, Tramer et al. [75] try to duplicate the ML
model by exploiting the features of ML-as-a-Service. Rather than
using features of the service model, HuffDuff exploits the features
of the hardware to tailor specific inputs to reverse engineer the
model.

Oh et al. [65] proposed a software-based attack that investigates
techniques to infer parameters and characteristics from a black-box
model. To enable this, they use multiple input queries to charac-
terize the decision boundary of the victim model and then employ
a “meta-model” to try to predict certain hyper-parameters. Unfor-
tunately, these black-box approaches have limited efficacy as they
do not have access to any information related to side channels or
hardware architectures. On the other hand, as HuffDuff utilizes
the information of the underlying architecture, it can be relatively
more powerful.

Rather than stealing the model, prior work has also proposed de-
grading the model using fault injection attacks that flip a small num-
ber of bits to significantly degrade the accuracy of the model [75].
These attacks can be orchestrated on DRAM modules using the
Rowhammer vulnerability and can cause integrity violations [22,
31, 55, 75]. Such attacks are orthogonal to HuffDuff.
Hardware-based attacks: Yan et al. [92] use the insight that the
DNNs executed on CPUs heavily rely on blocked GEMM operations.
They then use a cache side-channel attack to extract this informa-
tion about GEMM. They can use this attack to infer the number of
GEMM calls and the size of matrices that GEMM operates on. They
show that this can be used to reveal the DNN architecture. How-
ever, this attack works very well with dense networks and unlike
HuffDuff it is ineffective with sparse networks. LeakyDNN [89]
exploits GPU context-switch side channels to steal DNNs. Other
GPU side channels [62] can also be potentially exploited. Several
prior works have also explored attacks using physical probing of
the hardware [33, 35]. These works do not translate to sparse accel-
erators.

In a similar vein, Deepsniffer [33] tries to steal dense models on
GPUs. They use the insight that one can use an end-to-end learning-
based approach to handle a lot of system and architectural noises.
While Deepsniffer has access to the entire software stack to create
training data to extract useful side-channel information, HuffDuff
does not require this. Furthermore, Deepsniffer is an expensive
approach as they need to re-collect the training set and re-train the
model when they use different GPUs and runtimes. In contrast, for
HuffDuff the noise on side channel info (tensor sparsity) is also
part of the secret, and we do not need to construct the training set.

11 CONCLUSIONS

There is an increasing trend of using sparse DNN models to run
directly and locally on edge devices using custom sparse DNN
accelerators. These devices are controlled by the users and can be
disassembled and monitored to measure off-chip access volume.

In this paper, we show that this physical access is sufficient to
enable the theft of the DNN models within. We demonstrate a novel
attack scheme, called HuffDuff, which leverages (i) the boundary
effect present in CONV layers, and (ii) the timing side channel created
by on-the-fly activations compression.

Together, these techniques offer a practical method to dramat-
ically reduce the space of possible model architectures by up to
94 orders-of-magnitude, often yielding fewer than a hundred solu-
tions. Our evaluation shows that candidate models sampled from
the HuffDuff solution space reach the accuracy of the victim, and
raise black-box targeted attack success rates to a semi-white-box
level (where the attacker knows the correct architecture) while
remaining black-box techniques.

ACKNOWLEDGMENTS

The authors are grateful to the anonymous reviewers and the shep-
herd for insightful feedback and helpful suggestions.

This material is based on research sponsored by Air Force Re-
search Laboratory (AFRL) and Defense Advanced Research Project
Agency (DARPA) under agreement number FA8650-20-2-7007, and
by the Natural Sciences and Engineering Research Council of Canada
(NSERC) under award number NETGP 485577-15. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for Govern-
mental purposes notwithstanding any copyright notation thereon.
The views and conclusions contained herein are those of the au-
thors and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of Air
Force Research Laboratory (AFRL), Defense Advanced Research
Project Agency (DARPA), the U.S. Government, the Natural Sci-
ences and Engineering Research Council of Canada (NSERC), or
the Government of Canada.

REFERENCES

[1] Vahideh Akhlaghi, Amir Yazdanbakhsh, Kambiz Samadi, Rajesh K. Gupta, and
Hadi Esmaeilzadeh. 2018. SnaPEA: Predictive Early Activation for Reducing
Computation in Deep Convolutional Neural Networks. In 2018 ACM/IEEE 45th
Annual International Symposium on Computer Architecture (ISCA). 662–673. https:
//doi.org/10.1109/ISCA.2018.00061

[2] Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt, Natalie Enright
Jerger, and Andreas Moshovos. 2016. Cnvlutin: Ineffectual-Neuron-Free Deep
Neural Network Computing. In 2016 ACM/IEEE 43rd Annual International Sympo-
sium on Computer Architecture (ISCA). 1–13. https://doi.org/10.1109/ISCA.2016.11

[3] Manoj Alwani, Han Chen, Michael Ferdman, and Peter Milder. 2016. Fused-layer
CNN accelerators. In 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). 1–12. https://doi.org/10.1109/MICRO.2016.7783725

[4] Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan Picek. 2019. CSI NN:
Reverse Engineering of Neural Network Architectures through Electromagnetic
Side Channel. In Proceedings of the 28th USENIX Conference on Security Symposium
(Santa Clara, CA, USA) (SEC’19). USENIX Association, USA, 515–532.

[5] Jakub Breier, Xiaolu Hou, Dirmanto Jap, Lei Ma, Shivam Bhasin, and Yang Liu.
2018. Practical Fault Attack on Deep Neural Networks. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security (Toronto,
Canada) (CCS ’18). Association for Computing Machinery, New York, NY, USA,
2204–2206. https://doi.org/10.1145/3243734.3278519

[6] Cerebras. 2021. Wafer-Scale Engine: The Largest Chip Ever Built. https://f.
hubspotusercontent30.net/hubfs/8968533/WSE-2%20Datasheet.pdf

[7] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,
and Olivier Temam. 2014. DianNao: a small-footprint high-throughput accelera-
tor for ubiquitous machine-learning. In Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2014, Salt Lake City, UT, USA, March
1-5, 2014, Rajeev Balasubramonian, Al Davis, and Sarita V. Adve (Eds.). ACM,
269–284. https://doi.org/10.1145/2541940.2541967

[8] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li,
Tianshi Chen, Zhiwei Xu, Ninghui Sun, and Olivier Temam. 2014. DaDianNao: A
Machine-Learning Supercomputer. In 2014 47th Annual IEEE/ACM International

396

https://doi.org/10.1109/ISCA.2018.00061
https://doi.org/10.1109/ISCA.2018.00061
https://doi.org/10.1109/ISCA.2016.11
https://doi.org/10.1109/MICRO.2016.7783725
https://doi.org/10.1145/3243734.3278519
https://f.hubspotusercontent30.net/hubfs/8968533/WSE-2%20Datasheet.pdf
https://f.hubspotusercontent30.net/hubfs/8968533/WSE-2%20Datasheet.pdf
https://doi.org/10.1145/2541940.2541967

HuffDuff: Stealing Pruned DNNs from Sparse Accelerators ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Symposium on Microarchitecture. 609–622. https://doi.org/10.1109/MICRO.2014.
58

[9] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: A Spatial Architec-
ture for Energy-Efficient Dataflow for Convolutional Neural Networks. In 2016
ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA).
367–379. https://doi.org/10.1109/ISCA.2016.40

[10] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. 2019. Eyeriss v2: A
Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices.
IEEE Journal on Emerging and Selected Topics in Circuits and Systems 9, 2 (2019),
292–308. https://doi.org/10.1109/JETCAS.2019.2910232

[11] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptol.
ePrint Arch. 2016, 86 (2016), 1–118.

[12] Tom Woller David Kaplan, Jeremy Powell. 2016. AMD Memory Encryption
– A White Paper. https://developer.amd.com/wordpress/media/2013/12/AMD
Memory Encryption Whitepaper v7-Public.pdf. [Online; accessed 7-July-2022].

[13] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Im-
ageNet: A large-scale hierarchical image database. In 2009 IEEE Computer So-
ciety Conference on Computer Vision and Pattern Recognition (CVPR 2009), 20-
25 June 2009, Miami, Florida, USA. IEEE Computer Society, 248–255. https:
//doi.org/10.1109/CVPR.2009.5206848

[14] Caiwen Ding, Siyu Liao, Yanzhi Wang, Zhe Li, Ning Liu, Youwei Zhuo, Chao
Wang, Xuehai Qian, Yu Bai, Geng Yuan, Xiaolong Ma, Yipeng Zhang, Jian Tang,
Qinru Qiu, Xue Lin, and Bo Yuan. 2017. CirCNN: Accelerating and Compressing
Deep Neural Networks Using Block-Circulant Weight Matrices. In 2017 50th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 395–
408.

[15] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao Luo,
Xiaobing Feng, Yunji Chen, and Olivier Temam. 2015. ShiDianNao: Shifting
vision processing closer to the sensor. In 2015 ACM/IEEE 42nd Annual International
Symposium on Computer Architecture (ISCA). 92–104. https://doi.org/10.1145/
2749469.2750389

[16] Vincent Dumoulin and Francesco Visin. 2016. A guide to convolution arithmetic
for deep learning. CoRR abs/1603.07285 (2016). arXiv:1603.07285 http://arxiv.
org/abs/1603.07285

[17] Jonathan Frankle and Michael Carbin. 2019. The Lottery Ticket Hypothesis:
Finding Sparse, Trainable Neural Networks. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. Open-
Review.net. https://openreview.net/forum?id=rJl-b3RcF7

[18] Mingyu Gao, Xuan Yang, Jing Pu, Mark Horowitz, and Christos Kozyrakis. 2019.
TANGRAM: Optimized Coarse-Grained Dataflow for Scalable NN Accelerators. In
Proceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS 2019, Providence, RI,
USA, April 13-17, 2019, Iris Bahar, Maurice Herlihy, Emmett Witchel, and Alvin R.
Lebeck (Eds.). ACM, 807–820. https://doi.org/10.1145/3297858.3304014

[19] Oded Goldreich and Rafail Ostrovsky. 1996. Software Protection and Simulation
on Oblivious RAMs. J. ACM 43, 3 (1996), 431–473. https://doi.org/10.1145/233551.
233553

[20] Ashish Gondimalla, Noah Chesnut, Mithuna Thottethodi, and T. N. Vijaykumar.
2019. SparTen: A Sparse Tensor Accelerator for Convolutional Neural Networks.
In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microar-
chitecture (Columbus, OH, USA) (MICRO ’52). Association for Computing Ma-
chinery, New York, NY, USA, 151–165. https://doi.org/10.1145/3352460.3358291

[21] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. 2014.
Generative Adversarial Nets. In Advances in Neural Information Process-
ing Systems 27: Annual Conference on Neural Information Processing Sys-
tems 2014, December 8-13 2014, Montreal, Quebec, Canada, Zoubin Ghahra-
mani, Max Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q. Wein-
berger (Eds.). 2672–2680. https://proceedings.neurips.cc/paper/2014/hash/
5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html

[22] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and
Harnessing Adversarial Examples. In 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, Yoshua Bengio and Yann LeCun (Eds.). http://arxiv.org/abs/1412.6572

[23] D Griffith and Carl Amrhein. 1983. An Evaluation of Correction Techniques for
Boundary Effects in Spatial Statistical Analysis: Traditional Methods. Geographi-
cal Analysis 15, 4 (1983), 352.

[24] Daniel A Griffith. 1983. The Boundary Value Problem in Spatial Statistical Analy-
sis. Journal of Regional Science 23, 3 (1983), 377–387.

[25] Le Guan, Chen Cao, Sencun Zhu, Jingqiang Lin, Peng Liu, Yubin Xia, and Bo
Luo. 2019. Protecting Mobile Devices from Physical Memory Attacks with
Targeted Encryption. In Proceedings of the 12th Conference on Security and Privacy
in Wireless and Mobile Networks (Miami, Florida) (WiSec ’19). Association for
Computing Machinery, New York, NY, USA, 34–44. https://doi.org/10.1145/
3317549.3319721

[26] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William
Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W.

Felten. 2009. Lest We Remember: Cold-Boot Attacks on Encryption Keys. Com-
mun. ACM 52, 5 (may 2009), 91–98. https://doi.org/10.1145/1506409.1506429

[27] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz,
and William J. Dally. 2016. EIE: Efficient Inference Engine on Compressed Deep
Neural Network. In 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA). 243–254. https://doi.org/10.1109/ISCA.2016.30

[28] Song Han, Huizi Mao, and William J. Dally. 2016. Deep Compression: Compress-
ing Deep Neural Network with Pruning, Trained Quantization and Huffman
Coding. In 4th International Conference on Learning Representations, ICLR 2016,
San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, Yoshua Bengio
and Yann LeCun (Eds.). http://arxiv.org/abs/1510.00149

[29] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 770–778. https://doi.org/10.1109/CVPR.2016.90

[30] Kartik Hegde, Hadi Asghari Moghaddam, Michael Pellauer, Neal Clayton Crago,
Aamer Jaleel, Edgar Solomonik, Joel S. Emer, and Christopher W. Fletcher. 2019.
ExTensor: An Accelerator for Sparse Tensor Algebra. In Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 2019,
Columbus, OH, USA, October 12-16, 2019. ACM, 319–333. https://doi.org/10.1145/
3352460.3358275

[31] Sanghyun Hong, Pietro Frigo, Yiğitcan Kaya, Cristiano Giuffrida, and Tudor
Dumitraş. 2019. Terminal Brain Damage: Exposing the Graceless Degradation
in Deep Neural Networks under Hardware Fault Attacks. In Proceedings of the
28th USENIX Conference on Security Symposium (Santa Clara, CA, USA) (SEC’19).
USENIX Association, USA, 497–514.

[32] Jie Hu, Li Shen, and Gang Sun. 2018. Squeeze-and-Excitation Networks. In 2018
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake
City, UT, USA, June 18-22, 2018. Computer Vision Foundation / IEEE Computer
Society, 7132–7141. https://doi.org/10.1109/CVPR.2018.00745

[33] Xing Hu, Ling Liang, Shuangchen Li, Lei Deng, Pengfei Zuo, Yu Ji, Xinfeng Xie,
Yufei Ding, Chang Liu, Timothy Sherwood, and Yuan Xie. 2020. DeepSniffer: A
DNN Model Extraction Framework Based on Learning Architectural Hints. In
Proceedings of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems (Lausanne, Switzerland) (AS-
PLOS ’20). Association for Computing Machinery, New York, NY, USA, 385–399.
https://doi.org/10.1145/3373376.3378460

[34] Weizhe Hua, Muhammad Umar, Zhiru Zhang, and G. Edward Suh. 2022. GuardNN:
Secure Accelerator Architecture for Privacy-Preserving Deep Learning. In Pro-
ceedings of the 59th ACM/IEEE Design Automation Conference (San Francisco,
California) (DAC ’22). Association for Computing Machinery, New York, NY,
USA, 349–354. https://doi.org/10.1145/3489517.3530439

[35] Weizhe Hua, Zhiru Zhang, and G. Edward Suh. 2018. Reverse Engineering
Convolutional Neural Networks Through Side-channel Information Leaks. In
2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC). 1–6. https:
//doi.org/10.1109/DAC.2018.8465773

[36] Weizhe Hua, Yuan Zhou, Christopher De Sa, Zhiru Zhang, and G. Edward Suh.
2019. Boosting the Performance of CNN Accelerators with Dynamic Fine-Grained
Channel Gating. In Proceedings of the 52nd Annual IEEE/ACM International Sym-
posium on Microarchitecture, MICRO 2019, Columbus, OH, USA, October 12-16,
2019. ACM, 139–150. https://doi.org/10.1145/3352460.3358283

[37] Andrew Huang. 2002. Hacking the Xbox: An Introduction to Reverse Engineering.
(2002).

[38] Chao-Tsung Huang, Yu-Chun Ding, Huan-Ching Wang, Chi-Wen Weng, Kai-Ping
Lin, Li-Wei Wang, and Li-De Chen. 2019. eCNN: A Block-Based and Highly-
Parallel CNN Accelerator for Edge Inference. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO 2019, Columbus,
OH, USA, October 12-16, 2019. ACM, 182–195. https://doi.org/10.1145/3352460.
3358263

[39] Yongbing Huang, Licheng Chen, Zehan Cui, Yuan Ruan, Yungang Bao, Mingyu
Chen, and Ninghui Sun. 2014. HMTT: A Hybrid Hardware/Software Tracing
System for Bridging the DRAM Access Trace’s Semantic Gap. ACM Trans. Archit.
Code Optim. 11, 1, Article 7 (feb 2014), 25 pages. https://doi.org/10.1145/2579668

[40] Mihailo Isakov, Vijay Gadepally, Karen M. Gettings, and Michel A. Kinsy. 2019.
Survey of Attacks and Defenses on Edge-Deployed Neural Networks. In 2019
IEEE High Performance Extreme Computing Conference (HPEC). 1–8. https://doi.
org/10.1109/HPEC.2019.8916519

[41] Bernd Jahne. 2004. Practical Handbook on Image Processing for Scientific and
Technical Applications. CRC Press.

[42] JEDEC Standard. 2015. Lpw Power Double Data Rate 3 SDRAM (LPDDR3). In
JESD209-3C.

[43] JEDEC Standard. 2021. Addendum No. 1 to JESD209-4, Low Power Double Data
Rate 4X (LPDDR4X). In JESD209-4-1A.

[44] JEDEC Standard. 2021. Low Power Double Data Rate 4 (LPDDR4). In JESD209-4D.
[45] Norman P. Jouppi, Cliff Young, Nishant Patil, David A. Patterson, Gaurav Agrawal,

Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,
Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt
Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati,
William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu,

397

https://doi.org/10.1109/MICRO.2014.58
https://doi.org/10.1109/MICRO.2014.58
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1109/JETCAS.2019.2910232
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1145/2749469.2750389
https://doi.org/10.1145/2749469.2750389
https://arxiv.org/abs/1603.07285
http://arxiv.org/abs/1603.07285
http://arxiv.org/abs/1603.07285
https://openreview.net/forum?id=rJl-b3RcF7
https://doi.org/10.1145/3297858.3304014
https://doi.org/10.1145/233551.233553
https://doi.org/10.1145/233551.233553
https://doi.org/10.1145/3352460.3358291
https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
http://arxiv.org/abs/1412.6572
https://doi.org/10.1145/3317549.3319721
https://doi.org/10.1145/3317549.3319721
https://doi.org/10.1145/1506409.1506429
https://doi.org/10.1109/ISCA.2016.30
http://arxiv.org/abs/1510.00149
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1145/3352460.3358275
https://doi.org/10.1145/3352460.3358275
https://doi.org/10.1109/CVPR.2018.00745
https://doi.org/10.1145/3373376.3378460
https://doi.org/10.1145/3489517.3530439
https://doi.org/10.1109/DAC.2018.8465773
https://doi.org/10.1109/DAC.2018.8465773
https://doi.org/10.1145/3352460.3358283
https://doi.org/10.1145/3352460.3358263
https://doi.org/10.1145/3352460.3358263
https://doi.org/10.1145/2579668
https://doi.org/10.1109/HPEC.2019.8916519
https://doi.org/10.1109/HPEC.2019.8916519

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Dingqing Yang, Prashant J. Nair, and Mieszko Lis

Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander
Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve
Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle
Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran
Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,
Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross,
Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham,
Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo
Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang,
Eric Wilcox, and Doe Hyun Yoon. 2017. In-Datacenter Performance Analysis of a
Tensor Processing Unit. In Proceedings of the 44th Annual International Symposium
on Computer Architecture, ISCA 2017, Toronto, ON, Canada, June 24-28, 2017. ACM,
1–12. https://doi.org/10.1145/3079856.3080246

[46] Patrick Judd, Alberto Delmas Lascorz, Sayeh Sharify, and Andreas Moshovos.
2017. Cnvlutin2: Ineffectual-Activation-and-Weight-Free Deep Neural Network
Computing. CoRR abs/1705.00125 (2017). arXiv:1705.00125 http://arxiv.org/abs/
1705.00125

[47] Changhyeon Kim, Sanghoon Kang, Dongjoo Shin, Sungpill Choi, Youngwoo
Kim, and Hoi-Jun Yoo. 2019. A 2.1TFLOPS/W Mobile Deep RL Accelerator with
Transposable PE Array and Experience Compression. In 2019 IEEE International
Solid- State Circuits Conference - (ISSCC). 136–138. https://doi.org/10.1109/ISSCC.
2019.8662447

[48] Dongyoung Kim, Junwhan Ahn, and Sungjoo Yoo. 2018. ZeNA: Zero-Aware
Neural Network Accelerator. IEEE Design & Test 35, 1 (2018), 39–46. https:
//doi.org/10.1109/MDAT.2017.2741463

[49] Hoki Kim. 2020. Torchattacks : A Pytorch Repository for Adversarial Attacks.
CoRR abs/2010.01950 (2020). arXiv:2010.01950 https://arxiv.org/abs/2010.01950

[50] Alex Krizhevsky. 2009. Learning Multiple Layers of Features from Tiny Images.
Master’s thesis. University of Toronto.

[51] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet
Classification with Deep Convolutional Neural Networks. In Advances in
Neural Information Processing Systems 25: 26th Annual Conference on Neural
Information Processing Systems 2012. Proceedings of a meeting held Decem-
ber 3-6, 2012, Lake Tahoe, Nevada, United States, Peter L. Bartlett, Fernando
C. N. Pereira, Christopher J. C. Burges, Léon Bottou, and Kilian Q. Wein-
berger (Eds.). 1106–1114. https://proceedings.neurips.cc/paper/2012/hash/
c399862d3b9d6b76c8436e924a68c45b-Abstract.html

[52] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. 2017. Adversarial examples
in the physical world. In 5th International Conference on Learning Representa-
tions, ICLR 2017, Toulon, France, April 24-26, 2017, Workshop Track Proceedings.
OpenReview.net. https://openreview.net/forum?id=HJGU3Rodl

[53] Ching-En Lee, Yakun Sophia Shao, Jie-Fang Zhang, Angshuman Parashar, Joel
Emer, Stephen W Keckler, and Zhengya Zhang. 2018. Stitch-X: An Accelerator
Architecture for Exploiting Unstructured Sparsity in Deep Neural Networks. In
SysML Conference, Vol. 120.

[54] Sunho Lee, Jungwoo Kim, Seonjin Na, Jongse Park, and Jaehyuk Huh. 2022. TNPU:
Supporting Trusted Execution with Tree-less Integrity Protection for Neural
Processing Unit. In 2022 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). 229–243. https://doi.org/10.1109/HPCA53966.
2022.00025

[55] Guanpeng Li, Siva Kumar Sastry Hari, Michael Sullivan, Timothy Tsai, Karthik
Pattabiraman, Joel Emer, and Stephen W. Keckler. 2017. Understanding Error
Propagation in Deep Learning Neural Network (DNN) Accelerators and Ap-
plications. In SC17: International Conference for High Performance Computing,
Networking, Storage and Analysis. 1–12.

[56] Jiajun Li, Shuhao Jiang, Shijun Gong, Jingya Wu, Junchao Yan, Guihai Yan, and
Xiaowei Li. 2019. SqueezeFlow: A Sparse CNN Accelerator Exploiting Concise
Convolution Rules. IEEE Trans. Comput. 68, 11 (2019), 1663–1677. https://doi.
org/10.1109/TC.2019.2924215

[57] Tailin Liang, Lei Wang, Shaobo Shi, and John Glossner. 2018. Dynamic runtime
feature map pruning. arXiv preprint arXiv:1812.09922 (2018).

[58] Sean Lie. 2022. Cerebras Architecture Deep Dive: First Look Inside the HW/SW
Co-Design for Deep Learning : Cerebras Systems. In 2022 IEEE Hot Chips 34
Symposium (HCS). 1–34. https://doi.org/10.1109/HCS55958.2022.9895479

[59] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. 2017. Delving into
Transferable Adversarial Examples and Black-box Attacks. In 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net. https://openreview.net/
forum?id=Sys6GJqxl

[60] Johnson Loh, Jianan Wen, and Tobias Gemmeke. 2020. Low-Cost DNN Hardware
Accelerator for Wearable, High-Quality Cardiac Arrythmia Detection. In 2020
IEEE 31st International Conference on Application-specific Systems, Architectures
and Processors (ASAP). 213–216. https://doi.org/10.1109/ASAP49362.2020.00042

[61] Sébastien Marcel and Yann Rodriguez. 2010. Torchvision the Machine-Vision
Package of Torch. In Proceedings of the 18th ACM International Conference on
Multimedia (Firenze, Italy) (MM ’10). Association for Computing Machinery, New
York, NY, USA, 1485–1488. https://doi.org/10.1145/1873951.1874254

[62] Hoda Naghibijouybari, Ajaya Neupane, Zhiyun Qian, and Nael Abu-Ghazaleh.
2018. Rendered Insecure: GPU Side Channel Attacks Are Practical. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security
(Toronto, Canada) (CCS ’18). Association for Computing Machinery, New York,
NY, USA, 2139–2153. https://doi.org/10.1145/3243734.3243831

[63] NVIDIA. 2017. NVIDIA Deep Learning Accelerator (NVDLA). http://nvdla.org/
[64] NVIDIA. 2020. NVIDIA A100 Tensor Core GPU Architecture.

https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-
ampere-architecture-whitepaper.pdf.

[65] Seong Joon Oh, Max Augustin, Mario Fritz, and Bernt Schiele. 2018. Towards
Reverse-Engineering Black-Box Neural Networks. In 6th International Conference
on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May
3, 2018, Conference Track Proceedings. OpenReview.net. https://openreview.net/
forum?id=BydjJte0-

[66] MohammadHossein Olyaiy, Christopher Ng, and Mieszko Lis. 2021. Accel-
erating DNNs inference with predictive layer fusion. In ICS ’21: 2021 Inter-
national Conference on Supercomputing, Virtual Event, USA, June 14-17, 2021,
Huiyang Zhou, Jose Moreira, Frank Mueller, and Yoav Etsion (Eds.). ACM, 291–
303. https://doi.org/10.1145/3447818.3460378

[67] OpenAI. 2019. Better Language Models and Their Implications. https://openai.
com/blog/better-language-models/.

[68] OpenAI. 2019. GPT-2: 1.5B Release. https://openai.com/blog/gpt-2-1-5b-release/.
[69] OpenAI. 2019. GPT-2: 6-Month Follow-Up. https://openai.com/blog/gpt-2-6-

month-follow-up/.
[70] OpenAI. 2020. OpenAI API. https://openai.com/blog/openai-api/.
[71] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z. Berkay

Celik, and Ananthram Swami. 2017. Practical Black-Box Attacks against Machine
Learning. In Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security (Abu Dhabi, United Arab Emirates) (ASIA CCS ’17).
Association for Computing Machinery, New York, NY, USA, 506–519. https:
//doi.org/10.1145/3052973.3053009

[72] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rang-
harajan Venkatesan, Brucek Khailany, Joel Emer, Stephen W. Keckler, and
William J. Dally. 2017. SCNN: An accelerator for compressed-sparse convolu-
tional neural networks. In 2017 ACM/IEEE 44th Annual International Symposium
on Computer Architecture (ISCA). 27–40. https://doi.org/10.1145/3079856.3080254

[73] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Köpf, Edward Z. Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada, Hanna M. Wallach, Hugo
Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Ro-
man Garnett (Eds.). 8024–8035. https://proceedings.neurips.cc/paper/2019/hash/
bdbca288fee7f92f2bfa9f7012727740-Abstract.html

[74] Ray Prasad. 2013. Surface Mount Technology: Principles and Practice. Springer
Science & Business Media.

[75] Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. 2019. Bit-Flip Attack: Crushing
Neural Network With Progressive Bit Search. In 2019 IEEE/CVF International
Conference on Computer Vision (ICCV). 1211–1220. https://doi.org/10.1109/ICCV.
2019.00130

[76] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-Net: Convolutional
Networks for Biomedical Image Segmentation. In Medical Image Computing and
Computer-Assisted Intervention – MICCAI 2015, Nassir Navab, Joachim Horneg-
ger, William M. Wells, and Alejandro F. Frangi (Eds.). Springer International
Publishing, Cham, 234–241.

[77] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. 1988. Global Value Numbers
and Redundant Computations. In Proceedings of the 15th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (San Diego, California, USA)
(POPL ’88). Association for Computing Machinery, New York, NY, USA, 12–27.
https://doi.org/10.1145/73560.73562

[78] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 4510–4520.
https://doi.org/10.1109/CVPR.2018.00474

[79] Osman Semih Kayhan and Jan C. van Gemert. 2020. On Translation Invariance
in CNNs: Convolutional Layers Can Exploit Absolute Spatial Location. In 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 14262–
14273. https://doi.org/10.1109/CVPR42600.2020.01428

[80] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017. Mem-
bership Inference Attacks Against Machine Learning Models. In 2017 IEEE Sym-
posium on Security and Privacy (SP). 3–18. https://doi.org/10.1109/SP.2017.41

[81] Nivedita Shrivastava and Smruti R. Sarangi. 2022. Seculator: A Fast and Secure
Neural Processing Unit. CoRR abs/2204.08951 (2022). https://doi.org/10.48550/
arXiv.2204.08951 arXiv:2204.08951

398

https://doi.org/10.1145/3079856.3080246
https://arxiv.org/abs/1705.00125
http://arxiv.org/abs/1705.00125
http://arxiv.org/abs/1705.00125
https://doi.org/10.1109/ISSCC.2019.8662447
https://doi.org/10.1109/ISSCC.2019.8662447
https://doi.org/10.1109/MDAT.2017.2741463
https://doi.org/10.1109/MDAT.2017.2741463
https://arxiv.org/abs/2010.01950
https://arxiv.org/abs/2010.01950
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://openreview.net/forum?id=HJGU3Rodl
https://doi.org/10.1109/HPCA53966.2022.00025
https://doi.org/10.1109/HPCA53966.2022.00025
https://doi.org/10.1109/TC.2019.2924215
https://doi.org/10.1109/TC.2019.2924215
https://doi.org/10.1109/HCS55958.2022.9895479
https://openreview.net/forum?id=Sys6GJqxl
https://openreview.net/forum?id=Sys6GJqxl
https://doi.org/10.1109/ASAP49362.2020.00042
https://doi.org/10.1145/1873951.1874254
https://doi.org/10.1145/3243734.3243831
http://nvdla.org/
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://openreview.net/forum?id=BydjJte0-
https://openreview.net/forum?id=BydjJte0-
https://doi.org/10.1145/3447818.3460378
https://openai.com/blog/better-language-models/
https://openai.com/blog/better-language-models/
https://openai.com/blog/gpt-2-1-5b-release/
https://openai.com/blog/gpt-2-6-month-follow-up/
https://openai.com/blog/gpt-2-6-month-follow-up/
https://openai.com/blog/openai-api/
https://doi.org/10.1145/3052973.3053009
https://doi.org/10.1145/3052973.3053009
https://doi.org/10.1145/3079856.3080254
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.1109/ICCV.2019.00130
https://doi.org/10.1109/ICCV.2019.00130
https://doi.org/10.1145/73560.73562
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/CVPR42600.2020.01428
https://doi.org/10.1109/SP.2017.41
https://doi.org/10.48550/arXiv.2204.08951
https://doi.org/10.48550/arXiv.2204.08951
https://arxiv.org/abs/2204.08951

HuffDuff: Stealing Pruned DNNs from Sparse Accelerators ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

[82] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. In 3rd International Conference on Learn-
ing Representations, ICLR 2015, SanDiego, CA, USA,May 7-9, 2015, Conference Track
Proceedings, Yoshua Bengio and Yann LeCun (Eds.). http://arxiv.org/abs/1409.1556

[83] Mingcong Song, Jiechen Zhao, Yang Hu, Jiaqi Zhang, and Tao Li. 2018. Prediction
Based Execution on Deep Neural Networks. In 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA). 752–763. https://doi.
org/10.1109/ISCA.2018.00068

[84] Rastislav Struharik, Bogdan Vukobratović, Andrea Erdeljan, and Damjan
Rakanović. 2018. CoNNA – Compressed CNN Hardware Accelerator. In 2018
21st Euromicro Conference on Digital System Design (DSD). 365–372. https:
//doi.org/10.1109/DSD.2018.00070

[85] Hsin-Hsuan Sung, Yuanchao Xu, Jiexiong Guan, Wei Niu, Bin Ren, Yanzhi Wang,
Shaoshan Liu, and Xipeng Shen. 2022. Brief Industry Paper: Enabling Level-4
Autonomous Driving on a Single $1k Off-the-Shelf Card. In 28th IEEE Real-Time
and Embedded Technology and Applications Symposium, RTAS 2022, Milano, Italy,
May 4-6, 2022. IEEE, 297–300. https://doi.org/10.1109/RTAS54340.2022.00032

[86] Keysight Technologies. 2014. W2637A, W2638A and W2639A LPDDR BGA
Probes for Logic Analyzers and Oscilloscopes. Retrieved November 3, 2022 from
https://www.keysight.com/us/en/assets/7018-02123/data-sheets/5990-3892.pdf

[87] Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart.
2016. Stealing Machine Learning Models via Prediction APIs. In Proceedings of
the 25th USENIX Conference on Security Symposium (Austin, TX, USA) (SEC’16).
USENIX Association, USA, 601–618.

[88] Assia Tria and Hamid Choukri. 2011. Invasive Attacks. In Encyclopedia of
Cryptography and Security, 2nd Ed, Henk C. A. van Tilborg and Sushil Jajodia
(Eds.). Springer, 623–629. https://doi.org/10.1007/978-1-4419-5906-5 511

[89] Junyi Wei, Yicheng Zhang, Zhe Zhou, Zhou Li, and Mohammad Abdullah
Al Faruque. 2020. Leaky DNN: Stealing Deep-Learning Model Secret with
GPU Context-Switching Side-Channel. In 2020 50th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks (DSN). 125–137. https:
//doi.org/10.1109/DSN48063.2020.00031

[90] Yoo-Seung Won, Soham Chatterjee, Dirmanto Jap, Arindam Basu, and Shivam
Bhasin. 2021. DeepFreeze: Cold Boot Attacks and High Fidelity Model Recovery
on Commercial EdgeML Device. In 2021 IEEE/ACM International Conference On

Computer Aided Design (ICCAD). 1–9. https://doi.org/10.1109/ICCAD51958.2021.
9643512

[91] Yun Xiang, Zhuangzhi Chen, Zuohui Chen, Zebin Fang, Haiyang Hao, Jinyin
Chen, Yi Liu, Zhefu Wu, Qi Xuan, and Xiaoniu Yang. 2020. Open DNN Box by
Power Side-Channel Attack. IEEE Transactions on Circuits and Systems II: Express
Briefs 67, 11 (2020), 2717–2721. https://doi.org/10.1109/TCSII.2020.2973007

[92] Mengjia Yan, Christopher W. Fletcher, and Josep Torrellas. 2020. Cache Telepathy:
Leveraging Shared Resource Attacks to Learn DNN Architectures. In Proceed-
ings of the 29th USENIX Conference on Security Symposium (SEC’20). USENIX
Association, USA, Article 113, 18 pages.

[93] Zhe Yuan, Jinshan Yue, Huanrui Yang, Zhibo Wang, Jinyang Li, Yixiong Yang,
Qingwei Guo, Xueqing Li, Meng-Fan Chang, Huazhong Yang, and Yongpan
Liu. 2018. Sticker: A 0.41-62.1 TOPS/W 8Bit Neural Network Processor with
Multi-Sparsity Compatible Convolution Arrays and Online Tuning Acceleration
for Fully Connected Layers. In 2018 IEEE Symposium on VLSI Circuits. 33–34.
https://doi.org/10.1109/VLSIC.2018.8502404

[94] ZeroPoint. 2022. ZeroPoint Technologies Signs Memory Encryption Con-
tract. https://www.zeropoint-tech.com/news/zeropoint-technologies-signs-
memory-encryption-contract.

[95] Jie-Fang Zhang, Ching-En Lee, Chester Liu, Yakun Sophia Shao, Stephen W.
Keckler, and Zhengya Zhang. 2019. SNAP: A 1.67 — 21.55TOPS/W Sparse Neural
Acceleration Processor for Unstructured Sparse Deep Neural Network Inference
in 16nm CMOS. In 2019 Symposium on VLSI Circuits. C306–C307. https://doi.
org/10.23919/VLSIC.2019.8778193

[96] Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling Li, Qi Guo,
Tianshi Chen, and Yunji Chen. 2016. Cambricon-X: An accelerator for sparse
neural networks. In 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). 1–12. https://doi.org/10.1109/MICRO.2016.7783723

[97] Pengfei Zuo, Yu Hua, Ling Liang, Xinfeng Xie, Xing Hu, and Yuan Xie. 2021.
SEALing Neural Network Models in Encrypted Deep Learning Accelerators. In
2021 58th ACM/IEEE Design Automation Conference (DAC). 1255–1260. https:
//doi.org/10.1109/DAC18074.2021.9586199

Received 2022-07-07; accepted 2022-09-22

399

http://arxiv.org/abs/1409.1556
https://doi.org/10.1109/ISCA.2018.00068
https://doi.org/10.1109/ISCA.2018.00068
https://doi.org/10.1109/DSD.2018.00070
https://doi.org/10.1109/DSD.2018.00070
https://doi.org/10.1109/RTAS54340.2022.00032
https://www.keysight.com/us/en/assets/7018-02123/data-sheets/5990-3892.pdf
https://doi.org/10.1007/978-1-4419-5906-5_511
https://doi.org/10.1109/DSN48063.2020.00031
https://doi.org/10.1109/DSN48063.2020.00031
https://doi.org/10.1109/ICCAD51958.2021.9643512
https://doi.org/10.1109/ICCAD51958.2021.9643512
https://doi.org/10.1109/TCSII.2020.2973007
https://doi.org/10.1109/VLSIC.2018.8502404
https://www.zeropoint-tech.com/news/zeropoint-technologies-signs-memory-encryption-contract
https://www.zeropoint-tech.com/news/zeropoint-technologies-signs-memory-encryption-contract
https://doi.org/10.23919/VLSIC.2019.8778193
https://doi.org/10.23919/VLSIC.2019.8778193
https://doi.org/10.1109/MICRO.2016.7783723
https://doi.org/10.1109/DAC18074.2021.9586199
https://doi.org/10.1109/DAC18074.2021.9586199

	Abstract
	1 Introduction
	2 Threat Model
	3 Dense-Case: Approach and Solutions
	3.1 Problem Formulation
	3.2 Prior Solution: ReverseCNN

	4 Tackling Sparse Models
	4.1 Challenges
	4.2 Naïvely Handling Sparsity

	5 Learning via Active Probing
	5.1 Exploiting the Boundary Effect
	5.2 Handling Bias and Batch Normalization
	5.3 Probing Downstream Layers
	5.4 Handling ``Errors'' in Downstream Layers

	6 Automating the Attack
	6.1 Generalized Input Pattern
	6.2 Symbolic Convolution Engine
	6.3 The Probing Algorithm
	6.4 Limitations of the Probing Attack

	7 Using Architectural Properties
	7.1 Dense PSUMs
	7.2 The Timing Side-Channel

	8 Evaluation
	8.1 Methods
	8.2 Effectiveness of HuffDuff Components
	8.3 Quality of Reverse-Engineered Models

	9 Discussion and Future Directions
	9.1 HuffDuff Limitations
	9.2 Potential Defence Strategies

	10 Related Work
	11 Conclusions
	Acknowledgments
	References

